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Abstract

Background: Cluster analysis (CA) is a frequently used applied statistical technique that helps to reveal hidden
structures and “clusters” found in large data sets. However, this method has not been widely used in large healthcare
claims databases where the distribution of expenditure data is commonly severely skewed. The purpose of this study
was to identify cost change patterns of patients with end-stage renal disease (ESRD) who initiated hemodialysis (HD)
by applying different clustering methods.

Methods: A retrospective, cross-sectional, observational study was conducted using the Truven Health MarketScan®
Research Databases. Patients aged ≥18 years with ≥2 ESRD diagnoses who initiated HD between 2008 and 2010 were
included. The K-means CA method and hierarchical CA with various linkage methods were applied to all-cause costs
within baseline (12-months pre-HD) and follow-up periods (12-months post-HD) to identify clusters. Demographic,
clinical, and cost information was extracted from both periods, and then examined by cluster.

Results: A total of 18,380 patients were identified. Meaningful all-cause cost clusters were generated using K-means
CA and hierarchical CA with either flexible beta or Ward’s methods. Based on cluster sample sizes and change of cost
patterns, the K-means CA method and 4 clusters were selected: Cluster 1: Average to High (n = 113); Cluster 2: Very
High to High (n = 89); Cluster 3: Average to Average (n = 16,624); or Cluster 4: Increasing Costs, High at Both Points
(n = 1554). Median cost changes in the 12-month pre-HD and post-HD periods increased from $185,070 to $884,605
for Cluster 1 (Average to High), decreased from $910,930 to $157,997 for Cluster 2 (Very High to High), were relatively
stable and remained low from $15,168 to $13,026 for Cluster 3 (Average to Average), and increased from $57,909 to
$193,140 for Cluster 4 (Increasing Costs, High at Both Points). Relatively stable costs after starting HD were associated
with more stable scores on comorbidity index scores from the pre-and post-HD periods, while increasing costs were
associated with more sharply increasing comorbidity scores.

Conclusions: The K-means CA method appeared to be the most appropriate in healthcare claims data with highly
skewed cost information when taking into account both change of cost patterns and sample size in the smallest cluster.
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Background
Cluster analysis
Cluster analysis (CA) is a statistical technique that helps
reveal hidden structures by grouping entities or objects
(e.g., individuals, products, locations) with similar charac-
teristics into homogenous groups while maximizing hetero-
geneity across groups [1, 2]. Entities or objects of interest
are grouped together based on attributes that make them
similar, with the final goal being to distinguish these entities
or objects by clustering them into comparable groups and
to separate them from differing groups. Conceptually, CA
aims to identify cluster solutions that are relatively homo-
geneous within each group, leading to clusters that have
high intra-class similarity, while maximizing heterogeneity
between the groups, leading to low inter-class similarity
across clusters. Geometrically, the objects within a cluster
are close together, while the distance between clusters is
further apart. CA is useful to identify groups when it is not
clear which entity belongs to which group, and how many
groups may best be used to cluster the entities; thus, CA
helps to identify a latent structure within a dataset [1–3].
CA has been widely used in varied applications including

finding a true typology, prediction based on groups, hy-
pothesis generation, data exploration, and data reduction-
or grouping similar entities into homogeneous classes,
consequently organizing large quantities of information
and enabling labels that facilitate communication [1, 4, 5].
Numerous specific examples of the use of CA have been
reported in the literature, such as characterizing psychiatric
patients on the basis of clusters of symptoms [6]; finding a
group of genes that have similar biological functions [7]; or
identifying medical patient groups most in need of targeted
interventions [4, 5].
Less well investigated is the utility of CA in identifying

macro-structures associated with changes in treatment
outcomes documented in large healthcare claims data-
bases. A particular challenge for the use of CA in health-
care claims datasets is that the distribution of healthcare
expenditure data are commonly severely skewed, which
complicates analyses [8, 9]. In spite of this challenge, CA
may aid in identifying clusters of patients who experi-
enced similar change in costs of care before and after
treatment, and particular interest may lie in focusing
attention on consistently high-cost groups or groups for
whom healthcare costs dramatically increase after a change
in treatment. This study employed CA to the patients with
end-stage renal disease (ESRD) who were initiated on
hemodialysis (HD) for their healthcare cost change pat-
terns before and after HD and explored the feasibility of
application of CA method in highly skewed claims data.
Affecting an estimated 600,000–900,000 patients in

the United States, chronic kidney disease (CKD) is a
complicated clinical issue increasingly recognized as
both a pressing public health concern and a growing
worldwide epidemic [10–15]. Kidney function progres-
sively declines in a proportion of patients with CKD, par-
ticularly without adequate therapy. However, often, even
with adequate therapy, CKD eventually progresses to dev-
astating ESRD [16]. Two types of dialysis are widely used:
hemodialysis (HD) and peritoneal dialysis (PD). The most
common and costly of the two, HD, uses a dialysis ma-
chine and a special filter called a dialyzer to clean blood
outside of the body [17, 18]. The less commonly type is
PD, a procedure in which blood is cleaned inside the body
via the introduction of dialysate into the abdominal cavity
[18].
Even though HD is the most expensive treatment for

patients with ESRD [16, 17] little has been reported
beyond the aggregate level on the economic impact of the
transition of ESRD patients who had previously not re-
ceived dialysis to HD [19]. Hence, examining healthcare
cost patterns of patients with ESRD who initiated HD and
classifying these patients into groups may provide useful
information to healthcare decision-makers in relation to
the cost burden of HD therapy. The objectives of this ana-
lysis were: 1) to apply CA techniques to an evaluation of
change in all-cause healthcare costs in patients with ESRD
before and after initiating HD; 2) to explore the feasibility
of application of this method to administrative claim data-
base with highly skewed cost information; 3) to present
clusters that show meaningful patterns of change of costs
before and after initiating HD; and 4) to further examine
these clusters to identify differences in comorbidities and
other variables in the pre- and post-HD period, to see if
different clinical or demographic patterns may explain the
variations in overall costs across clusters.

Methods
Study design and data
This retrospective, cross-sectional, observational study with
2007 to 2011 data was conducted using the Truven Health
Analytics’ MarketScan® Commercial Claims and Encounter
and Medicare Supplemental Databases [20]. The Market-
Scan database, one of the most commonly used for health
economics outcomes research (HEOR), is one of the largest
administrative claim databases that provides healthcare
costs and resource utilization in real-world settings. The
databases reflect inpatient, outpatient, and outpatient pre-
scription drug information for approximately 53 million
employees and their dependents covered under commercial
health insurance plans sponsored by more than 300 em-
ployers in the United States. This database provides detailed
cost (payment) and healthcare utilization information for
services performed in both inpatient and outpatient
settings, in addition to standard demographic variables (i.e.,
age, sex, employment status, and geographic location).
Medical claims are linked to outpatient prescription drug
claims and person-level enrollment data through the use of
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unique enrollee identifiers [20]. The study did not require
informed consent or institutional review board approval
because all study data were accessed using techniques com-
pliant with the Health Insurance Portability and Account-
ability Act of 1996. Thus, no identifiable protected health
information was extracted during the course of the study.

Sample selection and patient population
Patients aged ≥18 years were included in the analyses if 1)
the patient had at least one confirmed diagnosis of ESRD
and 2) initiated at least 2 HD sessions between 2008 and
2010. An “index date” was defined as the first HD claim
within that time span. Patients were excluded if they did
not have continuous enrollment for the 12 months prior to
(the “pre-” HD period) or 12 months following (the “post-”
HD period) the index date (pre- and post-HD periods thus
may have included data from 2007 or 2011 as relevant
based on index date). Patients who had a transplant or
underwent PD were not excluded due to sample size and
generalizability consideration. Therefore, there could be
cases that patients had PD or transplant before index HD
or switched to PD or had transplant after their index HD.
Diagnoses were based on International Classification of
Disease, Ninth Revision, Clinical Modification (ICD-9-CM)
codes. Codes considered to indicate ESRD included ICD-9-
CM codes 404.02, 404.12, 404.92, 404.03, 404.13, and
404.93 (hypertensive heart and CKD without heart failure
and with CKD Stage V or ESRD), as well as ICD-9-CM
codes 585.5 (CKD Stage 5/ESRD) and 585.6 (ESRD)
(Appendix 1 includes a full set of patient medical codes that
qualified a patient for inclusion in this study). Persons re-
ceiving HD were identified using Healthcare Common Pro-
cedure Coding System, Current Procedural Terminology,
and ICD-9 codes, which are listed in Appendix 1 [21–23].

Variables for clustering
The variables used for clustering were “all-cause medical
costs”, or direct costs for each patient reported in the
pre- and post-HD periods. All-cause medical costs
included hospitalization, office, and emergency depart-
ment visit costs for all purposes, including dialysis costs.
Healthcare costs included payments from both insurance
and out of pocket costs from patients including deduct-
ible copays and coinsurances.

Variables for describing clusters
The variables for describing patients in clusters included
gender (male or female), geographic region (Northeast,
North central, South, or West), insurance type (Health
Maintenance Organization [HMO] or Point-of-Service
[POS] capitation, Fee-for-Service [FFS]), age (stratified as
18–24, 25–34, 35–44, 45–54, 55–64, and ≥ 65 years), and
the comorbidity measures—Charlson Comorbidity Index
(CCI), Elixhauser Comorbidity Index (ECI), and the Agency
for Healthcare Research and Quality”s (AHRQ) top 10
Clinical Classification Software (CCS) categories. The CCI
composite comorbidity score was calculated from medical
records as a weighted sum of the presence of 19 docu-
mented health conditions including diabetes, peripheral
vascular disease, or congestive heart failure. Weighting was
accomplished by assigning a value of 1, 2, 3, or 6 to each ap-
propriate comorbidity condition and summing these values-
thus, higher values reflect greater comorbidity [24–26]. The
ECI score was used to measure the burden of comorbid
conditions not directly related to HD. ECI distinguishes 30
comorbid conditions identified using ICD-9-CM codes from
complications by considering only secondary diagnoses un-
related to the primary diagnosis [27]. The mean ECI score
for each cluster was determined; like the CCI, higher scores
reflect greater comorbidity burden. The AHRQ CCS for the
ICD-9-CM provides a system for classifying ICD-9-CM
diagnoses or procedures into a manageable number of clin-
ically meaningful categories. One use of the CCS method is
to identify the most frequent types of conditions present in
study populations. The single-level diagnosis CCS approach
combines illnesses and conditions into 285 mutually exclu-
sive categories [22, 28]. The same individual might receive a
flag for as many CCS categories as the recorded diagnoses
support. The CCS uses a broad definition for each disease
and, unlike Charlson instruments, the CCS is reported to
make little distinction regarding disease severity.

Statistical analysis
The goal of these analyses was to cluster patients in terms
of all-cause costs in the “pre” period and “post” period.
Values for all-cause costs were normalized by subtracting
the minimum from each value and dividing that difference
by the range of all values. CA was conducted on normal-
ized all-cause costs. Patients with similar cost patterns
were “grouped” together into a set of clusters based on
their costs in the pre- and post-HD period using different
CA methods. Patterns of demographic information and
comorbidities within each cluster were reviewed and com-
pared/contrasted across clusters. Two major CA methods,
K-means (non-hierarchical) and hierarchical CA with vari-
ous linkage methods, were applied to normalized costs
within the pre- and post-HD periods to identify clusters.
PROC FASTCLUS and PROC CLUSTER procedures in
SAS, Version 9.3, were used to conduct the cluster
analyses. All other analyses were also performed using
SAS, Version 9.3 [29, 30].
Several important questions must be addressed when

conducting CA [1], including: What measures of similar-
ity should be chosen to compare the entities under con-
sideration? How should clusters be formed? And what is
the optimal number of clusters? Similarity between
objects is most often assessed by a distance measure,
with higher values (i.e., greater distances between cases)



Liao et al. BMC Nephrology  (2016) 17:25 Page 4 of 14
representing greater dissimilarity between entities. Vari-
ous measures are available to express similarity or dis-
similarity between pairs of objects. In these analyses, we
used Euclidean distance, or straight-line distance be-
tween individuals in the database-this is the most com-
monly used type of similarity measure when analyzing
ratio or interval-scaled data [31]. Mathematically, the
Euclidean distance between any 2 entities, such as B and
C, with regard to 2 variables, x and y, can be expressed
by the following formula [31]:

dEuclidean B;Cð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xB−xCð Þ2 þ yB−yCð Þ2

q

The values obtained from comparing all entities on
both x and y (in this case, pre- and post-HD costs) form
a distance matrix capturing the distances between all
pairs of entities.
Clusters can be formed using either hierarchical or

non-hierarchical methods. Hierarchical CA attempts to
identify relatively homogenous groups of cases based on
selected characteristics using an algorithm that either
agglomerates or divides entities to form clusters [32].
Agglomerative algorithms begin with each entity in a
separate cluster; in each subsequent step, the two clus-
ters that are most similar are combined to build an ag-
gregate cluster. This process is repeated until all objects
are finally combined into a single cluster. Once formed,
clusters cannot be split, and similarity decreases during
each step. A variety of “linkage” methods may be chosen
to facilitate an agglomerative algorithm and define how
similar or dissimilar any two clusters may be, including,
single-, complete-, or average-linkage methods, flexible
beta method, McQuitty’s method, as well as the centroid
method or Ward’s method (Table 1).
Table 1 Common agglomerative algorithms for forming clusters

Average-Linkage [39] • The distance between 2 clusters is defined as th

Centroid Method [39] • Cluster centroids are defined as the mean value
• The distance between 2 clusters is equal to the

Single-Linkage [40–42] • Also known as “nearest-neighbor” method
• Defines similarity between clusters as the shorte

Complete-Linkage [43] • Also known as the “farthest-neighbor” method
• Assumes the distance between 2 clusters is bas

Flexible-Beta [44, 45] • Uses a weighted average distance between pair
• User sets different levels of beta, and beta value

McQuitty’s Similarity [46] • Assumes that each entity is a separate cluster
• When two clusters are be joined, the distance o
of the distances of the soon to be joined cluste

• Merges together the pair of clusters that have t
• Continues until a specified number of clusters is
less than a predefined cutoff

Ward’s Method [47] • The similarity between two clusters is the sum o
• Tends to join clusters with a small number of o
• Strongly biased toward producing clusters with
In a divisive algorithm, analyses start with a single clus-
ter containing all entities, which is then divided at each
subsequent step into two additional clusters that contain
the most dissimilar objects. Splitting continues until all
observations are in a single-member cluster. The end
product of either an agglomerative or divisive hierarchical
clustering method is the construction of a hierarchy or
structure depicting the formation of clusters.
The K-means method is the primary example of non-

hierarchical CA. In contrast to hierarchical analyses, non-
hierarchical approaches do not involve the construction of
groups via iterative division or clustering; instead, they
assign objects into clusters once the number of clusters is
specified. To accomplish this, starting points (or cluster
seeds) for each cluster must be identified, and each obser-
vation is assigned to one of the cluster seeds via some
process or algorithm. In K-means CA, “k” points are
entered into the space represented by the entities being
clustered-these points represent initial group centroids
[33]. The n observations are then partitioned into k
clusters in which each observation belongs to the cluster
with the nearest mean. Once all objects have been
assigned, the positions of the k centroids are recalculated.
These steps are repeated until the centroids no longer
move, yielding a separation of the objects into groups
from which the metric to be minimized can be calculated.
Both hierarchical and K-means CA methods have their
strengths and weakness (Table 2), and they are sometimes
used in complementary fashion to converge upon an opti-
mal cluster solution.
The process of conducting CA leads to a set of decisions

related to the CAs performed: which method is best, and
what is a reasonable number of clusters to form? In this
regard, there is no right or wrong approach; ultimate con-
sideration is given to developing a model that not only
e average distance between all pairs of the 2 clusters’ members

s of the observation on the variables of the cluster
distance between the two centroids

st distance from any one object in one cluster to any object in the other

ed on the maximum distance between any 2 members in the 2 clusters

s ofobjects in different clusters to decide how far apart they are
s less than zero optimize the dissimilarity between clusters

f the new cluster to any other cluster is calculated as the average
rs to that other cluster
he highest average similarity value
found, or until the similarity measure between every pair of clusters is

f squares within the clusters summed over all variables
bservations
the same shape and with roughly the same number of observations



Table 2 Strengths and weaknesses of hierarchical and K-means CA methods

Advantages Disadvantages

Hierarchical CA • Offers a simple yet comprehensive portrayal of clustering solutions
• Measures of similarity allow this analysis to be applied to
almost any type of research question

• Generates an entire set of clustering solutions expediently

• Susceptible to impact of outliers in the data
• Not amenable to analyzing large samples

K-means CA • Results less susceptible to outliers in the data, influence of chosen
distance measure, or the inclusion of inappropriate or irrelevant variables

• Can analyze extremely large data sets

• Different solutions for each set of seed points and no
guarantee of optimal clustering of observations

• Not efficient when a large number of potential cluster
solutions are to be considered

CA, cluster analysis

Fig. 1 Patient selection diagram. Abbreviations: ESRD, end-stage
renal disease; HD, hemodialysis
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represents the data appropriately, but can be easily inter-
preted and understood in the context of the entities
investigated-thus, successful CA requires experience and
perspective to inform the selection of meaningful clusters.
In this study, a final model was chosen based the following
criteria: 1) In order to have a meaningful number of clus-
ters, it was important not to have too few observations
(<10) in the smallest cluster or too many small clusters; 2)
As to generate a reasonable clustering pattern, it was
essential to have interpretable clustering patterns; and 3)
Having a reasonable number of clusters for further ana-
lysis. Selecting the number of clusters can be aided by
maximizing key statistical elements of the CA: larger
values of the Pseudo-F Statistic (PsF) [34] and the Cubic
Clustering Criterion (CCC) [35] suggest better model fit
in terms of number of clusters [29, 30, 36].

Results
Patients
After applying the entry criteria for this study and
from 140,720 individuals, a total of 18,380 individuals
were identified in the MarketScan Database (Fig. 1).
The average age was 63.2 years (standard deviation
[SD] = 14.1); 46 % were aged ≥65 years, and 29 %
were aged 55 to 64 years. Of the total individuals,
58 % were males, 84 % had FFS insurance plans, and
14 % had HMO or POS capitation plans. At baseline,
average ECI scores were 5.8 (SD = 2.6) in the full sample
and CCI scores were 4.6 (SD = 2.3); at follow-up, ECI scores
had increased to 7.1 (SD = 3.0) while CCI scores had in-
creased to 5.3 (SD = 2.4).

Overall costs, pre- and post-HD periods
Medical costs for all patients during the pre- and post-HD
periods are summarized in Table 3. We defined annual
medical costs ≤ $50,000 as “average”, $50,001 to ≤ $500,000
as “high”, and > $500,000 as “very high”.

Clustering techniques
Hierarchical CA with the average, centroid, single-
linkage, complete-linkage, and McQuitty’s similarity
methods led to cluster solutions that included clusters
with unreasonable sample sizes (i.e., prone to the cre-
ation of very small clusters with <10 observations;
Table 4). Both K-means CA and hierarchical CA with
either the flexible-beta method or Ward’s method
yielded reasonable solutions. However, the K-means
solutions were more meaningful and more easily
interpreted, particularly for cluster number <5, cir-
cumstances in which both Ward’s method and the
flexible-beta method generated at least one cluster
with large variation, which is not helpful in practice
(Appendix 2, Appendix 3, and Appendix 4,
respectively).
Upon inspection, the best K-means solution included

4 clusters (Fig. 2). More formal criteria associated with
each of the K-means solutions suggested 4 clusters
yielded maximum separation between clusters (4-cluster
solution: PsF = 13,979.98; CCC = −63.928 compared with
PsF = 10,502.25 and CCC = −99.702 for a 3-cluster



Table 3 All-cause medical costs in the 12-month baseline and follow-up periods

Variables Mean (SD) Min Median 75th Percentile 90thth Percentile 95th Percentile 99th Percentile Max

All cause medical costs
(pre-HD period)

$45,145 ($109,596) 0 $16,905 $42,758 $102,722 $178,250 $461,317 $4,771,412

All cause medical cost
(post-HD period)

$48,713 ($108,506) 0 $16,330 $47,995 $123,513 $194,050 $495,240 $2,664,338

SD standard deviation, Min minimum, Max maximum
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solution, and PsF = 13,109.62 and CCC = −70.634 for a
5-cluster solution). Empirically, the 4-cluster solution
was judged to be more appropriate and more easily in-
terpretable than either the 3- or 5-cluster solution. Thus,
a 4-cluster K-means solution was chosen for further in-
vestigation (Fig. 3). The 4 clusters in this model included
a cluster with average costs pre-HD and high costs post-
Table 4 Summary of results from clustering analysis methods
applied

Clustering
Approach

Linkage Type Number of
Clustersa

Cluster Sample Size
(Smallest in Bold)

Hierarchical Average 3 18,376; 3; 1

Average 4 18,376; 2; 1; 1

Average 5 18,312; 64; 2; 1; 1

Hierarchical Centroid 3 18,365; 14; 1

Centroid 4 18,351; 14; 14; 1

Centroid 5 18,351; 13; 14; 1; 1

Hierarchical Single-Linkage 3 18,378; 1; 1

Single-Linkage 4 18,377; 1; 1; 1

Single-Linkage 5 18,376; 1; 1; 1; 1

Hierarchical Complete-Linkage 3 18,367; 7; 6

Complete-Linkage 4 18,118; 249; 7; 6

Complete-Linkage 5 18,118; 249; 6; 6; 1

Hierarchical Flexible-Beta 3 13,416; 3,732; 1232

Flexible-Beta 4 13,416; 3,732; 1059;
173

Flexible-Beta 5 8,919; 4,497; 3,732;
1,059; 173

Hierarchical McQuitty’s Similarity 3 18,373; 6; 1

McQuitty’s Similarity 4 18,367; 6; 6; 1

McQuitty’s Similarity 4 18,205; 162; 6; 6; 1

Hierarchical Ward’s Method 3 15,718; 2,315; 347

Ward’s Method 4 15,718; 2,315; 284; 63

Ward’s Method 5 15,718; 2,315; 239;
63; 45

Non-
hierarchical

N/A 3 336; 17,909; 135

N/A 4 113; 16,624; 1,554; 89

N/A 5 116; 594; 16,162; 48;
1,460

N/A not applicable. aNumber of clusters in the model
HD (Cluster 1: Average to High); a cluster (the smallest)
with very high costs in the pre-HD period and high costs
in the post-HD period, along with a substantial decrease
in average cost from pre- to post-HD (Cluster 2: Very
High to High); a group (the largest) exhibiting average
costs in both the pre- and post-HD periods, with a small
decrease in average costs from baseline to follow-up
(Cluster 3: Average to Average); and finally, the second
largest group, exhibiting “high” costs in both the pre- and
post-HD periods, along with relatively sizeable cost in-
creases from baseline to follow-up (Cluster 4: Increasing
Costs, High at Both Points). Figure 3 and its correspond-
ing table summarize the cost changes in the 12-month
pre- and post-HD periods, respectively. Cluster 1 (Average
to High) reveals median costs that increased from
$185,070 to $884,605; Cluster 2 (Very High to High)
shows that the median costs decreased from $910,930 to
$157,997; Cluster 3 (Average to Average) reports that the
median costs were relatively stable and remained low from
$15,168 to $13,026, and Cluster 4 (Increasing Costs, High
at Both Points) reveals that the median costs increased
from $57,909 to $193,140.
Basic demographic information and clinical charac-

teristics of the sample divided into the four clusters
suggested by K-means analysis are summarized in
Table 5; the top 10 CSS disease categories in the
baseline and follow-up period for each cluster are
reflected in Appendix 5. Patients in Cluster 3 (Average to
Average) (i.e., those with stable average costs before and
after initiating HD) tended to be older, with an average
age of 63.9 years compared with an average age of
55.5 through 57.6 years in the other three clusters.
Otherwise, there was little to no meaningful difference
across each cluster in terms of gender, living region, or
health insurance type (Table 5). Economically, Clusters 1
(Average to High) and 4 (Increasing Costs, High at Both
Points) were both associated with increasing costs from
pre- to post-HD. Clinically, substantial increases in co-
morbidity scores, including both the ECI and the CCI,
were observed from baseline to the follow-up period in
both these groups. In contrast, Cluster 2 (Very High to
High) experienced a reduction in costs after starting HD,
from very high to high costs, and both ECI and CCI scores
were relatively stable after initiating HD. In addition,
relatively stable ECI and CCI scores were reported in



Fig. 2 Scatter plot by cluster of all-cause medical costs in pre- and post-HD periods by K-means CA with four cluster solutionsa. Footnote: aPseudo
F Statistics = 13,979.98; Approximate Expected Over-All R2 = 0.79; Cubic Clustering Criterion = −63.93. Each cluster is labeled by corresponding number
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Cluster 3, where stable average costs before and after
HD were identified. Cluster 3 (Average to Average)
exhibited notably low comorbidity scores during the
post-HD period when compared with the three other
clusters (Table 5).

Discussion
In this retrospective observational analysis of claims data
from commercially insured ESRD patients initiating HD,
CA successfully revealed a latent structure underlying all-
Fig. 3 All-cause medical costs in pre- and post-HD periods by clustera
cause cost data before and after the start of HD. Several
clustering techniques were applied, including both K-
means CA and a set of hierarchical clustering analyses
with multiple agglomerative algorithms that included
average, centroid, single- and complete-linkage methods;
McQuitty’s similarity method; and both the flexible-beta
and Ward’s methods. Models generated by both K-means
and hierarchical cluster CA with flexible beta and Ward’s
methods produced clusters of reasonable sample size. K-
means CA yielded the most informative categorization of



Table 5 Demographic and clinical characteristics of patients grouped into 4 proposed clusters using K-means CA

Cluster 1: Average to High Cluster 2: Very High to High Cluster 3: Average
to Average

Cluster 4: Increasing Costs,
High at Both Points

(n = 113) (n = 89) (n = 16,624) (n = 1554)

Age (y), mean (SD) 57.6 (11.6) 55.5 (14.8) 63.9 (14.0) 56.2 (12.8)

Age (y), n (%)

18-24 0 (0.0) 4 (4.5) 121 (0.7) 33 (2.1)

25-34 2 (1.8) 7 (7.9) 355 (2.1) 54 (3.5)

35-44 15 (13.3) 6 (6.7) 1026 (6.2) 156 (10.0)

45-54 24 (21.2) 19 (21.3) 2401 (14.4) 375 (24.1)

55-64 50 (44.2) 33 (37.1) 4652 (28.0) 609 (39.2)

65+ 22 (19.5) 20 (22.5) 8069 (48.5) 327 (21.0)

Sex, n (%)

Male 66 (58.4) 48 (53.9) 9599 (57.7) 924 (59.5)

Female 47 (41.6) 41 (46.1) 7025 (42.3) 630 (40.5)

Region in the United States, n (%)

Northeast 12 (10.6) 12 (13.5) 1843 (11.1) 192 (12.4)

North central 32 (28.3) 18 (20.2) 6084 (36.6) 444 (28.6)

South 38 (33.6) 39 (43.8) 6354 (38.2) 625 (40.2)

West 30 (26.5) 19 (21.3) 2235 (13.4) 286 (18.4)

Unknown 1 (0.9) 1 (1.1) 108 (0.6) 7 (0.5)

Health insurance type, n (%)

FFS 87 (77.0) 71 (79.8) 13,967 (84.0) 1237 (79.6)

HMO and POS capitation 20 (17.7) 17 (19.1) 2304 (13.9) 270 (17.4)

Missing 6 (5.3) 1 (1.1) 353 (2.1) 4 (3.0)

Comorbidity Score
Indicesa

Pre-HD
Period

Post-HD
Period

Pre-HD
Period

Post-HD
Period

Pre-HD
Period

Post-HD
Period

Pre-HD
Period

Post-HD
Period

ECI, mean (SD) 6.9 (3.4) 10.8 (3.5) 9.0 (4.1) 9.3 (3.7) 5.7 (2.5) 6.8 (2.8) 6.5 (3.0) 9.5 (3.2)

CCI, mean (SD) 5.0 (2.7) 7.1 (2.4) 5.6 (3.2) 6.2 (2.9) 4.6 (2.2) 5.1 (2.3) 5.0 (2.5) 6.5 (2.7)

FFS fee-for-service, HD, hemodialysis, HMO health maintenance organization, PPS, point-of-service, ECI elixhauser comorbidity index, CCI charlson comorbidity
index, SD standard deviation. aIdentification was based on non-rule out diagnosis

Liao et al. BMC Nephrology  (2016) 17:25 Page 8 of 14
patients generating more reasonable clusters from a prac-
tical perspective than did the other statistical methods. In
addition, the K-means solutions were the most easily
interpreted. In contrast, Ward’s and the flexible-beta
methods led to solutions with at least one cluster with
large variability (or spread), which can be difficult to inter-
pret. Among the models suggested by K-means CA, a 4-
cluster solution appeared to be the most appropriate for
these data: associated criteria suggested a 4-cluster solu-
tion offers maximum separation of clusters compared with
either a 3- or 5-cluster solution. In addition, a 4-cluster
solution was more interpretable, and thus more appropri-
ate to apply than other methods.
Mean all-cause medical costs in this sample of privately

insured patients ranged from approximately $45,000
(USD) prior to the initiation of HD to $49,000 (USD)
after; median costs ranged from $17,000 in the 12 months
before HD initiation to $16,000 in the 12 months follow-
ing HD initiation. Interestingly, these reported costs are
generally lower than those found in other analyses in
other populations. In 2004, the average annual Medicare
expenditure for an ESRD patient started on HD was re-
ported to be $72,000 (USD) [37], increasing to $77,500
(USD) in 2012 [11]. Other estimates suggest annual all-
cause costs for HD patients to be as high as $174,000
(USD) in a privately insured population [17]. It is worth
noting that the current results reflect payment from insur-
ance claims made in the “real-world setting”. Importantly,
a switch to HD from no dialysis in the present data set
was only associated with a modest increase in average and
median annual costs for ESRD patients on the whole, sug-
gesting that the transition to HD does not generally add
substantial costs to average annual care for a patient and
may be associated with quite similar costs for the majority
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of late-stage patients with renal disease in comparison to
their cost of care immediately before initiating HD. It is
interesting to note that in both the pre- and post-HD
assessment periods, 75 % of patients had costs below the
average of $45,000 and $49,000 (USD), respectively-thus,
it appears as if a relatively small fraction of patients are
driving up the overall increase in costs after initiating HD,
a contention supported by CA.
More specifically, CA demonstrated that the data

could be reasonably represented by 4 clusters of pa-
tients: those with average costs before and after initi-
ating HD (90 % of the full sample); those with high
costs before and high/increased costs after (8 %);
those with average costs who incur high costs after
initiating HD (0.6 %); and a cluster with very high
costs prior to initiating HD who see their annual
costs reduced to a high level (0.5 %). Thus, overall
costs stay stable for most ESRD patients initiating
HD, suggesting transition to HD per se is not an im-
portant driver of cost for the majority of patients. A
minority of patients drive an increase in overall costs
after HD initiation.
Because of the different cost patterns in each group, it

is worthwhile to better understand patients in each clus-
ter to help predict and contain the costs of HD. Comor-
bidities seem to be particularly relevant to costs, with
increasing comorbidity scores from baseline to follow-up
periods in those clusters associated with an increase in
costs during follow-up, and more stable comorbidity
scores associated with more stable costs (or even declin-
ing costs). This is consistent with other research: one
study demonstrated that an increased level of comorbid-
ity was associated with higher cost in the 2 years prior
to starting HD [13], while another demonstrated a clear
relationship between CCI scores and costs [38]. These
data suggest timely management of comorbidities or the
prevention of comorbidities may be critical for containing
costs in patients starting HD. Interestingly, the older age
of the patients in the most stable cost cluster (i.e., Cluster
3) suggests that there may be a difference in expression of
ESRD in these patients compared with the other clusters,
perhaps a factor that manifests itself as both a later-in-life
need for HD as well as better overall health (e.g., fewer
comorbidities).
In aggregate, costs are high at an absolute level,

both before and after the initiation of HD, suggesting
that the healthcare costs of the majority of ESRD pa-
tients not treated with HD are not substantially
lower than the costs of care for these patients imme-
diately after starting HD. Thus, HD does not add
substantial costs for most patients and seems like an
economically feasible option in most patients with
CKD, given the overall high cost of care for these pa-
tients prior to initiating HD. True cost containment
for patients with ESRD likely requires more aggres-
sive or widespread intervention before patients reach
this advanced stage of disease, where costs are high
before and after HD. One overall strategy that may
reduce costs includes early referral to a nephrologist
in the period before starting HD [16]. HD is not an
important cost driver for the majority of patients, so
limiting HD may not contain costs for these patients.
There is a need to better understand the fraction of
the population that is driving higher post-HD costs,
and consider ways to mitigate the costs associated
with their transition to HD.
Limitations
Interpretation of these results must be informed by
limitations of these analyses. First, these analyses were
conducted only in those employed individuals with
commercial insurance coverage and some individuals
with Medicare coverage; thus, these results from a
relatively healthy population may not be fully general-
ized to individuals with Medicare, Medicaid, other
insurance, and no insurance. Second, administrative
claims data cannot capture deaths and changes of
employment; therefore, the cost not captured due to
loss to follow-up may lead to selection bias. In
addition, administrative claims data are not collected
for research purposes and measurement error may
have been introduced by coding that was in error or
driven by reimbursement needs more so than
research needs. Further, administrative claims data
does not collect clinical information that would have
been valuable additions to these analyses, such as
laboratory test results or vital signs. Access to pa-
tients’ claims prior to their enrollment in MarketScan
databases is not available. Retrospective analysis limits
the study to those who are clinically diagnosed and
incur health care resource utilization through claims;
resource utilization not identified by claims would
not be included in these analyses. Finally, treatment
costs in future studies should examine what cost
drivers may have influenced increases or decreases in
costs for each cluster.
Conclusions
CA was a useful statistical technique for evaluating a
claims data set that included skewed healthcare cost
data. One implication of these analyses is that costs for
most patients with ESRD stay relatively stable after start-
ing HD; a minority of patients drive overall increasing
annual costs after initiation of dialysis. These increasing
costs may be driven, in part, by a greater comorbidity
burden among these patients.
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Appendix 1
Table 6 Medical codes indicating HD

Code Description Source

458.21 Hypotension from HD ICD-9-CM diagnosis

V56.31 Adequacy testing for HD ICD-9-CM diagnosis

39.95 HD ICD-9-CM procedure

A4680 Activated carbon filter for HD (each) HCPCS

A4690 Dialyzer (artificial kidneys); all types and all sizes for HD HCPCS

A4706 Bicarbonate concentrate solution per gallon for HD HCPCS

A4707 Bicarbonate concentrate powder per packet for HD HCPCS

A4708 Acetate concentrate solution per gallon for HD HCPCS

A4709 Acid concentrate solution per gallon for HD HCPCS

A4730 Fistula cannulation set for HD HCPCS

A4740 Shunt accessory for HD (any type, each) HCPCS

A4750 Blood tubing, arterial or venous for HD (each) HCPCS

A4755 Blood tubing, arterial and venous combined for HD (each) HCPCS

A4802 Protamine sulphate per 50 mg for HD HCPCS

A4870 Plumbing and/or electrical work for home HD equipment HCPCS

A4890 Contracts, repair, and maintenance for HD equipment HCPCS

A4918 Venous pressure clamp for HD (each) HCPCS

E1520 Heparin infusion pump for HD HCPCS

E1530 Air bubble detector for HD (each, replacement) HCPCS

E1540 Pressure alarm for HD (each, replacement) HCPCS

E1550 Bath conductivity meter for HD (each) HCPCS

E1560 Blood leak detector for HD (each, replacement) HCPCS

E1575 Transducer protectors/fluid barriers for HD HCPCS

E1580 Unipuncture control system for HD HCPCS

E1590 HD machine HCPCS

E1600 Delivery and/or installation charges for HD equipment HCPCS

E1610 Reverse osmosis water purification system for HD HCPCS

E1615 Deionizer water purification system for HD HCPCS

E1620 Blood pump replacement for HD HCPCS

E1625 Water-softening system for HD HCPCS

E1636 Sorbent cartridges for HD HCPCS

G0365 Vessel mapping of vessels for HD access HCPCS

G0392 Transluminal balloon angioplasty, percutaneous, for maintenance of hemodialysis access, arteriovenous fistula
or graft, arterial

HCPCS

G0393 Transluminal balloon angioplasty, percutaneous for maintenance of HD access, arteriovenous fistula or graft, venous HCPCS

G8081 ESRD patient requiring HD vascular access documented to have received autogenous AV fistula HCPCS

G8082 ESRD patient requiring HD vascular access documented to have received vascular access other than autogenous
AV fistula

HCPCS

G8085 ESRD patient requiring hemodialysis vascular access was not candidate for autogenous arteriovenous fistula HCPCS

S9335 Home therapy for HD HCPCS

90935 HD procedure with single evaluation by a physician or other qualified health care professional CPT

90937 HD procedure requiring repeated evaluation(s) with or without substantial revision of dialysis prescription CPT

90940 HD access flow study to determine blood flow in grafts and arteriovenous fistulae by an indicator method CPT



Table 6 Medical codes indicating HD (Continued)

93990 Duplex scan of HD access CPT

36800 Insertion of cannula for other purpose for HD (separate procedure); vein to vein CPT

36810 Insertion of cannula for other purpose for HD (separate procedure); arteriovenous, external CPT

36815 Insertion of cannula for other purpose for HD (separate procedure); arteriovenous, external revision, or closure CPT

HD hemodialysis, ESRD end-stage renal failure, HCPCS healthcare common procedure coding system, CPT current procedural terminology, ICD-9-CM International
Classification of Disease, 9th Revision, clinical modification
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Appendix 2
Fig. 4 Scatter plots of all-cause medical costs in pre- and post-HD periods by K-means CA with 3- and 5-cluster solutionsa. aEach cluster is labeled
by corresponding number
Appendix 3
Fig. 5 Scatter plots of all-cause medical costs in pre- and post-HD periods by Hierarchical CA with Ward Method and 3-, 4-, and 5-cluster solutions.
aEach cluster is labeled by corresponding number
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Appendix 4
Fig. 6 Scatter plots of all-cause medical costs in pre- and post-HD periods s by Hierarchical CA with Flexible-Beta Method and 3-, 4-, and 5-cluster
solutionsa. aEach cluster is labeled by corresponding number
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Appendix 5
Table 7 Top 10 CSS disease categories in the pre- and post-HD periods

Cluster and Descriptive Costs (n) CCS Disease Categories in the Pre-HD Period (%) CCS Disease Categories in the Post-HD Period (%)

Cluster 1: Average to High
(n = 113)

1. Acute and unspecified ESRD (82 %)
2. CKD (67 %)
3. Essential hypertension (61 %)
4. Other lower respiratory disease (60 %)
5. Other connective tissue disease (60 %)
6. Deficiency and other anemia (58 %)
7. Residual codes; unclassified (57 %)
8. Type 2 diabetes without complication (56 %)
9. Other circulatory disease (54 %)
10. Cardiac dysrythmias (52 %)

1. CKD (99 %)
2. Acute and unspecified ESRD (90 %)
3. Deficiency and other anemia (89 %)
4. Septicemia (except in labor) (89 %)
5. Complication of device, implant, or graft (86 %)
6. Residual codes; unclassified (83 %)
7. Respiratory failure; insufficiency; arrest
(adult) (82 %)

8. Other circulatory disease (80 %)
9. Other lower respiratory disease (78 %)
10. Cardiac dysrhythmias (76 %)

Cluster 2: Very High to High
(n = 89)

1. Acute and unspecified ESRD (87 %)
2. Other lower respiratory disease (80 %)
3. Respiratory failure; insufficiency; arrest (78 %)
4. Residual codes; unclassified (75 %)
5. Cardiac dysrythmias (73 %)
6. Essential hypertension (70 %)
7. Septicemia (67 %)8. Deficiency and other
anemia (65 %)

9. CKD (65 %)
10. Other circulatory disease (64 %)

1. CKD (97 %)
2. Acute and unspecified ESRD (89 %)
3. Deficiency and other anemia (85 %)
4. Respiratory failure; insufficiency; arrest (78 %)
5. Residual codes; unclassified (78 %)
6. Complication of device, implant or graft (76 %)
7. Essential hypertension (75 %)
8. Other aftercare (73 %)
9. Other lower respiratory disease (72 %)
10. Other connective tissue disease (72 %)

Cluster 3: Average to Average
(n = 16,624)

1. CKD (92 %)
2. Deficiency and other anemia (69 %)
3. Essential hypertension (60 %
4. Hypertension with complications and
secondary hypertension (59 %)

5. Acute and unspecified ESRD (57 %)
6. Type 2 diabetes without complications (475)
7. Type 2 diabetes with complications (42 %)
8. Residual codes; unclassified (41 %)
9. Other lower respiratory disease (40 %)
10. Complication of device; implant or graft (37 %)

1. CKD (100 %)
2. Deficiency and other anemia (86 %)
3. Complication of device; implant or graft (73 %)
4. Hypertension with complications and secondary
hypertension (70 %)

5. Essential hypertension (62 %)
6. Acute and unspecified ESRD (55 %)
7. Other disease of kidney and ureters (53 %)
8. Type 2 diabetes without complication (50 %)
9. Residual codes; unclassified (50 %)
10. Type 2 diabetes with complications (45 %)

Cluster 4: Increasing Costs, High at Both
Points (n = 1554)

1. CKD (85 %)
2. Acute and unspecified ESRD (70 %)
3. Deficiency and other anemia (66 %)
4. Essential hypertension (65 %)
5. Hypertension with complications and secondary
hypertension (58 %)

6. Residual codes; unclassified (52 %)
7. Type 2 diabetes without complication (52 %)
8. Other lower respiratory disease (51 %)
9. Type 2 diabetes with complications (50 %)
10. Fluid and electrolyte disorders (45 %)

1. CKD (92 %)
2. Deficiency and other anemia
3. Hypertension with complications and secondary
hypertension

4. Complication of device; implant or graft
5. Residual codes; unclassified
6. Acute and unspecified ESRD
7. Essential hypertensions
8. Other aftercare
9. Other circulatory disorder
10. Other lower respiratory disease

ESRD end-stage renal disease, CKD chronic kidney disease
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