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Abstract
Background: Chelation therapy with sodium edetate (EDTA) improved renal function and slowed
the progression of renal insufficiency in patients subjected to lead intoxication. This study was
performed to identify the underlying mechanism of the ability of EDTA treatment to protect
kidneys from damage.

Methods: The effects of EDTA administration were studied in a rat model of acute renal failure
induced by 60 minutes ischemia followed or not by 60 minutes reperfusion. Renal ischemic damage
was evaluated by histological studies and by functional studies, namely serum creatinine and blood
urea nitrogen levels. Treatment with EDTA was performed 30 minutes before the induction of
ischemia. Polymorphonuclear cell (PMN) adhesion capability, plasmatic nitric oxide (NO) levels and
endothelial NO synthase (eNOS) renal expression were studied as well as the EDTA protection
from the TNFα-induced vascular leakage in the kidneys. Data was compared by two-way analysis
of variance followed by a post hoc test.

Results: EDTA administration resulted in the preservation of both functional and histological
parameters of rat kidneys. PMN obtained from peripheral blood of EDTA-treated ischemized rats,
displayed a significant reduction in the expression of the adhesion molecule Mac-1 with respect to
controls. NO was significantly increased by EDTA administration and eNOS expression was higher
and more diffuse in kidneys of rats treated with EDTA than in the controls. Finally, EDTA
administration was able to prevent in vivo the TNFα-induced vascular leakage in the kidneys.

Conclusion: This data provides evidence that EDTA treatment is able to protect rat kidneys from
ischemic damage possibly through the stimulation of NO production.

Background
Chelation therapy with sodium edetate (EDTA) has been

successfully used to treat chronic lead intoxication [1,2].
More specifically, in patients affected by chronic renal
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insufficiency due to environmental lead exposure, EDTA
chelation therapy improved renal function and slowed
the progression of renal insufficiency [3]. The mechanism
by which lead-chelation therapy with EDTA delayed renal
damage is unknown. Chelation with another chelating
agent, the dimercaptosuccinic acid (DMSA) improved
renal function and was efficacious in treating nephropa-
thy [4] and hypertension [5], both induced in animals by
long-term exposure to low-levels of lead. It has been pro-
posed that chronic, low-level lead exposure may increase
the levels of reactive oxygen species (ROS), responsible for
nitric oxide (NO) inactivation [6]. Indeed, lead-chelation
therapy might reduce the levels of ROS, associated to NO
inactivation, and thus enhance the availability of vascular
NO, potentially improving renal function and reducing
hypertension [4-6]. Moreover, a multifunctional antioxi-
dant activity has been shown for an iron chelating agent,
the N,N'-bis (2-hydroxybenzyl) ethylendiamine-N,N'-
diacetic acid (HBED) [7]. We asked if EDTA treatment in
rats was able to reduce the renal damage, when not pro-
voked by lead exposure. Indeed, in the present work we
have studied the effect of EDTA treatment in preventing
rat kidney acute damage following ischemia (Isc) or
ischemia/reperfusion (Isc/R) [8,9].

We assessed the effect of EDTA systemically administered
in rats, before the induction of renal Isc or Isc/R. Func-
tional and histological kidney alterations and rat plas-
matic levels of NO were evaluated, given that NO
availability has been found to be responsible for the
increased renal function [4,6]. In addition, being NO able
to control leukocyte adhesion [10], we determined the
expression of the adhesion molecule Mac-1 (monocyte
chemoattractant protein-1) (CD18/CD11b) on polymor-
phonuclear cells (PMN) isolated from control and EDTA-
treated rats. In this context, it has been shown that PMN
are able to play an important role as mediators of reper-
fusion injury [11,12]. Finally, since endothelial NO pro-
duction is an indicator of well functioning endothelium
[10], we have evaluated the effect of EDTA in TNFα-
induced vascular leakage in rat kidneys.

Herein we show that a single administration of EDTA
results in the preservation of renal function and in the pre-
vention of tissue damage induced by ischemic injury. In
addition, we demonstrate that the preventive block of NO
synthesis abrogate the protective effect of EDTA against
renal ischemic damage.

Methods
The investigation conforms with the Guide for the Care and
Use of Laboratory Animals published by the US National
Institute of Health (NIH publication NO.85-23, revised
1996), according to the animal welfare regulations of the
Italian local authorities.

Animals
Male Sprague-Dawley rats weighing about 200 g were
used (Charles River Italia, Lecco, Italy) and were allowed
water and standard rat chow ad libitum. All the rats were
maintained at 22 ± 1°C with a 12/12 hours light/dark
cycle.

Ischemia/Reperfusion (Isc/R) model
The rats were anesthetized with an inhaled anesthesia
mixture of halothane 2% (Hoechst, Milano, Italy) and
oxygen. They were placed on a temperature-regulated
table (38°C) (Ugo Basile, Comerio, Lecco, Italy) to main-
tain body temperature. Kidney ischemia (Isc) was induced
by clamping the right renal artery and the right renal vein
for 60 minutes with a microsurgical clamp. In the Isc/R
group, at the end of the I period, the vascular clamp was
removed and reperfusion of 60 minutes was performed.
During the surgical procedure the heart rate and the mean
arterial blood pressure (MABP) were monitored.

At the end of Isc or of Isc/R, blood samples were obtained
by exanguination of rats at the aorta bifurcation level and
kidneys were collected and processed for different studies.
Blood and kidneys from EDTA-treated-not-ischemized
rats were collected 90 minutes after EDTA administration
(corresponding to 30 minutes EDTA pre-treatment+60
min Isc).

Measurement of mean arterial blood pressure
The right femoral artery was cannulated through a poly-
ethylene catheter and connected to a pressure transducer
for the measurement of MABP [15,16]. The data was col-
lected continuously by means of a computer and were cal-
culated at baseline, at the end of EDTA pre-treatment (e.g
30 minutes after EDTA intravenous injection), at the end
of Isc and at the end of postischemic R. In sham-operated
rats the values were calculated 90 minutes after EDTA pre-
treatment.

EDTA treatment
EDTA (calcium disodium EDTA) (Collalto, Brescia, Italy)
used in human therapy was employed [3], and at the same
dosage (e.g. 40 mg/kg body weight). The sterile drug solu-
tion of 2 g/10 ml was opportunely diluted in physiologi-
cal saline and administered by left intrafemoral vein slow
infusion.

L-NAME treatment
The inhibitor of NO synthases L-NAME [N(omega)-nitro-
L-arginine methyl ester], when required, was injected
simultaneously with the EDTA through the intrafemoral
vein at the dose of 30 mg/kg body weight, 30 minutes
before the induction of Isc or Isc/R.
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Experimental groups
The rats were randomly allocated to 4 study groups, each
composed of 15 rats: group 1, controls; group 2, sham
operated: the rats underwent the same surgical procedure,
except that the clamp was not applied; group 3, Isc:
ischemia was induced for 60 min; group 4, Isc/R: ischemia
was induced for 60 min, followed by 60 min reperfusion
at room temperature. Other identical 4 groups were stud-
ied, in which EDTA treatment was performed. In groups 3
and 4 intrafemoral injection of physiological saline 30
minutes before clamping was performed. The 3 and 4
EDTA-treated groups received a single intravenous injec-
tion of EDTA 30 minutes before clamping. In groups 1
and 2 intrafemoral injection of physiological saline or
EDTA was performed 90 minutes before kidney removal
(= 30 minutes EDTA pre-treatment+60 min Isc).

To take in consideration that EDTA could lead to increase
in NO plasmatic levels through increase in eNOS expres-
sion, we further performed histological evaluations on
two additional groups of rats, to verify whether the eNOS
inhibitor L-NAME was able to block the protective effect
of EDTA in renal ischemic injury. In such groups the ani-
mals were simultaneously treated with EDTA and L-
NAME 30 minutes before the induction of Isc (group 5)
and 30 minutes before the induction of Isc/R (group 6).

Functional studies
Serum creatinine was measured using a modified Jaffe's
reaction, and blood urea nitrogen was measured on the
AEROSET system (Abbott Laboratories, Abbott Park, IL)
[17].

Histopathology and immunofluorescence microscopy
Kidneys were excised, decapsulated, dissected into 4
pieces along the major ax, fixed by immersion in 4% para-
formaldehyde in Dulbecco's PBS (DPBS) overnight at
4°C, cryo-protected in 10% sucrose in DPBS, then embed-
ded in Tissue-Tek medium and frozen in liquid nitrogen.
Cryostat-cut four sections/animal (5 µm thick) were sub-
mitted to Hematoxylin/Eosin stain; renal damage was
evaluated as tubular epithelial cell necrosis, tubular dila-
tion, protein casts and medullary congestion (18). The
alterations were semi-quantitatively graded by a patholo-
gist blind to the nature of the experiments. The grading
was performed by the following criteria: - =absent, + =
barely present, ++ = moderate, +++ = severe. Expression of
eNOS, e.g. the endothelial form of the constitutive NO
synthase, was assessed on serial sections, with the use of a
specific monoclonal antibody (BD Pharmingen, Franklin
Lakes, NJ), followed by a Rabbit-anti-Mouse IgG-
AlexaFluor488 (Molecular Probes, Eugene, OR). Observa-
tions were performed by using an Eclipse 55i microscope
(Nikon, Tokyo, Japan), digital images acquired with DS-

L1 camera and LUCIA G software (all from Nikon) and
mounted using AdobePhotoshop CS software.

Cytofluorimetry
The expression of Mac-1 was evaluated by following FACS
analysis. Whole blood was incubated with 0.5 µg of FITC-
conjugated CD11b monoclonal antibody (clone WT5,
isotype mouse IgA, K) (Pharmingen, San Diego, CA) for
20 minutes in ice. After erythrocyte lysis, samples were run
on a FACscan (Becton-Dickinson, Mountain View, CA)
and gated on PMN parameters. Results are expressed as
arbitrary units of mean fluorescence intensity (MFI, a.u.).

Nitrite/Nitrate (NO2-/NO3-) determination
The rats were bled off at the aorta bifurcation level. Blood
was collected in the presence of 0.065 mM citric acid
(Riedel, Hannover, Germany), 0.085 mM sodium citrate
(Farmitalia, Milan, Italy) and 2% glucose monohydrate
(Riedel) in the blood: anticoagulant ratio of: 7:1. Samples
were obtained from rats immediately after the end of each
treatment or surgical procedure.

NO release was determined spectrophotometrically [19]
by measuring the nitrate/nitrite (NO2

-/NO3
-) concentra-

tion in plasma samples from arterial non coagulated
blood. Briefly, whole blood was centrifuged and plasma
samples were collected, incubated for 30 min at 37°C in
the presence of 0.2 U/ml Aspergillus nitrate reductase (Boe-
hringer-Mannheim, Milan, Italy), 50 mM HEPES buffer
(pH 7.4), 5 µM flavin adenine dinucleotide (Sigma
Aldrich), and 0.1 mM NADPH (Sigma Aldrich). Then, lac-
tate dehydrogenase (Boehringer Mannheim) and sodium
pyruvate (Sigma Aldrich) were added to a final concentra-
tion of 10 U/ml and 10 mM, respectively, and the samples
were incubated for 10 minutes at 37°. The Griess reagent
(Sigma Aldrich) was added to the samples (100 µl), and
absorbance was measured at 540 nm after 15 minutes
incubation at room temperature. Standard curves with
increasing concentrations of sodium nitrate and sodium
nitrite were run in parallel.

In vivo permeability assay
The assay was performed as described [20]. Briefly, the exit
of albumin from vessels into the parenchyma of rat kid-
neys was assayed. The dye solution contained 0.4% albu-
min (Sigma Aldrich) and 0.5% trypan blue (Sigma
Aldrich) in saline. Following laparatomy, animals were
perfused with 5 ml dye-solution through the right renal
artery for 10 minutes. The perfusate was drawn from the
right renal vein. The right kidney was washed with saline
in vivo, removed, weighted, suspended and homogenized
in buffered phosphate solution at pH 7.4 (1 g tissue dis-
solved in 3 ml buffer). In treated animals, after halothane
anesthesia, EDTA (40 mg/kg) was injected intravenously
(through the femoral vein), followed by rat TNFα (R&D
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System, Abingdon, UK) (0.1 ng/g). TNFα and EDTA,
alone or together, were injected 30 minutes before kidney
dye perfusion.

Tissue extracts were centrifuged, the supernatants recov-
ered and treated with 10% deoxycholic acid (sodium salt
monohydrate, Sigma Aldrich) in saline, to remove lipid
interference. Dye was evaluated by spectrophotometer
analysis (Pye Unicam SP6-550, Cambridge, United King-
dom) at 540 nm.

Statistics
The results are expressed as the mean ± SEM of 15 animals
in each group. They were analyzed using a two way analy-
sis of variance followed by Bonferroni t-test. The results
were considered statistically significant when p < 0.05.

Results
Systemic hemodynamic data
In the rats studied the heart rate did not vary significantly
during the experimental procedure (data not shown). To
establish whether EDTA could maintain vascular homeos-
tasis, we measured MABP in both untreated and EDTA-
treated rats. EDTA treated rats displayed MABP values
lower than those of untreated control and sham operated
animals. To note, the increase of MABP due to Isc was sig-
nificantly prevented by EDTA pre-administration (Table
1).

EDTA administration preserved kidneys from ischemic 
damage
Rats undergoing either renal Isc, obtained by clamping the
right renal artery and the right renal vein for 60 minutes,
or Isc followed by 60 minutes reperfusion (Isc/R),
obtained by removing the clamp, were evaluated for the
levels of serum creatinine and blood urea nitrogen (Fig.
1), two parameters routinely used to assess renal function.
Both creatinine and urea had a significant increase after
the induction of Isc and Isc/R, clearly indicating an
impairment of the renal filter function. Interestingly, the
administration of EDTA before Isc and Isc/R, maintained

both parameters at physiological levels (Fig. 1), thus sug-
gesting a protective role of EDTA toward the renal filter
capacity.

EDTA administration protected kidney from renal 
structural alterations
To assess whether EDTA, administered before renal Isc or
Isc/R induction, protected kidney not only from func-
tional damage but also from structural alterations, we per-
formed histological evaluations, aimed to determine the
presence of tubular epithelial cell necrosis, tubular dila-
tion, protein casts and medullary congestion (Fig. 2). For
this, kidneys from treated rats were excised and sections
were stained with Hematoxylin/Eosin, to compare their
architecture with that of control kidneys (Fig. 2a). Picture
relative to kidneys from EDTA-treated rats (Fig. 2b) was
similar to that of control kidneys (Fig. 2a): indeed, inter-
stitial spaces were maintained and proximal tubule as well
as cortical distal segments were preserved. Kidneys from
sham-operated rats did not show evidence of important
modifications with respect to the controls (data not
shown). Kidneys from rats undergoing Isc (Fig. 2c)
showed severe renal lesions, mainly tubular, such as dila-
tion and focal engulfment by protein casts. Glomerular
and interstitial hemorrhage were also present. Some tubu-
lar cells were necrotic, whereas other appeared vacuolized.
This picture worsened when kidneys were obtained from
rats submitted to R (60 min) after Isc, displaying (Fig. 2e)
tubular cast increase and glomerular hypertrophy. Note-
worthy, kidneys from animals pre-treated with EDTA
before the induction of Isc, (Fig. 2d) failed to show impor-
tant renal lesions. EDTA pretreatment preserved also the
architecture of kidneys submitted to Isc/R (Fig. 2f). No sig-
nificant differences were evident by comparing panel d
and f of Fig. 2. Pictures related to the ascending thick limb
in the kidney medulla displayed interstitial hemorrhage at
the end of Isc in control kidneys. On the contrary, intersti-
tial hemorrhage was absent in kidneys from EDTA-treated
ischemized rats (data not shown). The semiquantitative
analysis of renal damage, which represents the mean fea-
tures for each group of animals, is summarized in Table 2.

Table 1: Measure of mean arterial blood pressure (MABP) in rats

CONTROLS SHAM UNTREATMENT (mmHg) EDTA pre-treatment (mmHg)

100 ± 8 85 ± 3*
108 ± 11 93 ± 2*

Before clamping End Isc or Isc/R Before clamping End Isc or Isc/R

Isc 104 ± 6 130 ± 5** 90 ± 2* 98 ± 7*
Isc/R 105 ± 6 115 ± 9 90 ± 3* 88 ± 8*

EDTA pre-administration (30 min) is able to avoid the increase of MABP induced by kidney Isc. EDTA administration reduces MABP in controls and 
in sham-operated rats. lsc = ischemia; lsc/R = ischemia/reperfusion.
*p < 0.05 vs. corresponding untreatment; **p < 0.05 vs Isc before clamping
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Effect of EDTA administration on renal function after Isc and Isc/RFigure 1
Effect of EDTA administration on renal function after Isc and Isc/R. Serum creatinine and blood urea nitrogen levels 
were measured. Rats that received intravenous injection of EDTA; 30 minutes before Isc or Isc/R induction; showed reduced 
levels of serum creatinine and blood urea nitrogen as compared with control rats (controls = C); lsc = ischemia; lsc/R = 60 
minutes kidney ischemia followed by 60 min reperfusion. *p < 0.05.
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Renal morphologyFigure 2
Renal morphology. Hematoxylin/Eosin images of differently treated rats. lsc = ischemia; lsc/R = ischemia/reperfusion. Repre-
sentative cortical areas are shown. Notice the abundance of red blood cells and tubular protein casts in c and e panels in com-
parison with d and f (original magnification × 200).
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The use of the eNOS inhibitor L-NAME, simultaneously
injected with EDTA before the induction of Isc and Isc/R
was able to block the beneficial effects induced by EDTA.

Effect of EDTA on Mac-1 expression by PMN
To investigate a putative mechanism of action of EDTA,
we considered its effect on PMN, which are largely
involved in the damage associated with Isc/R [11,12].

For this purpose, PMN, isolated from peripheral rat
blood, were analyzed for the expression of the pro-adhe-
sive molecule Mac-1 (Fig. 3); the existence of Mac-1 up-
regulation is suggestive of PMN activation [21]. Mac-1
expression by PMN obtained from control rats increased
significantly after Isc and Isc/R. Following EDTA pretreat-
ment, the increase was significantly impaired in rats sub-
mitted to Isc and, at lower extent, to Isc/R.

EDTA administration strongly influenced NO production 
in vivo and renal eNOS expression
Being the expression of adhesion molecules, the adhesive
and migratory pattern of leukocytes finely regulated by
NO, both in physiologic and pathologic conditions
[10,22-24], we then measured rat NO plasmatic levels.

EDTA pre-treatment significantly increased the levels of
circulating NO (Fig. 4) both in control and in ischemic
rats. Conversely, post-ischemic reperfusion impaired dra-
matically the production of NO but was not insensitive to
EDTA pre-administration: in fact NO production follow-
ing Isc/R in EDTA-pre-treated rats was similar to that
measured in control rats.

As NO in vascular endothelial cells is synthesized prima-
rily by the endothelial form of the constitutive NO-pro-
ducing enzyme (eNOS), we examined the possibility that
a decrease in NO bioavailability might be related to a
change in the rate of expression of eNOS. The renal
expression of eNOS (Fig. 5), observed in glomerular and
interstitial capillaries, was slightly higher and diffuse in
animals treated with EDTA (b), as compared to untreated
control rats (a). Induction of short time (60 min) Isc, in
control rats, produced a loss in the glomerular eNOS and
an increase of its interstitial expression (c). When Isc fol-
lowed EDTA treatment (d), eNOS expression was preva-
lently assessed inside glomerular capillaries. Kidney
sections obtained following Isc/R in controls showed very
low expression of eNOS both at glomerular and intersti-
tial levels (e). Kidney sections from rats treated with EDTA

Table 2: Histologic evaluations of renal injury

Rat treatment Tubular 
necorsis

Tubular dilation Protein casts Medullary 
congestion

Glomerular 
damages

Interstitial stasis

Controls - - - - - -
Sham-operated + * - - - - + *
EDTA - - - - - +
Isc - + + ** +/++ - ++
EDTA+Isc - - - - - +
Isc/R + ++ +++ + - +
EDTA+lsc/R + * ++ * + * - - + *
EDTA+L-
NAME+Isc

- + + ++ - ++

EDTA+L-
NAME+lsc/R

+ ++ +++ ++ - +

*Focal; **Big, but focal
- = absent; + = barely present; ++ = moderate; +++ = severe
Semiquantitative analysis of renal damage representative of mean features, obtained for each group of rats.

Table 3: Dye solution retention by rat kidneys

Treatment µg/g

Controls 163 ± 8.3
+TNFα 456 ± 41.8*
+EDTA 178 ± 7.4
+TNFα+EDTA 298 ± 14.5*§

The table reports the modification of vascular permeability; following in vivo treatment with EDTA and TNFα (see Methods section). The rat right 
kidney was in vivo perfused with trypan blue solution; washed with saline; removed; homogenized and centrifuged. The supernatants were run on a 
spectrophotometer at 540 nm wavelength. The data was then expressed as µg dye retained per weight (g) of fresh kidney. Maximum dye retention 
(dye perfusion without washing) yielded a value of 619 ± 24.7.
*p < 0.05 vs. controls; §p < 0.05 vs. TNFα
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before Isc/R (f) displayed fluorescence findings compara-
ble to that of controls (a). The use of L-NAME together
with EDTA before the induction of Isc and Isc/R abrogated
the increase in eNOS expression due to EDTA treatment
alone (data not shown).

EDTA regulated the vascular permeability in vivo
It has been recently demonstrated that eNOS has a critical
role in regulating the microcirculatory endothelial barrier
function in vivo [25]. We investigated whether EDTA influ-
enced the TNFα-induced vascular leakage in kidneys. Vas-
cular leakage values (expressed as µg dye/g fresh kidney
and mean ± SEM of 8 rats) are reported in Table 2. A sig-
nificant increase in dye retention has been shown by kid-
neys of rats treated with TNFα with respect to kidneys of
untreated animals (controls). EDTA treatment alone did
not alter the endothelial barrier function. The concomi-

tant administration of EDTA and TNFα resulted in the sig-
nificant reduction of TNFα-induced leakage, indicating
the existence of tights links among EDTA-NO-vascular
protection.

Discussion
EDTA, used in patients affected by chronic lead intoxica-
tion, improved renal function [3]. We investigated
whether EDTA exerted its protective effect also toward kid-
neys affected by Isc or Isc/R. For this purpose, we admin-
istered intravenously EDTA 30 min before the induction
of renal Isc, obtained by clamping the right renal artery
and the right renal vein.

The severe renal injury induced by Isc or Isc/R was
assessed both as functional impairment, through the
serum creatinine and blood urea nitrogen dosages (Figure

Expression of Mac-1 by PMN recovered from rat bloodFigure 3
Expression of Mac-1 by PMN recovered from rat blood. The data represents the values; expressed as mean fluores-
cence intensity (MFI) (obtained by subtracting the respective value of negative control from each intensity value). lsc = 
ischemia; lsc/R = ischemia/reperfusion. *p < 0.05.
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1), and as structural alteration of tubules and glomeruli
(Fig. 2). It should be noted that EDTA administration was
efficient in significantly preserving renal function and in
preventing structural alterations and necrotic lesions.

NO plays an important role in regulating vascular tone
and improving renal blood flow [26]. We show that circu-
lating levels of NO are increased after EDTA injection, fol-
lowed or not by Isc or Isc/R (Fig. 4). NO administration
could act by scavenging the ROS [6]. Indeed, the improve-
ment of NO induced by EDTA treatment could be respon-
sible for a reduced endothelial damage mediated by ROS.
In the present study the increase of circulating NO well
correlates with the expression of eNOS in kidneys from
EDTA-treated rats, also when Isc or Isc/R occurred. Recent
data indicates that the renal protective effects due to
ischemic preconditioning are attributable to eNOS-medi-
ated NO production [27]. In fact, it has been found that
ischemic preconditioning (e.g. three cycles of 2 minutes
Isc followed by 5 minutes reperfusion) was able to protect
against the Isc/R-induced acute renal failure [27]. Congru-

ously with the finding that pharmacological inhibition of
NO synthesis- or disruption of the eNOS gene- signifi-
cantly increases blood pressure [10,25], EDTA pretreat-
ment has been demonstrated able to prevent the ischemic
increase of MABP (Table 1).

NO modulates leukocyte adhesion in the microcircula-
tion by decreasing the binding of PMN to the adhesion
molecules E-selectin and ICAM-1 [22,24]. PMN are
involved in the tissue damage due to Isc/R injury: their
activation and migration in ischemic tissues is followed
by release of lytic enzymes and production of ROS
[11,28]. We show that Mac-1 expression, widely consid-
ered a sensitive marker of PMN activation [21], is up-reg-
ulated in rats submitted to kidney Isc and Isc/R. Treatment
with EDTA prevents PMN activation in both ischemized
and undergoing postischemic reperfusion rats (Figure 3).
The efficacy of EDTA treatment in protecting PMN from
activation is possibly mediated by the increase in NO pro-
duction (Fig. 2), given that NO inhibits the increase of
adhesion molecule expression [22,24]. Moreover, it has

Plasmatic NO levelsFigure 4
Plasmatic NO levels. They are expressed in µM. Rats that received intravenous injection of EDTA showed increased levels 
of NO as compared with controls (C). Sham = sham-operated rats. lsc = lschemia; lsc/R = ischemia/reperfusion. *p < 0.05 vs C; 
**p < 0.05 vs. Isc; ***p < 0.05 vs. Isc/R.
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Immunofluorescence microscopy of eNOSFigure 5
Immunofluorescence microscopy of eNOS. Localization of eNOS (green) on differently treated rats (lsc = ischemia; lsc/
R = ischemia/reperfusion); arrows pointed to positive glomeruli; and arrowheads to negative. Nuclei were counterstained with 
DAPI (original magnification × 200).
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been shown that during the acute myocardial Isc/R the
low level of NO increased PMN adhesion to the endothe-
lium [23].

It is known that NO derived from eNOS is a powerful
vasodilator and possesses vasoprotective effects [29]. Here
we show that EDTA is able to maintain the expression of
eNOS on the glomerular and interstitial capillaries after
Isc and Isc/R. Several divalent cations (Mn++, Zn++ and
Fe++) suppressed eNOS activity in crude cell extracts and
intact cells whereas Cu++ increased eNOS activation [30].
So, we could argue that the removal of some divalent cat-
ions by EDTA may improve eNOS levels. In this context,
the in vivo use of a divalent cation, the Cd++, was respon-
sible for decreased NO concentration in rat serum [31].
Some clinical evidences support our results. Recently, che-
lation therapy with EDTA (also associated with vitamin B)
in subjects with coronary artery disease showed a signifi-
cant NO-related endothelial function improvement [32].
Analogously, iron chelation with deferoxamine infusion
in cardiomyopathy patients improved NO-mediated
endothelium dependent vasodilation, suggesting that
iron availability contributes to impair NO action in
atherosclerosis [33]. Moreover, cardiovascular protection
obtained by the use of high-dose corticosteroids has been
shown to be mediated by non-transcriptional activation
of eNOS [34]. The role of eNOS as a trigger and mediator
of isoflurane-induced delayed preconditioning in vivo has
been recently reported [35].

We propose that EDTA may act through an enhancement
of endothelial NO production, as previously reported for
corticosteroid [34] and also for desflurane, a precondi-
tioning agent able to protect myocardium against Isc/R
injury, by favouring NO release [36].

New data suggests for EDTA the favorable antioxidant
mechanism of action previously described for other
chelating agents [4,7]. In fact the use of EDTA complexes
with metal ions as Fe++ and Cu++ suppressed superoxide
and hydrogen peroxide activity [37]. In addition, recently,
Hininger et al. [38] showed the beneficial antioxidant
effects of EDTA chelating therapy. Since oxidative stress
contributes to the pathogenesis of many diseases, includ-
ing cardiovascular diseases, the protection exerted by
EDTA against ischemic damage could be reconducible
also to its antioxidant ability.

Conclusion
The data shows that functional and histological parame-
ters of rat kidneys are preserved from damage due to Isc
and Isc/R by EDTA treatment. These results suggest the
existence of a tight loop EDTA/eNOS/NO, which on the
one hand results in the loss of PMN activation and on the

other hand in the maintenance of the endothelial barrier
function.
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