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Abstract

Background: Haemodialysis (HD) patients suffer from an increased risk of cardiovascular disease (CVD). Skin
autofluorescence (SAF) is a strong marker for CVD. SAF indirectly measures tissue advanced glycation end products
(AGE) being cumulative metabolites of oxidative stress and cytokine-driven inflammatory reactions. The dialysates
often contain glucose.

Methods: Autofluorescence of skin and plasma (PAF) were measured in patients on HD during standard treatment
(ST) with a glucose-containing dialysate (n = 24). After that the patients were switched to a glucose-free dialysate
(GFD) for a 2-week period. New measurements were performed on PAF and SAF after 1 week (M1) and 2 weeks
(M2) using GFD. Nonparametric paired statistical analyses were performed between each two periods.

Results: SAF after HD increased non-significantly by 1.2% while when a GFD was used during HD at M1, a decrease
of SAF by 5.2% (p = 0.002) was found. One week later (M2) the reduction of 1.6% after the HD was not significant
(p = 0.33). PAF was significantly reduced during all HD sessions. Free and protein-bound PAF decreased similarly
whether glucose containing or GFD was used. The HD resulted in a reduction of the total PAF of approximately
15%, the free compound of 20% and the protein bound of 10%. The protein bound part of PAF corresponded
to approximately 56% of the total reduction. The protein bound concentrations after each HD showed the
lowest value after 2 weeks using glucose-free dialysate (p < 0.05). The change in SAF could not be related to a
change in PAF.

Conclusions: When changing to a GFD, SAF was reduced by HD indicating that such measure may hamper
the accumulation and progression of deposits of AGEs to protein in tissue, and thereby also the development
of CVD. Glucose-free dialysate needs further attention. Protein binding seems firm but not irreversible.

Trial registration: ISRCTN registry: ISRCTN13837553. Registered 16/11/2016 (retrospectively registered).
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Background
Cardiovascular morbidity and mortality are increased in
patients with decreasing kidney function [1, 2] and end-
stage renal disease (ESRD). HD patients have a five-fold
shorter life expectancy than age-related healthy persons
[3, 4]. One factor to consider is glucose that binds to
amino residues forming glycated Schiff bases, with later

rearrangements forming a more stable but still reversible
Amadori product. Over time, these products undergo
rearrangements including crosslinking to become
irreversible advanced glycation end products (AGEs).
Thereby both circulating and tissue proteins, as well as
lipids and nucleic acids, may be glycated and crosslinked
with collagen in the skin and other tissues [5, 6].
AGEs are considered as uremic toxins and contribute

to cardiovascular complications of HD patients [7, 8].
AGEs accumulate more in HD because of increased
production by oxidative stress caused by the dialysis per
se [9] and lowered elimination by the impaired kidneys
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[10]. Skin autofluorescence (SAF) is related to the accu-
mulation of AGE and is one of the strongest prognostic
markers of mortality in these patients [8]. SAF is an indir-
ect marker for glucose degradation products [8], present
not only in the skin but also in other tissues [11].
Consumption of specific foods is associated with in-

creased AGEs [12–14]. Another source of exposure to
glucose in HD patients might be the use of glucose-
containing dialysate. The use of glucose in dialysate has
changed several times in the history of dialysis. In the early
days of HD treatment, the use of dialysates containing a
high glucose concentration was important to achieve an
effective osmotic ultrafiltration [15]. Later, the use of
ultrafiltration by hydrostatic pressure was developed and
found superior [16]. The use of glucose in the dialysate
decreased and many dialysis units switched to a glucose
free concentrate [17]. However, the disadvantage of non-
glucose-containing dialysate was the increased risk for
hypoglycemia in patients with insulin dependent diabetes
mellitus and lack of a valuable addition to energy in
malnourished HD patients [14, 18–21].
In previous studies, we were able to show that a single

session of HD significantly reduced plasma autofluores-
cence (PAF) but not SAF [22]. The use of either high-
flux versus low-flux dialyzers did not change SAF after
HD as well [23]. Apparently, changes in plasma fluores-
cence did not influence SAF, marker of accumulated
tissue AGEs.
Furthermore, our previous studies were performed

using glucose containing dialysates. This raised the ques-
tion if dialysate glucose per se could increase the load of
AGE in the body.
Therefore, the aim of this study was to investigate

whether PAF and SAF, reflecting the current and accu-
mulated amount of AGEs, respectively, were influenced
by the use of either glucose free or glucose-containing
dialysate.

Methods
Study design
A longitudinal interventional study was performed at the
hemodialysis center at the University Hospital in Umeå.

Demography
During the observation period, 24 patients on chronic
HD were included in the study (17 male/ 7 female). The
median age was 70.5 years (range 42–85). The median
vintage of HD was 52.5 months (range 11–121 months).
The main reasons for HD were primary glomerular
disorders (n = 5), diabetes nephropathy (n = 5, 2 with
diabetes mellitus type 1, and 3 with type 2), polycystic
kidney disease (n = 2), hypertension and/or renovascular
disease (n = 5), postrenal cause (n = 2) and other or un-
known diagnoses (n = 5). The comorbidity of the patients

included hypertension (n = 20, 83%) and cardiovascular
disease (n = 9, 38%). Five of these patients had suffered
from myocardial infarction (21%) and 1 patient from
stroke (4%). Lifestyle factors included current or previous
tobacco use (15/23, 63% of whom 13% current users;
missing information in 1) and alcohol consumption (wine
and beer in 38%). All patients were on chronic HD with
the median treatment duration/session of 4 h (range 3–
5.5 h). Two patients had dialysis with low flux dialyzers
(FX10), all others received dialysis with high flux dialyzers
(FX80, Fresenius Medical Care, Bad Homburg, Germany).
The study was performed as a longitudinal study.

Patients were informed consecutively, and those who
accepted to participate were included. Exclusion criteria
were an ongoing infection and inability to understand
information. Patients with diabetes mellitus prone to
hypoglycemia would have been excluded if they would
have considered participating in the study. No such
patient was present. All patients were on chronic HD
during standard treatment using a dialysate with a final
glucose concentration of 5 mmol/L (Biosol A201.25
glucose 5 and Biosol A301.25 glucose 5, Meda AB,
Solna, Sweden). After that, the patients were switched to
a glucose-free dialysate (SK-F 209, K+ 2 mmol/l, Ca++

1,5 mmol/l, Mg++ 0,5 mmol/l, no glucose, Fresenius,
Bad Homburg, Germany) for 2 weeks (six sessions).
The dialyses within the frame of the study were per-
formed at the same time and same weekday each
time (morning dialyses).
Measurements were performed on plasma autofluores-

cence (PAF) and skin autofluorescence (SAF) both
before and after standard HD (ST) at the end of March
or the first week of April. The glucose-free dialysate
period that began at the first week in May with mea-
surements after 1w of HD (M1) and 2w of HD (M2)
with GFD.
Skin-AF was obtained as a median of three measure-

ments along the same forearm at slightly different
positions. Measurements were done in a semi-dark
environment at room temperature on each occasion.
Each patient was his/her own control with the same
conditions throughout the study except the dialysate.

AGE reader
The AGE Reader (DiagnOptics Technologies BV,
Groningen, The Netherlands) illuminates a skin sur-
face of ~ 4 cm2, guarded against surrounding light,
with a light source that mainly provides UV-A light
between 350 and 420 nm (peak wavelength 370 nm).
Autofluorescence and reflected light from the skin
were measured simultaneously using a spectrometer
within the instrument. Skin AF was measured in
arbitrary units (AU). The arbitrary unit is based on
the ratio of the average light intensity per nm in the
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range between 420 and 600 nm, and the average light
intensity per nm in the range between 300 and 420 nm.
Version 2.3 of the AGE Reader software was used. The
AGE Reader had been validated and was more extensively
described in previous studies [24, 25]. A good correlation
between the skin AF and the tissue levels of pentosidine,
Nε –carboxy-methyl-lysine (CML) and Nε-carboxy-ethyl-
lysine (CEL) was found in DM patients and age-matched
healthy controls [26].

Plasma autofluorescence (PAF)
Plasma samples were collected before and after HD for
the analysis of PAF and albumin concentration. The
samples were kept at −70 °C until analysis. Plasma AGEs
were quantified using fluorescence with an excitation
wavelength of 370 nm and an emission wavelength of
465 nm on a Tecan Genios microplate reader (Tecan
Group Ltd., Männedorf, Switzerland). Total PAF was
measured according to a modified protocol of Schwedler
et al. [27]. In brief, plasma samples were diluted 50 times
in phosphate buffered saline before measuring fluores-
cence as described above. The non-protein-bound fluor-
escence or free plasma fluorescence was determined
according to a modified protocol of Wrobel et al. [28].
Thereby, plasma samples were diluted 25 times in
0.15 M trichloroacetic acid, precipitating proteins. After
eliminating the precipitate by centrifugation, the fluores-
cence of the supernatant was measured as above. The
bound plasma fraction was calculated as the difference
between total and free PAF.
When fluid is removed from the patient by ultrafiltra-

tion, cells and larger molecules such as albumin are not
dialyzed out of the plasma, leading to hemoconcentra-
tion. For adjusting such effects on PAF, The ratio of
change in serum albumin after versus before HD was
used [29, 30] to adjust PAF after dialysis for such effects.
In this study, we did not investigate other effects of

glucose-free dialysis such as potassium removal or levels
of triglycerides. Individual dialysates were prescribed and
prepared by each dialysis device. No central container
for dialysis fluid was used. Bacterial growth and en-
dotoxin content of dialysis water supply are regularly
controlled according to European regulations.

Statistical analysis
Paired statistical analyses were performed with the
Wilcoxon nonparametric test between the 3 sample
periods. A two-tailed p-value of less than 0.05 was
considered significant. Mean values and standard error
of the mean (±) are given. Univariate correlation
analyses were performed using the Spearman test (rho)
to adjust for the effect of eventual outliers. SPSS statis-
tical software (version 20 SPSS, Inc. Chicago, IL) was
used for the analyses.

Results
Plasma autofluorescence (PAF)
The various concentrations of PAF are given in Table 1.
There was a significant reduction of all three plasma

compounds (Total, free and protein bound PAF) after
each dialysis (p < 0.001). Comparing the reduction (Δ
PAF after - Δ PAF before dialysis) of the total, free-,
protein bound PAF there was no difference in reduction
by dialysis at the first measurement (ST) versus M1
(period with glucose free dialysate) or 1 week later (M2).
For total PAF there was no difference between the

predialysis values at ST versus M1 and M2 while the M2
values were lower than M1 (p = 0.019). The total- PAF
values after HD, adjusted for the effect of ultrafiltration
showed a higher value at M1 than at ST (p = 0.015)
but a lower value than at M2 (p = 0.001). The value
after HD at M2 was not significantly lower than the
value at ST (p = 0.058).
For the protein bound PAF there was no difference

between the pre-HD concentration at ST versus M1.
The concentration at M2 was lower than at ST (p =
0.027). The M2 concentration was also lower than the
M1 (p = 0.005). The protein bound non-adjusted and
adjusted PAF values after each HD showed the lowest
value after 2 weeks using glucose-free dialysate (p < 0.05).
The findings can be interpreted that a reduction in
protein-bound PAF occurs during the glucose-free di-
alysate period.
For the free PAF concentration, there was no differ-

ence between the ST, M1, and M2 neither the pre-HD
values, the differences (before versus after HD) nor the
post HD values.
Table 2 shows that the free PAF compound repre-

sents approximately 30% of the total PAF both before
and after dialysis and the protein bound correspond-
ingly about 70%. The dialysis resulted in a reduction
of the total PAF of approximately 15%, the free com-
pound of 20% and the protein bound of 10%. Since
the protein bound part was more than twice as large
as the free PAF, the reduction of the protein bound
part of PAF represented at a median 56% of the over-
all reduction.
The SAF pre-dialysis values (ST, M1, M2) were not

related to the pre-HD values of PAF neither to the total
(rho = 0.395, p = 0.056), free (rho = 0.317, p = 0.13) or to
the protein bound PAF (rho = 0.22, p = 0.30) nor to
the change in PAF that appeared after HD (Total:
rho =−0.26, p= 0.27; free: rho = −0.25, p = 0.24; rho = −0.07,
p = 0.75).
There was a strong correlation between total,

protein-bound and free -PAF values before and after
HD and also at different sampling times, such that high
values were maintained high and vice versa (rho ≥0.57,
p ≤ 0.007). The changes in total, protein-bound and
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free PAF after dialysis were related to the start value
(rho ≥ −0.60, p < 0.005) such that a high initial value
resulted in a greater reduction after HD.
There were correlations between total PAF and protein

bound PAF (rho >0.74, p < 0.01) and total versus free

PAF during the ST and M1 series (rho >0.57, p < 0.005)
but not M2 series. No correlation was found between
protein-bound PAF and free PAF.
There was no correlation of PAF at the start of the

study and age (rho = 0.016, p = 0.938).

Table 2 Distribution of mean values (in %) of free and bound PAF fractions

Free part
of PAF

Protein-bound
part of PAF

Δ % free PAF
under dialysis

Δ % protein bound
PAF under dialysis

Fraction of the plasma-bound
part of reduction

ST Start 31.7% 68.3%

ST End 29.0% 71.0% −18.7% −9.5% 0.51

M1 Start 30.0% 70.0%

M1 End 27.6% 72.4% −17.1% −7.8% 0.52

M1 Start 31.7% 68.3%

M2 End 30.5% 69.5% −15.1% −9.7% 0.60

ST END adj 28.9% 71.1% −21.9% −13.6% 0.55

M1 End adj 27.7% 72.3% −17.8% −8.9% 0.53

M2 End adj 30.5% 69.5% −21.1% −15.8% 0.63

mean 29.7% 70.3% −18.6% −10.8% 0.56

Δ %= the percentage decrease in p-AF as the division of p-AF at the End /Start value

Table 1 Plasma autofluorescence mean values and standard deviation (SD, kUnit/ml) in total plasma and given as free- and
protein bound

N Total PAF SD Free PAF SD Protein-bound PAF SD

ST Start 24 1841 ±298 584 ±170 1258 ±226

ST End 24 1586 ±219 460 ±884 1126 ±163

M1 Start 24 1858 ±263 558 ±109 1300 ±205

M1 End 24 1644 a) ±182 454 ±49 1189 a) ±158

M2 Start 21 1738 b) ±236 551 ±82 1187 a,b) ±222

M2 End 21 1518 c) ±170 463 ±34 1056 a,b) ±162

ST End adj 24 1519 ±262 440 ±94 1078 ±196

M1 End adj 24 1633 a) ±253 453 ±79 1180 ±193

M2 End adj 21 1410 c) ±205 430 ±52 980 ±173

Δ ST 24 −255 ±170 −124 ±119 −131 ±130

Δ M1 24 −214 ±132 −103 ±72 −111 ±119

Δ M2 21 −219 ±170 −89 ±54 −131 ±164

Δ ST adj 24 −322 ±221 −144 ±133 −178 ±151

Δ M1 adj 24 −225 ±175 −105 ±85 −120 ±138

Δ M2 adj 21 −328 ±244 −121 ±69 −206 ±212

Δ % ST 24 −13.2 ±7.8 −18.7 ±12.4 −9.5 ±9.4

Δ % M1 24 −11.0 ±6.1 −17.1 ±8.6 −7.8 ±9.3

Δ % M2 21 −12.0 ±8.6 −15.1 ±7.5 −9.7 ±13.5

Δ % ST adj 24 −15.9 ±10.9 −21.9 ±15.3 −13.6 ±10.8

Δ % M1 agj 24 −11.9 ±8.4 −17.8 ±11.7 −8.9 ±10.0

Δ % M2 adj 21 −18.1 ±12.7 −21.1 ±10.3 −15.8 ±16.5

Δ = the difference in PAF as the subtraction of PAF at the End – Start value; adj = the value is adjusted to the change in plasma concentration by i.e. fluid intake
or removal by dialysis. A ratio is achieved between the plasma albumin concentration at the end versus at the start of HD. The PAF at end is corrected by dividing
with this value; a) p < 0.05 compared to March, b) p < 0.05 compared to May 1, c) p < 0.01 compared to May 1
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Skin autofluorescence (SAF)
SAF was measured before and after HD for the various
time points and the difference of SAF before and after
dialysis (Table 3).
When the pre-dialysis SAF values at ST, M1 and M2

were compared, there was a significant increase in SAF
from the first measurement (ST) to the investigation 1
month later (M2) by a median of 4.8% (p = 0.032).
However, when comparing the value achieved after the
standard HD (with glucose-containing dialysate) with
the pre-dialysis SAF value at M1 (after the first period
with glucose free dialysate), there was no significant
difference between the values.
There was a nonsignificant (p = 0.61) increase of 1.2%

in SAF after the HD with glucose-containing dialysate
(ST) comparing with SAF before the same HD. At M1,
using glucose-free dialysate, the SAF after HD was
reduced by 5.2% (p = 0.002). One week later (M2) the
reduction of 1.6% after HD was not significant (p = 0.33).
There was no significant difference between the values
comparing the reduction (Δ SAF end - SAF start) at M1
versus M2 on glucose free dialysis.
For all three series (ST, M1, M2) there was a strong

correlation between SAF values before and after HD and
also at different sampling times such as that high
values were maintained high and vice versa (rho > 0.68,
p < 0.001). The changes in SAF after a dialysis session
were not related to the initial values. Skin AF mea-
sured at the start of the study (ST) did not correlate
with age (rho = 0.255, p = 0.23).
The length of the hemodialysis sessions (at a mean

4.3 h, ±0.6, range 3–5.5) did not correlate with the
change in SAF nor the change in any PAF.
Blood glucose was monitored if symptoms appeared. 2

patients, both with diabetes type 2 and insulin treatment
developed a hypoglycemia. One of the patients got a
bolus injection of glucose, the other was treated with
oral dextrose. No patient received or required glucose
infusion in parallel to dialysis.

Discussion
In the present investigation of hemodialysis with glucose
free hemodialysis (GFD) there appeared a significant
decrease, after dialysis, of SAF and total and protein
bound PAF concentrations. PAF and SAF reflect the

current and accumulated amount of AGEs. SAF is an
indirect risk factor for CVD [8, 11], this indicates that
the load of protein bound AGEs seems to decrease with
a prolonged treatment period with a GFD. Notably, the
free part of PAF was not influenced by the GFD. Thus,
the difference in outcome in protein bound PAF using
GFD versus glucose-containing dialysate may well be
due to a fast transfer of the glucose from the dialysate
into the blood and extravascular space where a degrad-
ation and conversion into glucose degradation prod-
ucts may occur. Initial less tight attachment to various
molecules including proteins may result in reversible
Amadori products.
The presence of less tight bonds is indicated by the

reduction of protein bound PAF in plasma but also by
the decrease of SAF after dialysis after glucose-free
HD in the present study. The main glucose degrad-
ation products are pentosidine and Nε –carboxy-me-
thyl-lysine (CML), that in vitro are water soluble and
dialyzable, of a molecular weight of less than 400D.
However, both AGEs are considered as protein-bound
uremic toxins [31, 32] and poorly removed by HD
[33], as confirmed by the present study. Another
reason explaining the poor reduction of the free PAF
could be an increased production of GDP molecules
throughout the dialysis due to the oxidative stress
induced by glucose [34]. The more pronounced reduc-
tion of SAF by HD at M1 than M2 may indicate that
there were more reversibly bound glucose degradation
products in the tissue at M1, for example Amadori
products. One week later the clearance of such prod-
ucts was less effective, indicating the presence of a
lower ratio of reversibly bound AGEs.
The reduction of protein bound PAF levels after

2 weeks of glucose-free dialysis favor the concept of a
local extravascular formation of AGEs.
The lack of relation between SAF and PAF, found in

this study, is in congruence with others [27, 35].
In contrast to GFD, the use of glucose-containing HD

did not change SAF after dialysis, either during the
present study or previous studies despite the use of
high flux dialyzers [22, 23]. It is discussed that a higher
glucose concentration in the dialysate may impair
inflammation [17], lipid levels [36], hyperglycemia and
conversion of carbohydrates into glucose degradation
products and AGEs that subsequently lead to oxidative
stress [37].
Hypoglycemia may develop with glucose free dialys-

ate. This risk is most crucial for patients with insulin
dependent diabetes mellitus prone to hypoglycemia.
Therefore glucose free dialysis seem less suitable for
such patients. The use of a glucose infusion in parallel
to dialysis may be preventive if the patient does not
compensate hypoglycemia by eating.

Table 3 Skin autofluorescence mean values and standard
deviation (SD, arbitrary units AU)

N SAF start SD SAF end SD Δ end - start Δ %

ST 24 3.949 ±0.615 3.985 ±0,654 0.036 −1,2

M1 24 4.173 ±0.626 3.957 ±0.647 −0.216 5.2

M2 24 4.177 ±0.651 4,096 ±0.695 0.081 1.6
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Conclusions
The present study shows that a glucose free dialysate
may result in a significant reduction of SAF, as a marker
of AGEs and Amadori products, in contrast to when
using glucose-containing dialysate. The protein bound
parts of PAF also showed a decrease after 2 weeks. This
indicates that it may be possible to hamper or even
reverse the deposits of AGEs in tissue. Future longitu-
dinal studies with glucose free dialysate can help to
clarify if this leads to a reduction of SAF and in limits
the progress of CVD in HD patients.
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