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Abstract 

Background Diabetic nephropathy (DN) and atherosclerosis (AS) are prevalent and severe complications associated 
with diabetes, exhibiting lesions in the basement membrane, an essential component found within the glomerulus, 
tubules, and arteries. These lesions contribute significantly to the progression of both diseases, however, the precise 
underlying mechanisms, as well as any potential shared pathogenic processes between them, remain elusive.

Methods Our study analyzed transcriptomic profiles from DN and AS patients, sourced from the Gene Expression 
Omnibus database. A combination of integrated bioinformatics approaches and machine learning models were 
deployed to identify crucial genes connected to basement membrane lesions in both conditions. The role of integrin 
subunit alpha M (ITGAM) was further explored using immune infiltration analysis and genetic correlation studies. Sin-
gle-cell sequencing analysis was employed to delineate the expression of ITGAM across different cell types within DN 
and AS tissues.

Results Our analyses identified ITGAM as a key gene involved in basement membrane alterations and revealed its 
primary expression within macrophages in both DN and AS. ITGAM was significantly correlated with tissue immune 
infiltration within these diseases. Furthermore, the expression of genes encoding core components of the basement 
membrane was influenced by the expression level of ITGAM.

Conclusion Our findings suggest that macrophages may contribute to basement membrane lesions in DN 
and AS through the action of ITGAM. Moreover, therapeutic strategies that target ITGAM may offer potential avenues 
to mitigate basement membrane lesions in these two diabetes-related complications.
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Introduction
Diabetic nephropathy (DN) represents a prevalent and 
serious complication of diabetes mellitus (DM), contrib-
uting to heightened mortality rates among individuals 
affected by diabetes [1]. Hyperglycemia is considered to 
be the most important risk factor for the development of 
proteinuria and even end-stage renal disease (ESRD) in 
DN. As a microvascular complication of DM, the earliest 
consistent change in DN is thickening of the glomerular 
basement membrane (GBM). Other glomerular patho-
logical alterations include loss of podocytes with efface-
ment of foot processes, mesangial matrix expansion, and 
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loss of endothelial fenestrations [2]. It has been suggested 
that tubulointerstitium injury (interstitial fibrosis and 
tubular atrophy) in DN can even precede glomerulopathy 
[3]. Tubular basement membrane (TBM) thickness is also 
of high predictive value in patients who progress to ESRD 
[4]. Clinically, proteinuria is the main manifestation of 
DN and its onset is often later than GBM thickening. By 
the time patients develop microproteinuria, the struc-
tural alterations in the kidney are typically quite severe 
[5]. Despite these findings, the relationship between these 
structural changes and the onset of proteinuria remains 
inadequately understood. Therefore, to fully appreciate 
the significance of these structural changes, it is vital to 
explore and elucidate the pathophysiological mecha-
nisms underlying these alterations attributed to DN.

Diabetic patients not only face the risk of microvascu-
lar complications, but also frequently exhibit concomi-
tant atherosclerosis (AS). Increasingly, elevated blood 
glucose levels are being recognized as an independent 
risk factor for both all-cause and cardiovascular mortal-
ity [6, 7]. The pathogenesis of atherosclerosis involves 
initial damage to the intima, followed by degradation and 
subsequent remodeling of the basement membrane. This 
series of changes opens up the pathway for lipid infiltra-
tion and the migration of monocytes and lymphocytes [8, 
9]. Remarkably, lesions to the basement membrane have 
been observed to significantly influence both the onset 
and progression of DN and atherosclerosis.

Integrins, a crucial family of obligate heterodimers, are 
instrumental in enabling cell-cell and cell-extracellular 
matrix adhesion. This family is comprised of alpha and 
beta subunits. One such integrin, the integrin subunit 
alpha M (ITGAM), is encoded by the ITGAM gene and 
forms a complex with the integrin subunit beta 2 chain, 
thus creating a receptor commonly known as mac-
rophage receptor-1 (MAC-1). ITGAM not only acts as a 
biomarker for monocyte-macrophage cells but it is also 
implicated in cell adhesion, chemotaxis, and migration 
[10]. Abdominal aortic aneurysms show a high expres-
sion of ITGAM, indicating its role in mediating mac-
rophage adhesion and transendothelial migration, which 
in turn leads to macrophage infiltration and arterial 
inflammation [11]. Additionally, ITGAM is postulated 
to mediate hypertension-induced cardiac remodeling 
through the regulation of macrophage infiltration and 
polarization [12]. These pieces of evidence point toward 
the potential role of ITGAM in cardiovascular disease by 
mediating macrophage infiltration. However, its role in 
DN and AS has yet to be fully elucidated.

This study aimed to elucidate shared molecular mecha-
nisms underlying basement membrane lesions in DN and 
AS. We harnessed multiple datasets derived from the 
Gene Expression Omnibus (GEO) database, employing a 

combination of sophisticated bioinformatics techniques 
and machine learning methodologies. Our findings high-
lighted ITGAM as a critical gene implicated in base-
ment membrane damage of the glomerulus and tubules 
in DN, as well as the plaques in AS. We further observed 
that heightened ITGAM expression was associated with 
increased infiltration of immunocytes into affected tissue. 
Moreover, the degree of ITGAM expression was found 
to significantly influence the transcriptional activity of 
genes encoding pivotal components of the basement 
membrane. Analyses of single-cell sequencing data from 
DN and AS lesion samples revealed ITGAM to be pre-
dominantly expressed in infiltrating macrophages within 
the disease-affected tissue. Drawing on existing research, 
our findings provide a possibility that macrophages may 
contribute to the pathophysiological events causing 
basement membrane damage in DN and AS, with this 
involvement mediated by ITGAM.

Materials and methods
Data source and processing
The datasets GSE96804, GSE104948, GSE104954, 
GSE30529, GSE47184, GSE100927, GSE195799, and 
GSE184073, alongside their associated information, 
were sourced from the GEO database, extracted in the 
MINiML format. Upon procurement, the data from 
unnormalized datasets underwent log2 transformation. 
In instances where datasets were not standardized, nor-
malization was executed utilizing the normalize.quantiles 
function provided by the preprocessCore package within 
R software (version 4.1.2). Subsequently, Probe IDs were 
transposed to gene symbols in accordance with platform 
annotations. Where multiple probes corresponded to a 
singular gene, an average was computed to generate a sol-
itary value representative of that gene. To mitigate batch 
effects within the same dataset or platform, the remove-
BatchEffect function, available in the limma package of R 
software, was employed. During the analysis of data from 
disparate datasets, an initial step was taken to extract a 
shared set of gene symbols. Following this, different data-
sets or platforms were considered as separate batches, 
and batch effects were adjusted using the removeBatch-
Effect function. The investigation of mRNA differential 
expression was conducted using the limma package of 
the R software. To control for false positives, the adjusted 
p values within GEO were subjected to analysis. A crite-
rion for significant differential expression of mRNA was 
established as an adjusted p value below 0.05.

We conducted an analysis of data derived from multi-
ple sources to gain insights into different aspects of DN. 
Data from the GSE96804 dataset, containing the glo-
merular transcriptome of 41 DN samples and 20 unaf-
fected portions of tumor nephrectomy samples, was 
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investigated. The GSE104948 dataset offered glomerular 
transcriptomes derived from subjects of the European 
Renal cDNA Bank as well as living donors. Within this 
dataset, specific samples were selected from two distinct 
platforms: GPL24120 and GPL22945. Five DN samples 
and three healthy donors from the GPL24120 platform, 
alongside seven DN samples and 18 healthy donors from 
the GPL22945 platform, were incorporated into the 
analysis.

In studying the renal tubulointerstitium, we selected 
the complete RNA expression data from the GSE30529 
dataset. This dataset features tubule samples from 10 DN 
patients and 12 healthy controls. Additional samples were 
chosen from the GSE47184 dataset (specifically, 11 DN 
samples and four cadaveric donors from the GPL14663 
platform). Within the GSE104954 dataset, which includes 
two sequencing platforms (GPL24120 and GPL22945), 
we opted for a selection of tubulointerstitium samples 
from both DN patients and healthy donors. Ten DN sam-
ples and three healthy donors from the GPL24120 plat-
form, plus seven DN samples and 18 healthy donors from 
the GPL22945 platform, were included for further analy-
sis of the tubulointerstitium.

The GSE100927 dataset, encompassing RNA expres-
sion data of human peripheral arteries from carotid, 
femoral, and infra-popliteal territories in atherosclerotic 
and control tissue, was wholly included in our study. This 
dataset comprises 69 AS samples and 35 controls.

The GSE195799 dataset, containing single-cell tran-
scriptome data of CD45-enriched kidney immune cells 
from control and diabetic OVE26 mice, was also uti-
lized. In this case, the diabetic OVE26 mouse sample was 
selected for a single-cell analysis.

Lastly, we sourced data from the GSE184073 data-
set, which includes single-cell RNA sequencing data of 
human coronary plaques. Specifically, the GBM5577200 
sample, diagnosed with acute coronary syndrome, was 
selected for subsequent study.

We obtained proteomic data through the ProteomeX-
change database (https:// prote omece ntral. prote omexc 
hange. org/). The dataset PXD041367 was selected, which 
encompasses the proteome of human monocytes from 
samples of atherosclerosis related and non-related to 
chronic kidney disease (CKD). Quantitative and qualita-
tive proteomic analyses were conducted using nano liq-
uid chromatography-tandem mass spectrometry (nano 
LC-MS/MS) to explore the global proteomic alterations 
in monocytes, which were isolated from the peripheral 
blood of patients by immunomagnetic separation. These 
cells were isolated from patients at various stages of ath-
erosclerosis, both related and non-related to CKD.

Weighted gene co‑expression network analysis
In our study, we utilized the Sangerbox clinical bio-
informatics analysis platform to perform a weighted 
gene co-expression network analysis (WGCNA) [13]. 
The process began with the calculation of the median 
absolute deviation (MAD) for each gene using the gene 
expression spectrum. We subsequently eliminated the 
lower 50% of genes based on the smallest MAD val-
ues. Outliers were identified and removed using the 
WGCNA package in R software, employing the “good-
SamplesGenes” function. We proceeded to construct 
a scale-free co-expression network via WGCNA. This 
entailed applying the Pearson’s correlation matrices 
and average linkage method for all pairwise genes. A 
weighted adjacency matrix was constructed using the 
power function A_mn = |C_mn|^β (where C_mn is the 
Pearson’s correlation between gene_m and gene_n, and 
A_mn represents the adjacency between gene_m and 
gene_n). Here, β serves as a soft-thresholding parame-
ter that accentuates strong gene correlations and deval-
ues weaker ones. In our analysis, we selected a power of 
5. Following this, the adjacency was transformed into a 
topological overlap matrix (TOM). The TOM quantifies 
the network connectivity of a gene, defined as the total 
of its adjacency with all other genes relative to the net-
work gene ratio. We then computed the corresponding 
dissimilarity, given by 1-TOM. To classify genes with 
similar expression profiles into modules, we utilized 
average linkage hierarchical clustering, based on the 
TOM-dissimilarity measure. This procedure required a 
minimum size (gene group) of 30 for the gene dendro-
gram and was performed with a sensitivity setting of 
three. Further module analysis involved calculating the 
dissimilarity of module eigengenes, setting a cut-off line 
for the module dendrogram, and merging specific mod-
ules. We also merged any modules with a distance less 
than 0.25. In the final co-expression modules obtained, 
we identified the gray module as containing genes that 
could not be grouped into any module. The hub genes 
were chosen from the four modules showing the high-
est correlation, with the selection criteria detailed in 
the Results section.

Gene ontology (GO) enrichment analysis
For the enrichment analysis, we employed the R 3.6.3 
software with the clusterProfiler package (version 
4.2.2). The ID conversion was performed utilizing the 
“org.Hs.eg.db” package (version 3.14.0). To compute 
the z-score, the “GOplot” package (version 1.0.2) was 
used [14, 15].

https://proteomecentral.proteomexchange.org/
https://proteomecentral.proteomexchange.org/
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Support vector machines‑recursive feature elimination 
(SVM‑RFE) algorithm
The SVM-RFE algorithm systematically ranks features 
recursively, effectively minimizing the risk of model 
overfitting [16–18]. We utilized the e1071 package in R, 
incorporating 10-fold cross-validation approach, which 
was meticulously set up using a corresponding seed to 
ensure reproducibility and to mitigate potential biases 
in model training. This approach allowed systematically 
rank features, thus minimizing the risk of overfitting, 
which is a common challenge in machine learning mod-
els. In this study, the genes identified were utilized as fea-
tures for the SVM-RFE model, with the average model 
predictive accuracy/error across different feature quan-
tities being determined via 10-fold cross-validation. The 
optimal number of genes (denoted as N), was ascertained 
by choosing the quantity of features corresponding to the 
highest accuracy and the lowest error of the model. Fol-
lowing the feature ranking provided by the model, the top 
N genes were screened to constitute a gene set. The com-
mon genes identified within the gene sets predicted by 
the respective models for DN glomerulus, DN tubuloint-
erstitium, and AS, are considered to be robust features, 
indicating their potential critical roles in the correspond-
ing biological processes. Consequently, these genes war-
rant further investigation. Using this algorithm, we were 
able to identify hub basement membrane-related genes.

Random forest (RF) algorithm
The RF algorithm, a supervised machine learning 
method, leverages decision tree algorithms to solve 
regression and classification problems. In the RF model, 
applied via the randomForest package (version 4.7–1.1) 
and varSelRF package (version 0.7–8) in R, we focused on 
quantifying feature importance using the mean decrease 
in the Gini index, a method effective in reducing bias 
inherent in feature selection [19]. The model was trained 
with a predefined number of trees (N = 750), a decision 
made after assessing model performance with a higher 
initial number of trees (N = 1000). This process of tun-
ing the number of trees was crucial to balance model 
accuracy and computational efficiency, thus preventing 
overfitting. To further ensure the generalizability of our 
findings, we performed cross-validation in our RF model 
as well, including a repeated measure. This step is vital in 
assessing the stability and reliability of our model’s pre-
dictions across different subsets of the data. In this study, 
the genes identified were utilized as variables for the RF 
model. Following five-fold cross-validation, the optimal 
number of genes (denoted as N), was determined based 
on the corresponding number of variables that resulted 
in a low mean prediction error. The top N genes were 

then selected in accordance with their ranking of vari-
able importance (assessed by the mean decrease in the 
Gini index), as the best predictors. Due to the inherent 
randomness of the RF model, its predictive outcomes are 
challenging to interpret. The predictive outcomes are also 
susceptible to the influence of noise within the dataset. 
Consequently, we employed it solely in AS, serving as a 
validation for the SVM-RFE model, thereby enhancing 
the reliability of results. We assessed the predictive signif-
icance of these hub genes by creating a receiver operating 
characteristic (ROC) curve using the pROC package in R 
software [20].

Evaluation of immune infiltration
We used the estimation of stromal and immune cells in 
malignant tumor tissues using expression data (ESTI-
MATE) algorithm to calculate tumor purity [21]. This 
study further examined the comprehensive profile of 
immune infiltration in DN and AS samples using the 
ESTIMATE algorithm. The single-sample gene set 
enrichment analysis (ssGSEA), an extension of the GSEA 
method, permits the calculation of an enrichment score. 
This score symbolizes the absolute degree of a gene set’s 
enrichment in each sample within a given dataset [22]. 
We deployed ssGSEA to analyze further the infiltration 
levels of diverse immune cells, contingent on whether 
ITGAM was expressed at high or low levels.

Single‑cell RNA sequencing data analysis
The single-cell RNA sequencing data was derived from 
the gene count matrix of GSE195799 and GSE184073, 
which were acquired from the GEO database. Specifi-
cally, the barcode data, gene feature data, and gene count 
matrix data of GSE184073, all preprocessed by Cellranger 
(10X Genomics), were downloaded. The analysis was 
conducted using the R statistical software, version 4.1.2, 
leveraging the capabilities of the Seurat package (version 
4.3.0) [23].

Statistical analysis and visualization
Statistical analyses were performed using the R statisti-
cal software. The data were presented as the mean value 
± the standard error of the mean (SEM). Depending on 
the data distribution and variance, different tests were 
employed for two-group comparisons: Student’s t-test, 
Welch’s t-test, or the Wilcoxon rank sum test. In addition, 
Spearman’s correlation analysis was used to determine 
correlations between two datasets, providing the correla-
tion coefficient. A p value of less than 0.05 was deemed 
to indicate statistical significance. All data visualization 
tasks were also completed utilizing the R software.
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Results
Identification of key basement membrane‑related genes 
in DN glomerulus and tubulointerstitium
To understand the gene expression profiles within the 
glomerulus and tubulointerstitium in the context of 
DN, selected samples from GSE96804 and GSE104948 
were aggregated for a combined analysis. This examina-
tion incorporated 53 DN samples and 41 healthy control 
samples (Fig.  1A). Additionally, chosen samples from 
GSE30529, GSE47184, and GSE104954, which totaled 
38 DN samples and 37 healthy controls, were combined 
for a comprehensive study on the tubulointerstitium 
(Fig. 1B). Utilizing the limma package, a differential gene 
expression analysis was carried out between DN and 
healthy control samples within the glomerulus dataset. 
This resulted in the identification of 3018 significantly 
upregulated and 3057 significantly downregulated genes 
(Fig.  1C). A similar analysis within the DN tubuloint-
erstitium dataset revealed 2102 upregulated and 2847 
downregulated genes (Fig. 1D). To pinpoint genes dem-
onstrating the highest phenotype correlation, a WGCNA 
was performed. Hierarchical clustering of DN glomeru-
lus samples, based on gene expression levels, revealed no 
outliers (Fig. 1F). Subsequently, the optimal soft thresh-
old β was determined as 7 (Fig.  1E), with a minimum 
gene module size of 30 and sensitivity set to 3, allowing 
the categorization of genes with similar expression pro-
files into modules. The dissimilarity of module charac-
teristic genes was calculated and modules exhibiting a 
distance of less than 0.25 apart were amalgamated by cut-
ting line in the module dendrogram. This process yielded 
15 co-expression modules (Fig.  1G). Correlation analy-
sis of the 15 co-expression modules and DN revealed 
the magenta, pink, red, and cyan modules as having the 
highest correlation (Fig.  1H). Genes (module member-
ship) within these four modules also demonstrated a 
high degree of correlation with DN (Fig.  1I-L). Apply-
ing a screening criterion of a MM-GS correlation coeffi-
cient greater than 0.7, 772 genes were selected from these 
four modules for subsequent analysis (Supplementary 

Table  1). A comparable analysis was carried out on the 
tubulointerstitium samples (Supplementary Fig.  1A-I), 
resulting in the identification of 13 co-expression mod-
ules. Among these, the pink, dark  orange, light  cyan, 
and dark green modules had the highest correlation with 
DN. Again, using the same screening criterion, 564 genes 
were selected from these four modules for further inves-
tigation (Supplementary Table 2).

Upon reviewing the available literature, we identified 
222 basement membrane-related genes (BMRGs) [24]. 
Through an intersecting analysis of differential expressed 
genes (DEGs), genes selected by WGCNA, and BMRGs, 
we determined 49 hub basement membrane-related 
genes in the DN glomerulus, as well as 25 genes in the 
DN tubulointerstitium, as depicted in Fig. 1M and N. To 
further elucidate the functional roles of these hub genes, 
we performed GO enrichment analysis. Our findings 
suggest that these genes are predominantly implicated in 
chemotaxis, cell migration, and adhesion, with particular 
emphasis on leukocyte interactions (Fig. 1O).

Identification of key basement membrane‑related genes 
in atherosclerosis
The GSE100927 dataset, retrieved from the GEO data-
base, was employed for AS analysis. It comprises 69 AS 
samples alongside 35 healthy controls. With the use 
of the limma package, 12,346 DEGs were identified, 
adhering to an adjusted p value threshold of less than 
0.05. Notably, 6362 genes were significantly upregu-
lated, and 5984 genes were correspondingly downregu-
lated (Fig.  2A). WGCNA was conducted as previously 
described. Hierarchical clustering of samples illustrated 
that no sample diverged significantly as an outlier (Sup-
plementary Fig.  2). The optimal soft threshold, β, was 
ascertained as 4 (Fig.  2B). A total of 19 co-expression 
modules were derived, with their correlations with AS 
illustrated (Fig. 2C, D). The top four modules displaying 
the greatest relevance to AS were singled out. The genes 
(module membership) within these four modules dem-
onstrated a high degree of correlation with the disease, 

(See figure on next page.)
Fig. 1 Identification of key basement membrane-related genes in diabetic nephropathy glomerulus and tubulointerstitium. A Merging, 
standardization, and batch effect removal of GSE104948 and GSE96804 datasets. The merged dataset includes 53 DN glomerulus and 41 
normal control samples. B Merging, standardization, and batch effect removal of GSE104954, GSE30529, and GSE47184 datasets. The merged 
dataset contains 38 DN tubulointerstitium and 37 normal control samples. C, D Generation of volcano plots of DEGs in DN glomerulus 
and tubulointerstitium. Genes with an adjusted p value less than 0.05 were deemed differentially expressed. E Optimization of the soft threshold 
β, set to 7. F Hierarchical clustering of GSE104948 and GSE96804 samples based on gene expression levels. G Identification of co-expression 
modules in DN glomerulus with the following parameters: minimum module size: 30; sensitivity: 3; module merge threshold: 0.25. H Correlation 
between the 15 identified co-expression modules and DN (glomerular group). Four modules (magenta, pink, red, and cyan) showed the highest 
DN correlation. I-L Scatter plots illustrating correlation between genes (module membership) in the top four modules and DN (glomerular group). 
M, N Intersection of DEGs, genes screened by WGCNA, and BMRGs in both DN glomerular and tubulointerstitial groups. O GO enrichment analysis 
of intersected genes in DN glomerulus and tubulointerstitium
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Fig. 1 (See legend on previous page.)
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as shown in Fig. 2E. Employing a threshold of an MM-GS 
correlation coefficient greater than 0.8, 1883 genes were 
singled out from these four modules (Supplementary 
Table  3). An intersection of DEGs, WGCNA-screened 
genes, and BMRGs identified 18 key basement mem-
brane-related genes (Fig.  2F). GO enrichment analysis 
indicated that these genes have substantial involvement 
in cell adhesion and migration processes, specifically in 
mononuclear cells (Fig. 2G).

Identification of ITGAM as a crucial gene through machine 
learning screening
Our study aimed to identify key basement membrane-
related genes in the context of DN glomerulus, DN 
tubulointerstitium, and AS pathologies. We applied tra-
ditional machine learning algorithms and employed 
SVM-RFE to screen these contexts’ associated hub genes. 
In DN glomerulus, five-fold cross-validation results sug-
gested that the optimal selection comprised the top 46 
genes from the SVM-RFE ranking within the 49 hub 
genes. This selection resulted in the lowest error and 
highest accuracy rates (Fig. 3A, B). For DN tubulointer-
stitium, the SVM-RFE model recommended selecting the 
top 15 hub genes (Fig. 3C, D). Similarly, for AS, the SVM-
RFE model proposed selecting the top 12 hub genes 
(Fig.  3E, F). From these selections, only ITGAM was 
consistently identified as a key gene across DN glomeru-
lus, DN tubulointerstitium, and AS. To further validate 
the significance of ITGAM in AS, we constructed an RF 
model. In the preliminary training phase, we set the tree 
count to 1000. The prediction model achieved stability 
at approximately 640 trees (Fig. 3G). In the formal train-
ing phase, we selected 750 trees. The ROC curves dem-
onstrated satisfactory prediction accuracy for this model 
(Fig. 3H). Further, both single and five-fold cross-valida-
tions were performed. We observed a marked increase in 
the model’s error rate when the variable count exceeded 
4 (Fig. 3I, J). The RF algorithm ranked the importance of 
18 hub genes in AS based on the mean decrease in the 
Gini index. The top four genes were EVA1C, ITGB7, 
ITGA4, and ITGAM, with ITGAM being one of the most 
crucial (Fig.  3G). In conclusion, the findings from our 
comprehensive analysis indicate that ITGAM likely plays 

a significant role in basement membrane lesions within 
DN glomerulus, DN tubulointerstitium, and AS.

ITGAM is significantly associated with tissue immune 
infiltration in DN and AS
Our initial assessment was focused on the overall 
immune infiltration in three distinct tissues: DN glo-
merulus, DN tubulointerstitium, and AS, employing the 
ESTIMATE algorithm. Immune infiltration was sub-
stantially elevated in all these three tissues relative to 
normal tissue controls (Fig.  4A-C). These findings indi-
cate an active involvement of the immune system in the 
pathogenesis of both diabetic nephropathy and athero-
sclerosis. Our investigation further revealed a significant 
upregulation of ITGAM, an integrin subunit, in these 
aforementioned lesioned tissues (Fig. 4D-F). To elucidate 
the connection between ITGAM expression levels and 
immune infiltration, we sorted the DN glomerulus, DN 
tubulointerstitium, and AS samples in descending order 
based on ITGAM expression levels. The top 20% of sam-
ples were categorized as the high-expression group and 
the bottom 20% as the low-expression group. We then 
implemented the ssGSEA to ascertain the infiltration lev-
els of 22 distinct immunocyte types. Our data revealed 
that the infiltration levels of immunocytes were mark-
edly higher in the ITGAM high-expression group for all 
three lesioned tissues under consideration (Fig.  4G-I). 
This observation underscores a significant association 
between ITGAM expression and tissue immune infiltra-
tion in both DN and AS.

Influence of ITGAM expression levels on basement 
membrane component‑encoding genes
Our study encompassed an investigation into the expres-
sion of genes encoding key constituents of the GBM, 
including COL4A1, COL4A2, COL4A3, COL4A4, 
COL4A5, COL4A6, LAMA5, LAMB2, LAMC1, HSPG2, 
AGRN, COL18A1, NID1, and NID2 [25]. These ele-
ments are also pivotal in the formation of arterial base-
ment membranes and TBM. In the context of AS, 
we observed downregulation of COL4A3, COL4A4, 
COL4A5, COL4A6, and LAMC1, contrasted by upregula-
tion of AGRN and NID2 (Fig.  5A). For DN tubulointer-
stitium, upregulated genes comprised COL4A1, COL4A2, 

Fig. 2 Identification of key basement membrane-related genes in AS. A Generation of a volcano plot of DEGs in AS, with genes having an adjusted 
p value less than 0.05 considered differentially expressed. B Determination of the optimal soft threshold β, set to 4. C Identification of co-expression 
modules in AS using the following parameters: minimum module size: 30; sensitivity: 3; module merge threshold: 0.25. D Correlation 
between the 19 identified co-expression modules and AS. Four modules (blue, dark gray, turquoise, and midnight blue) showed the highest 
AS correlation. E Scatter plots illustrating correlation between genes (module membership) in the top four modules and AS. F Intersection of DEGs, 
genes screened by WGCNA, and BMRGs in AS. G GO enrichment analysis of intersected genes in AS

(See figure on next page.)
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Fig. 2 (See legend on previous page.)
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Fig. 3 Identification of ITGAM as a crucial gene using machine learning algorithms. A, C, E SVM-RFE model construction for the key genes in DN 
glomerulus, DN tubulointerstitium, and AS, respectively. The results of a five-fold cross-validation are displayed. CV: cross-validation. B, D, F The left 
side presents the genes endorsed by the SVM-RFE model; the right side displays the excluded genes. G Experimental training model of RF. (H) ROC 
curve analysis was conducted to evaluate the predictive performance of the model. AUC = 0.816. I Results of single-fold cross-validation. J Results 
of five-fold cross-validation. K Importance ranking of the 18 hub genes in AS, based on the mean decrease in the Gini index
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COL4A6, LAMA5, LAMC1, HSPG2, COL18A1, and 
NID2, while COL4A3 alone was downregulated (Fig. 5B). 
The DN glomeruli displayed upregulated expression of 

COL4A1, COL4A2, LAMC1, HSPG2, COL18A1, NID1, 
and NID2, counteracted by downregulation of COL4A5 
and AGRN (Fig. 5C). We further divided our sample into 

Fig. 4 Analysis of ITGAM-related immune infiltration. A, B, C Overall immune infiltration scores for DN glomerulus, DN tubulointerstitium, and AS, 
calculated using the ESTIMATE algorithm. D, E, F Expression levels of ITGAM in DN glomerulus, DN tubulointerstitium, and AS. G, H, I Infiltration 
levels of 28 types of immune cells in ITGAM high-expression and low-expression groups for DN glomerulus, DN tubulointerstitium, and AS, assessed 
using ssGSEA
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Fig. 5 ITGAM influences the expression of genes encoding major components of the basement membrane. A Comparison of expression levels 
of genes encoding major basement membrane components between AS and normal tissues. B Comparison of expression levels of genes encoding 
major basement membrane components between DN tubulointerstitium and normal control. C Comparison of expression levels of genes 
encoding major basement membrane components between DN glomerulus and normal control. D Heatmap representing the expression levels 
of genes encoding major components of the basement membrane in ITGAM high-expression and low-expression groups in DN glomerulus, 
DN tubulointerstitium, and AS. E Correlation analysis of COL4A5, COL4A6, LAMC1, and NID2 with ITGAM in DN glomerulus. F Correlation analysis 
of COL4A1, COL4A2, COL18A1, and NID2 with ITGAM in DN tubulointerstitium. G Correlation analysis of COL4A1, COL4A2, LAMC1, HSPG2, COL18A1, 
NID1, and NID2 with ITGAM in AS
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ITGAM high-expression and low-expression groups, 
employing the same methodology. Comparison of gene 
expression levels for major basement membrane com-
ponents between these groups was performed across 
the three types of pathological tissues (Fig.  5D). In ath-
erosclerotic tissues, we noted differential expression of 
COL4A5, COL4A6, LAMC1, and NID2 compared to con-
trol tissues, along with distinct expression levels in the 
high and low ITGAM expression groups. Spearman’s cor-
relation analysis conducted for these genes with ITGAM 
unveiled consistent negative correlations (Fig. 5E). In the 
DN tubulointerstitium, there was significant differential 
expression of COL4A1, COL4A2, COL18A1, and NID2 
compared to control tissues, and between the ITGAM 
high- and low-expression groups. These genes demon-
strated substantial positive correlations with ITGAM 
(Fig. 5F). In the DN glomerulus, we found that COL4A1, 
COL4A2, LAMC1, HSPG2, COL18A1, NID1, and NID2 
all displayed positive correlations with ITGAM, while 
COL4A5 showed a negative correlation with ITGAM 
(Fig.  5G). The aggregate of our findings suggests that 
ITGAM expression levels modulate the expression of 
genes responsible for encoding key components of the 
basement membrane.

ITGAM is predominantly expressed on the surface 
of macrophages in DN and AS
The differential expression of ITGAM across various 
cell types within DN and AS tissues was evaluated using 
single-cell sequencing analysis. We employed sam-
ple GSM5851040 (derived from diabetic OVE26 mice) 
from the GSE195799 dataset for DN-specific single-cell 
examination. A preliminary evaluation of the number of 
expressed genes, RNA quantity, and mitochondrial gene 
proportion was carried out across multiple cells and sam-
ples (Supplementary Fig.  3A). We observed a negligible 
correlation between the RNA quantity and the propor-
tion of mitochondrial genes, while a strong positive cor-
relation was identified between the number of expressed 
genes and RNA quantity (Fig. 6A). This indicated that the 
cells within the samples were normal and fit for analysis. 
We then refined the analysis by excluding cells with fewer 
than 200 or more than 3000 transcripts, or with a mito-
chondrial gene proportion exceeding 5%. The threshold 
for highly variable genes was set to 2500 (Supplementary 
Fig. 3B). Dimension reduction was performed using prin-
cipal component analysis (PCA), selecting 14 principal 
components (Supplementary Fig.  3C, Fig.  6B, C). This 
enabled us to categorize the cells into 14 distinct subpop-
ulations, utilizing the Cell Marker 2.0 database for anno-
tations (http:// www. bio- bigda ta. center) [26] (Fig.  6D). 
Notably, we found a preponderance of ITGAM expres-
sion in mononuclear phagocytes, conventional dendritic 

cells, proliferating cells, and neutrophils (Fig.  6E, F). 
Complementing this, data from the Human Protein 
Atlas (https:// www. prote inatl as. org/) revealed a primary 
ITGAM expression in kidney macrophages [27] (Fig. 6G). 
For AS, we carried out a similar single-cell analysis using 
the GSM5577200 sample from the GSE184073 data-
set (Supplementary Fig.  3D, E). We excluded cells with 
fewer than 200 or over 4000 transcripts, or those having 
a mitochondrial gene proportion beyond 5%. We set the 
highly variable gene threshold to 5000 for this analysis 
(Supplementary Fig. 3F). Post-PCA dimension reduction, 
the principal components were confined to 10, allowing 
the classification of cells into eight subpopulations (Sup-
plementary Fig. 3G-I, Fig. 6I). In alignment with the DN 
findings, ITGAM was majorly expressed in macrophages, 
specifically within the M1 and M2 phenotypes (Fig.  6I, 
J). We further analyzed the proteomics of human mono-
cytes in AS related and non-related to CKD, accessed 
through the ProteomeXchange database. These results 
demonstrated that the abundance of ITGAM is signifi-
cantly higher in the early stages of CKD-related AS com-
pared to simple AS, which might indicate that ITGAM is 
involved in the common underlying pathology of DN and 
AS (Supplementary Fig. 3J).

Discussion
Diabetic nephropathy, a common microvascular com-
plication of diabetes, is often difficult to diagnose at its 
early stages. By the time clinical confirmation is achieved, 
disease progression is typically advanced and challenging 
to manage, often culminating in ESRD. Current clinical 
practice mainly relies on symptomatic treatment, and 
kidney replacement therapy or transplantation are usually 
the selected options when patients progress to ESRD. The 
presence of microalbuminuria often signifies substantial 
renal structural damage [5]. A plethora of research has 
highlighted the role of podocyte injury, characterized 
by a reduction in podocyte count/density and foot pro-
cess fusion/effacement, in DN progression. This injury 
is viewed as a significant contributor to the develop-
ment of albuminuria [28–30]. Nevertheless, the mecha-
nisms through which basement membrane thickening 
leads to albuminuria are not yet fully understood. Several 
hypotheses suggest that modifications in GBM compo-
nents, such as increased type IV collagen and decreased 
heparan sulfate proteoglycans (HSPG), cause alterations 
in the charge barrier and filtration slits of GBM. These 
changes may stimulate the onset and progression of pro-
teinuria [5, 31]. Thickening of the TBM and extracellular 
matrix accumulation in the kidney may also play a role 
in compromised protein reabsorption. Thus, preventing 
GBM thickening could be a viable therapeutic strategy 
for early intervention in DN progression. Podocytes are 

http://www.bio-bigdata.center
https://www.proteinatlas.org/
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Fig. 6 Single-cell analysis of DN and AS samples. A A correlation analysis depicting the relationship between RNA quantity, the proportion 
of mitochondrial genes, and the total number of genes. B JackStrawPlot was used to assess the significance of the principal components. 
C ElbowPlot was utilized to determine the optimal number of principal components. D UMAP visualizing the distinct cell subpopulations 
within the DN sample. E Violin plot showcasing ITGAM expression levels across different cell subpopulations. F UMAP demonstrating ITGAM 
expression across different cell subpopulations. G The expression levels of ITGAM across various cell types in the kidney, as sourced from the Human 
Protein Atlas database. H UMAP of single-cell analysis visualizing cell subpopulations within the AS sample. I Violin plot of ITGAM expression levels 
in each cell subpopulation. J UMAP showing the expression of ITGAM in different cell subpopulations
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widely acknowledged to play a role in balancing the syn-
thesis and degradation of GBM. Alterations in podocyte 
function in DN lead to GBM remodeling and thickening. 
Some theories suggest that GBM thickening is a compen-
satory response to podocyte injury, aimed at mitigating 
proteinuria. This phenomenon may elucidate why GBM 
thickening transpires before the onset of proteinuria and 
could potentially be one of the causes of non-proteinuric 
DN (NP-DN). In most cases, however, this compensatory 
change rapidly progresses to decompensation, initiating 
a destructive cycle of GBM disorganization and barrier 
dysfunction [5]. Despite these insights, the pathophysi-
ological mechanisms underpinning basement membrane 
thickening remain elusive.

ESRD represents the most severe manifestation of DN, 
but clinical observations suggest that cardiovascular dis-
eases, not the necessity for renal replacement therapy, 
account for the majority of patient mortality [2]. This is 
primarily attributed to the damage and degradation of the 
atherosclerotic plaque’s basement membrane, which in 
turn accelerates plaque formation. Our research involved 
performing WGCNA on 222 BMRGs. The goal was to 
identify pivotal genes in DN glomerulus, DN tubuloint-
erstitium, and AS. It is known that cells communicate 
with the extracellular matrix via cell surface receptors, 
particularly integrins. These receptors are critical for cell 
adhesion and signal transduction from the extracellular 
matrix to the cell. ITGAM, a gene that encodes the integ-
rin alpha M chain (also referred to as CD11b), facilitates 
this communication by adhering to the basement mem-
brane. This promotes leukocyte recruitment to inflam-
matory sites. In the context of lupus nephritis, ITGAM 
is thought to regulate negatively the activities of innate 
immune cells such as macrophages and neutrophils 
within pro-inflammatory signaling pathways [32]. There-
fore, ITGAM-targeting agonists represent a potential 
treatment for lupus nephritis. However, the specific role 
of ITGAM in DN remains largely unexplored. A robust 
immune response and inflammation infiltration are 
common characteristics of both DN and AS. Using the 
ESTIMATE algorithm, we confirmed this trend across 
three sample groups. Additionally, our ssGSEA analysis 
revealed that elevated ITGAM expression is positively 
correlated with immunocytes infiltration in the afflicted 
tissues. Single-cell analysis also disclosed the predomi-
nant expression of ITGAM in macrophages within DN 
and AS tissues.

Aberrant glucose and lipid metabolism in DN triggers 
substantial macrophage accumulation in the glomeru-
lus and tubulointerstitium [33–36]. High glucose lev-
els can stimulate macrophages to release TNF-α, which 
can induce podocyte apoptosis. Moreover, macrophages 
can trigger podocyte pyroptosis and autophagy via the 

secretion of exosomes containing miRNA. They can also 
interact with mesangial cells to stimulate extracellular 
matrix secretion [37, 38]. Persistent chronic inflamma-
tion can further lead to glomerulosclerosis and tubuloint-
erstitial fibrosis via macrophage-myofibroblast transition 
(MMT) [39]. However, the role of macrophages in DN 
basement membrane thickening remains unclear. Despite 
this uncertainty, it is unequivocal that macrophages con-
tribute significantly to atherosclerotic plaque formation. 
We therefore conducted further analyses to explore the 
relationship between ITGAM expression levels and the 
genes encoding the basement membrane’s major compo-
nents. Our findings revealed a strong correlation between 
elevated ITGAM expression and dysregulated expression 
of basement membrane-associated genes. Our analysis 
suggests a mechanism in which macrophages adhere to 
the GBM and TBM via ITGAM. This leads to basement 
membrane thickening and remodeling in DN. Similarly, 
in AS, macrophage migration to lesions and adherence to 
the basement membrane through ITGAM might result 
in basement membrane injury and degradation. Mac-
rophages’ capacity to secrete matrix metalloproteinases 
(MMP), which degrade collagen, might partially explain 
their contribution to basement membrane injury and 
remodeling [40]. MMP-inhibitors have been demon-
strated to confer significant disease-protective effect in 
the early stages of Alport Syndrome (before the onset of 
proteinuria), through the maintenance of GBM/extracel-
lular matrix integrity [41].

Our research tentatively suggests the possibility of a 
shared mechanistic underpinning for basement mem-
brane degradation in both DN and AS. Accordingly, we 
propose the hypothesis that modulating ITGAM could 
offer a potentially innovative therapeutic approach for 
early-stage DN intervention and prevention of concomi-
tant AS. It is important to acknowledge that our current 
research is confined to data analysis, which confirmed a 
strong correlation between ITGAM and basement mem-
brane lesions in DN and AS, but did not establish a causal 
relationship. Additional mechanistic studies are required 
to further elucidate the precise role of ITGAM and mac-
rophages in the pathophysiological process of basement 
membrane damage in DN and AS.
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