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Abstract

Background: Chronic kidney disease (CKD) is a common health challenge. There are some risk models predicting
CKD adverse outcomes, but seldom focus on the Mongoloid population in East Asian. So, we developed a simple
but intuitive nomogram model to predict 3-year CKD adverse outcomes for East Asian patients with CKD.

Methods: The development and internal validation of prediction models used data from the CKD-ROUTE study in
Japan, while the external validation set used data collected at the First People’s Hospital of Foshan in southern
China from January 2013 to December 2018. Models were developed using the cox proportional hazards model
and nomogram with SPSS and R software. Finally, the model discrimination, calibration and clinical value were
tested by R software.

Results: The development and internal validation data-sets included 797 patients (191 with progression [23.96%])
and 341 patients (89 with progression [26.10%]), respectively, while 297 patients (108 with progression [36.36%])
were included in the external validation data set. The nomogram model was developed with age, eGFR,
haemoglobin, blood albumin and dipstick proteinuria to predict three-year adverse-outcome-free probability. The C-
statistics of this nomogram were 0.90(95% CI, 0.89–0.92) for the development data set, 0.91(95% CI, 0.89–0.94) for
the internal validation data set and 0.83(95% CI, 0.78–0.88) for the external validation data-set. The calibration and
decision curve analyses were good in this model.

Conclusion: This visualized predictive nomogram model could accurately predict CKD three-year adverse outcomes
for East Asian patients with CKD, providing an easy-to-use and widely applicable tool for clinical practitioners.
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Background
Chronic kidney disease (CKD) is becoming a common
global health challenge. A report in 2016 pointed out
that the prevalence of all stages of CKD varies between 7
and 12% in the different regions of the world [1]. In
2019, a 15% overall prevalence of CKD was reported in
adults in the United States [2]. Patients with CKD have
an increased risk of deteriorating into end-stage renal
disease (ESRD), requiring dialysis to survive or suffering
from complications such as cardiovascular events or
even death. With CKD progression and a high risk of
other adverse outcomes, the costs for healthcare and
therapies are increasing [3]. Accurate risk prediction for
CKD adverse outcomes could contribute to individual-
ized decision making, early patient therapy performance,
complication reduction and dialysis preparation [4].
There are some risk models predicting the progression

and some adverse outcomes of CKD [5]. Many different
risk factors were applied in previous models, and the
area under the curve (AUC) of these models ranged
from 0.56 to 0.94, with calibration from modest to good
[6]. However, there were some limitations for the models
mentioned above. First, few of these models have been
externally validated. Risk model validation includes
internal validation (validating in the same population as
the model was developed) and external validation (valid-
ating in another population). When the AUC perform-
ance was generally acceptable-to-good on the derivation
population as internal validation, the AUCs were usually
modest-to-acceptable in a new population, even though
some AUCs for external validation were not reported in
most studies. Second, most of the models focus on only
one kind of CKD [7, 8], with many risk factors or even
some novel professional biomarkers [9], which are
complicated and difficult to widely use, especially in
grassroots hospitals or community hospitals. Third, the
previous models were mainly derived from white popu-
lations, but seldom paid attention to East Asian patients
with CKD. It was pointed out that the progression and
some adverse outcomes of CKD also varied within coun-
tries by ethnicity [10]. Black and Asian people in the
UK, Hispanics in the USA, and indigenous people in
some other developed countries are at higher risk of
CKD progression [11]. Given these inconvenience, it is
necessary to validate a simple, intuitive and easily ap-
plied predictive model to predict adverse outcomes of
CKD for the Mongoloid CKD population in East Asia.
Nomograms are a kind of predictive tools, represent-

ing statistical predictive model by a number of scales,
and generate the probability of a clinical event at appro-
priate values [12]. Using data from two different popula-
tions, we aimed to develop a simple but intuitive model
to predict CKD progression for the East Asian CKD
population that can be easily and widely implemented

for clinical practitioners. To make our findings more
credible, the public data were randomly split at a ratio of
7:3, into a developing and another internal validation
data set. The enrolled data from our hospital were ana-
lysed for external validation. Model validation including
discrimination, calibration and clinical values, was
assessed in all three datasets.

Methods
Study population
Development data set
The development cohort was derived from the Chronic
Kidney Disease Research of Outcomes in Treatment and
Epidemiology (CKD-ROUTE) study [13]. This was a
prospective, observational cohort study in Japan. Written
informed consent was obtained from all patients, which
was mentioned in their paper [13]. The CKD-ROUTE
study was approved by the ethics committees of Tokyo
Medical and Dental University, School of Medicine. All
the population was in stage G2–G5 CKD according to
the Kidney Disease Improving Global Outcomes (KDIGO)
classification and was not undergoing dialysis [14]. Patients
who were newly visiting nephrology centres from October
2010 to December 2011 and older than 20 years old were
included. Subjects were excluded if they had malignancy,
transplantation, active gastrointestinal bleeding or no
written informed consent. Over 1000 participants were
recruited at the Tokyo Medical and Dental University
Hospital and its 15 affiliated hospitals. Participants visited
the hospital every 6months for assessment of their clinical
status. The observation duration was 22.91 ± 14.60months
with a range from 1 to 39months. All the CKD-ROUTE
data were from the Dryad data package [15] of its original
publication [13] from the Dryad Digital Repository, a pub-
lic resource that provides discoverable, freely reusable, and
citable data. For this analysis, no informed consent was re-
quired from CKD-ROUTE patients since all the data were
deidentified, and the Ethics Committee of the First Hos-
pital of Foshan in China approved the study with Number
64 in 2020.

Validation data set
The validation consisted of internal validity and external
validity. The validation cohort was also derived from the
CKD-ROUTE study. The external validation was from
retrospective data collected at the First Hospital of
Foshan in China from January 2013 to December
2018. Patients with CKD stage G2-G5 hospitalized in
Foshan Hospital were included, but those with malig-
nancy, transplantation, active gastrointestinal bleeding
and without follow-up visits in our hospital were
excluded. Finally, 297 patients in total were recruited.
All patients in Foshan Hospital in China also pro-
vided written informed consents.
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Variables
At the time of enrolment, candidate dependent variables
were selected by literature research, previous studies [6]
and the data we attained in the CKD-ROUTE study,
including age, sex, body mass index(BMI), aetiology of
CKD, blood pressure, albumin, haemoglobin, eGFR, dip-
stick proteinuria, case history, CKD stages and urinary
occult blood. Biochemical variables were collected by
testing blood and urine samples. The eGFR in all
populations was calculated from the formula: eGFR =
194 × serum creatinine − 1.094 × age − 0.287 (if female,
× 0.739). It was calculated using the modified three-
variable Modification of Diet in Renal Disease equation
developed by the Japanese Society of Nephrology [16].
CKD was classified according to the Kidney Disease
Improving Global Outcomes(KDIGO) guideline [14],
which is defined as G2, G3, G4 and G5 if the corre-
sponding eGFR (mL/min/1.73 m2) is 60–89, 45–59, 30–
44,15–29 and < 15. In addition, none of the patients were
undergoing dialysis. Dipstick proteinuria was defined as
− 1 or 0 as negative or trace protein by dipstick urinary
test at enrolment. Dipstick proteinuria 1 to 4 repre-
sented the degree of proteinuria from 1 to 4.
Consistent with the CKD-ROUTE study, the primary

endpoint was CKD adverse outcomes, which were de-
fined as > 50% eGFR loss, initiation of dialysis in ESRD,
cardiovascular events (CVEs), and all-cause death. CVEs
included ischaemic heart disease, congestive heart fail-
ure, peripheral arterial disease, or stroke.

Sample size
Usually, the effective sample size is often associated with
the number of outcome events. According to previous
rules and experience, at least 10 events should be
ensured per candidate predicted variable before variable
selection [17–19].

Statistical analysis
The CKD-ROUTE dataset was randomly divided into
two cohorts with the R software (i386 3.5.3)– develop-
ment dataset (70% of the total data) and internal valid-
ation dataset (30% of the total data). The dataset from
the First Hospital of Foshan was used for the external
validity. Baseline continuous characteristics of all data-
sets are presented as the means ± standard deviation
and were compared by paired Student’s t-test if the data
were normally distributed or by the paired rank-sum test
for non-normally distributed data. Other categorical data
between two groups are expressed as numbers and per-
centages and were compared by using the paired chi
square test. All probabilities were two-tailed and the
level of significance was 0.05.
To develop the model, first, we tested the associations

between potential variables and CKD adverse outcomes

by univariable and multivariable Cox proportional haz-
ards models with SPSS version 22.0 (Chicago, IL, USA).
P values of < 0.05 were considered statistically signifi-
cant. Next, a predictive nomogram was developed with
variables selected from the Cox analysis with R software.

Model validation
The validation of our model was tested with different
methods in different aspects.
First, the discriminations, the ability of the model to

separate individuals who develop events from those who
do not, was evaluated by the C-statistic in all three data
sets, which is defined as perfect, good, moderate and
poor if the corresponding figure is 1, > 0.8, 0.6–0.8 and <
0.6, respectively [20]. The C-statistics for the predictor
eGFR were also calculated in these three data sets.
Second, the calibration (or goodness-of-fit) [21] was

tested by calibration plots. The calibration was good if
the calibration line between the predicted probability
and the observed outcome fitted to the ideal standard
line(y = x).
Third, decision curve analysis (DCA) was used to test

the clinical value of our model and visualize the poten-
tial net benefit of the model [22]. The model DCA was
compared with the DCA of predictor eGFR and other
variables.
All statistical analyses above were performed using R

software. All probabilities were two-tailed and the level
of significance was 0.05.

Results
The characteristics of patients at baseline in the develop-
ment and validation data sets are listed in Table 1. The
development and internal validation data set included
797 patients (191 with adverse outcomes [23.96%]) and
341 patients (89 with adverse outcomes [26.10%]) from
CKD-ROUTE data set. The P value of sex, body mass
index(BMI), aetiology of CKD, blood pressure(mmHg),
serum albumin(g/dL), haemoglobin(g/dL), eGFR (ml/
min/1.73 m2), case history, dipstick proteinuria, urinary
occult blood, medication usage and adverse outcomes
were all > 0.05, showing no significant difference be-
tween these two groups. On the other hand, 297 patients
(108 with progression [36.36%]) from the First Hospital
of Foshan were included in the external validation data
set. The variables between development data set and
external validation data-set were significantly different
with P < 0.05, demonstrating that these two datasets
completely varied.
A total of 12 predictive variables before variable selec-

tion should ensured that at least 120 events occur. In
our development data set, a total of 797 patients and
CKD adverse outcomes occurred in 191(23.96%) pa-
tients, showing a sample size larger than 120 events,
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Table 1 Characteristics of patients at baseline in the training and validation data sets

Variables Development data set Internal validity data set P-value External validity data set P-value

Age (years) 67.50 ± 13.52 (66.5–68.5) 67.82 ± 13.60 (66.22–69.4) 0.95 51.77 ± 16.50 (49.70–53.84) < 0.01

Sex, n(%) 0.31 < 0.01

Male 570 (72.06%) 222 (65.10%) 158 (53.20%)

Female 227 (27.94%) 119 (34.90%) 139 (47.80%)

BMI (kg/m2) 23.71 ± 4.04 (23.41–24.01) 23.80 ± 4.10 (23.32–24.28) 0.78 23.36 ± 3.87 (23.36–24.33) 0.59

Aetiology of CKD 0.73 < 0.01

Diabetic nephropathy, n(%) 194 (24.34%) 93 (27.27%) 40 (13.47%)

Nephrosclerosis, n (%) 325 (40.78%) 126 (36.95%) 17 (5.72%)

Glomerulonephritis, n (%) 150 (18.82%) 66 (19.36%) 177 (59.60%)

Other, n (%) 128 (16.06%) 56 (16.42%) 63 (21.21%)

Systolic blood pressure (mmHg) 139.64 ± 22.52 (137.98–141.31) 141.16 ± 22.83 (138.48–143.83) 0.57 140.16 ± 25.86 (136.92–143.41) 0.23

Serum albumin(g/dL) 3.85 ± 0.62 (3.80–3.89) 3.80 ± 0.71 (3.72–3.89) 0.75 3.64 ± 0.69 (3.56–3.73) < 0.01

Haemoglobin(g/dL) 11.89 ± 2.34 (11.72–12.06) 11.83 ± 2.09 (11.59–12.08) 0.89 11.48 ± 2.53 (11.16–11.80) < 0.01

eGFR (ml/min/1.73 m2) 32.46 ± 18.47 (31.09–33.83) 31.09 ± 18.54 (28.92–33.26) 0.34 38.80 ± 23.92 (35.79–41.80) 0.01

Hypertension, n(%) 719 (90.21%) 308 (90.32%) 0.96 178 (59.93%) 0.01

Cardiovascular disease, n(%) 220 (27.60%) 85 (24.93%) 0.35 56 (18.86%)

Diabetic, n(%) 285 (35.76%) 137 (40.18%) 0.16 70 (23.57%)

Dipstick proteinuria, n (%) 0.16 < 0.01

-1 183 (23.28%) 75 (22.32%) 39 (13.13%)

0 109 (13.87%) 45 (13.39%) 12 (4.04%)

1 112 (14.25%) 51 (15.58%) 45 (15.15%)

2 173 (22.01%) 73 (21.73%) 81 (27.27%)

3 or 4 209 (26.58%) 92 (27.38%) 120 (40.41%)

CKD stages 0.43 < 0.01

1 0 0 10 (3.37%)

2 63 (7.90%) 32 (9.38%) 48 (16.16%)

3 337 (42.28%) 133 (39%) 106 (35.69%)

4 261 (32.75%) 103 (30.21%) 88 (29.63%)

5 136 (17.06%) 73 (21.41%) 45 (15.15%)

Urinary occult blood(%) 263 (33.46%) 115 (34.23%) 0.8 183 (61.62%) < 0.01

Medication usage

RAS inhibitors 499 (37.39%) 221 (35.19%) 0.48 215 (72.39%) < 0.01

CCB 379 (47.55%) 157 (46.04%) 0.64 202 (68.01%) < 0.01

Diuretics 261 (32.74%) 120 (35.19%) 0.42 198 (66.67%) < 0.01

Adverse outcomes (%) 0.44 < 0.01

No 606 (76.04%) 252 (73.9%) 189 (63.64%)

Yes 191 (23.96%) 89 (26.10%) 108 (36.36%)

eGFR halving / / 21 (7.07%)

ESRD / / 75 (25.25%)

CVEs / / 9 (3.03%)

death / / 3 (1.01%)

chronic disease

hepatic disease / / 23 (7.74%)

cancers / / 13 (4.38%)

Values are mean ± [SD](95% CI confidence interval); Values are number(percentage); BMI Body Mass Index, CVEs cardiovascular events, ESRD end-stage
renal disease, CCB Calcium Channel Blockers
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which means that the sample of our predictive model
was adequate.
The variables determined from the Cox proportional

hazards model for the nomogram predictive model in-
cluded age, eGFR, haemoglobin, albumin, and dipstick
proteinuria after selection by univariable and multivariable
Cox proportional hazards models, with P < 0.05(Table 2).
The graphical nomogram predicting chronic kidney dis-
ease adverse outcomes in 3 years is shown in Fig. 1. The
line named three-year adverse-outcome-free probability
meant that the patients did not experience adverse out-
comes, including > 50% eGFR loss, initiation of dialysis in
ESRD, cardiovascular events (CVEs) and all-cause death
in 3 years. The C-statistics of this nomogram were 0.90
(95% CI, 0.89–0.92) for the development data set, 0.91
(95% CI, 0.89–0.94) for the internal validation data-set
and 0.83 (95% CI, 0.78–0.88) for the external validity data
set, all showing good discrimination for our model.
The calibration plots for the development, internal

validation and external validation datasets are shown in
Fig. A, B and C in Fig. 2. They demonstrated good
agreement between the predicted probability and the ob-
served outcome, with good fitness to the ideal standard
line (light grey line), revealing good calibration of our
simple predictive nomogram model.
The decision curve analysis (DCA) (Fig. 3) curve of

our predictive model was farther from the x or y axis
than the eGFR curve or other variables alone in our
model, which showed better clinical value and potential
net benefit in our predictive model.

Discussion
In our study, the factors associated with CKD adverse
outcomes included age, eGFR, haemoglobin, albumin,

and dipstick proteinuria. Then, we developed a visual-
ized predictive nomogram model with these five factors
to predict 3-year CKD adverse outcomes for the East
Asian CKD population. The model validation was good
when tested in different aspects and populations, which
means this nomogram model was fit for predicting 3-
year CKD adverse outcomes and can be easily and
widely implemented for clinical practitioners.
In our study, age was found to be a significant risk fac-

tor for CKD adverse outcomes, which was different from
some previous Asian studies, such as the 2013 [23] and
2019 [24] Taiwan studies. These differences might be
due to declining eGFR resulting from loss of muscle
mass, reduced physical activity and decreased food in-
take in elderly patients [25], resulting in age serving as a
protective factor in Taiwanese studies. On the other
hand, a more common prevalence of CKD was reported
in people aged 65 years or older than in people of youn-
ger [2]. Furthermore, other CKD risk factors, such as
heart disease, obesity, CKD history, and past damage to
the kidneys were all more common in the elder.
Proteinuria was also a risk factor for CKD adverse out-

comes. In a previous study, proteinuria, a sign of kidney
injury, was perceived as the most powerful predictor
[26] of kidney damage for promoting inflammation and
fibrosis of kidneys [27], which is closely related to a high
risk of CKD adverse outcomes. In the MRFIT study, dip-
stick proteinuria with protein excretion was associated
with a greater risk of ESRD [28]. On the other hand,
proteinuria was also deemed a strong independent pre-
dictor of cardiovascular risk [29], which is the leading
cause of death in patients with CKD.
Here, we developed a simple visualized predictive

nomogram model to predict CKD 3-year adverse

Table 2 Selected variables included in nomogram according to Cox proportional hazards model

Univariable Multivariable

variables HR 95% CI
(upper limit value)

95% CI
(lower limit value)

P value HR 95% CI
(upper limit value)

95% CI
(lower limit value)

P value

Age (years) 1.07 0.78 1.46 0.68 0.99 0.97 1.00 0.03

Sex 0.99 0.98 1.00 0.40 0.73 0.50 1.05 0.09

BMI (kg/m2) 1.02 0.99 1.06 0.23 0.97 0.93 1.01 0.10

Eatiology of CKD 0.51 0.43 0.61 0.01 0.81 0.64 1.01 0.06

Serum albumin, g/dL 0.57 0.31 0.44 0.01 0.61 0.45 0.81 0.00

Heamoglobin, g/dL 0.68 0.64 0.73 0.01 0.89 0.80 0.98 0.02

eGFR (ml/min/1.73 m2) 0.91 0.89 0.92 0.01 0.91 0.90 0.93 0.00

Dipstick proteinuria 2.09 1.85 2.37 0.01 1.66 1.40 1.97 0.00

Urinary occult blood 1.91 1.43 2.54 0.01 1.21 0.87 1.69 0.25

Hypertension 5.04 1.87 13.58 0.01 0.93 0.33 2.65 0.89

Cardiovascular disease 1.33 0.98 1.81 0.69 0.84 0.59 1.19 0.33

Diabetes 2.86 2.13 3.82 0.01 1.36 0.88 2.08 0.17

HR hazard ratio, CI confidence interval, BMI Body Mass Index
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Fig. 1 Nomogram of predictors for predicting three-year adverse-outcome-free probability

Fig. 2 Calibration curves for predicting three-year adverse-outcome-free probability in all data sets. A: development data set; B: internal validity
data set; C: external validity data set
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outcomes for East Asian patients and passed internal
validation in Japanese patients and external validation in
Chinese patients. A 13-year study in Singapore [30] de-
veloped a predictive model for CKD in diabetes mellitus,
focusing on long-term CKD progression in diabetic ne-
phropathy, which is different from ours. Usually, eGFR
is a simple method of monitoring changes in kidney
function, estimating CKD adverse outcomes and deter-
mining the beginning of dialysis. However, our nomo-
gram showed better discrimination and clinical value
than eGFR alone in terms of 3-year adverse-outcome-
free probability. In our nomogram, different values of
the variables pointed to various corresponding points in
line One. For example, consider a 40-year-old patient
with an eGFR of 19, haemoglobin 13 g/dl, albumin 3.0 g/
dL and 1 dipstick proteinuria; the 40-year age points to
approximately 5 points in line 1, while the other factors
point to approximately 20 points in line 1, for a total
points of 84 points in line 5, which points to a 35% 3-
year adverse-outcome-free probability in the last line in
Fig. 1. These probabilities could provide physicians and
patients with a general scope of prognosis [8] and guide
the next clinical steps, such as establishing vascular ac-
cess for dialysis preparation. Furthermore, a predictive
prognosis could offer mental preparation to patients
with CKD and help them understand and accept their
diseases.
However, our analysis had a few limitations. First, the

external validation of our nomogram model was con-
ducted in a retrospective population, but the other data
sets were both from a cohort study. Second, the CKD-
ROUTE study also reported that factors have certain

associations with renal prognosis, but we did not explore
them in our model because we did not obtain those data.
Further studies are needed. Third, we did not eliminate
the possible effect of underlying diseases and medica-
tions used for this model. Further studies will be per-
formed and need to be investigated in the future.
Fourth, we did not separate the risk of > 50% eGFR loss,
initiation of dialysis and other causes of death, but
knowing the probability of CKD adverse outcomes is
also of benefit to patients and clinical practitioners.

Conclusion
In conclusion, we developed a visualized predictive
nomogram model to predict CKD three-year adverse
outcomes for East Asian patients with CKD. The model
validation was good when tested in different aspects and
populations, offering an easy and widely applicable
model for clinical practitioners. However, further pro-
spective population-based studies are needed to investi-
gate the mechanisms.
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