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Abstract
Background Predicting time to renal replacement therapy (RRT) is important in patients at high risk for end-stage 
kidney disease. We developed and validated machine learning models for predicting the time to RRT and compared 
its accuracy with conventional prediction methods that uses the rate of estimated glomerular filtration rate (eGFR) 
decline.

Methods Data of adult chronic kidney disease (CKD) patients who underwent hemodialysis at Oita University 
Hospital from April 2016 to March 2021 were extracted from electronic medical records (N = 135). A new machine 
learning predictor was compared with the established prediction method that uses the eGFR decline rate and 
the accuracy of the prediction models was determined using the coefficient of determination (R2). The data were 
preprocessed and split into training and validation datasets. We created multiple machine learning models using the 
training data and evaluated their accuracy using validation data. Furthermore, we predicted the time to RRT using a 
conventional prediction method that uses the eGFR decline rate for patients who had measured eGFR three or more 
times in two years and evaluated its accuracy.

Results The least absolute shrinkage and selection operator regression model exhibited moderate accuracy with an 
R2 of 0.60. By contrast, the conventional prediction method was found to be extremely low with an R2 of -17.1.

Conclusions The significance of this study is that it shows that machine learning can predict time to RRT moderately 
well with continuous values from data at a single time point. This approach outperforms the conventional prediction 
method that uses eGFR time series data and presents new avenues for CKD treatment.
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Background
The number of dialysis patients is increasing globally and 
is expected to be 3.8  million people worldwide by 2021 
[1]. Chronic kidney disease (CKD) is a concept proposed 
for the early detection of renal dysfunction, and it is esti-
mated that 9.1% of the world’s population is affected by 
CKD [2]. The Kidney Disease Improving Global Out-
comes (KDIGO) guideline provides a heat map of the 
risk of progression to end-stage kidney disease (ESKD), 
and the National Institute for Health and Care Excellence 
guideline recommends the kidney failure risk equation 
(KFRE) as a criterion for referral to a nephrologist [3–5]. 
However, CKD patients often delay referral to a nephrol-
ogist or discontinue seeing a nephrologist because of a 
lack of subjective symptoms and their reluctance to con-
tinue treatment.

In high-risk patients with ESKD, renal function often 
deteriorates progressively, making it crucial to predict 
the time to renal replacement therapy (RRT) to achieve a 
clearer and concrete description of the necessity of treat-
ment. Conventionally, time series graphs of estimated 
glomerular filtration rate (eGFR) or reciprocal creatinine 
(Cr) are used to estimate the time to RRT based on the 
annual decline rate. However, these methods require 
time series data, which is difficult to generate for first-
time patients. In addition, the method of reciprocal Cr 
has been reported to have low accuracy [6, 7].

Recently, there have been several reports on the appli-
cation of artificial intelligence (AI) technology in medi-
cal care, covering a wide range of areas such as genomic 
medicine, image diagnosis, diagnostic and therapeutic 
support, and surgical support [8–12]. Machine learn-
ing is a technique for constructing a system to process 

tasks using big data. Supervised learning, which is a sub-
category of machine learning, is divided into two types: 
classification, which predicts discrete values, and regres-
sion, which predicts continuous values. The classification 
accuracy in the field of image diagnosis is high, and the 
accuracy has already surpassed that of humans [13]. In 
risk assessment in the renal field, there were 39 reports 
on predicting the risk of developing acute kidney injury 
(AKI) as of March 2021, and Flechet et al. reported that 
the AKI predictor (available on the web) predicted AKI 
with a higher accuracy than that of physicians’ predic-
tions [14, 15]. As of October 2021, there were 87 reports 
that predicted the risk of CKD patients developing ESKD 
within one to five years, with the area under the curve 
values ranging from 0.90 to 0.96, which indicates an accu-
racy comparable to that of the existing KFRE [16–20]. As 
an example of regression, Dai et al. developed a model to 
predict hospitalization costs for patients with CKD [21].

There have been several reports of classification mod-
els that can predict the risk of ESKD at a specific point 
in time; for example, “After 2 years, the probability of 
being ESKD is XX%.” However, no studies have reported 
a regression model that can predict the time to RRT with 
continuous values, such as “You will need RRT in XX 
days.” In this study, we use a regression model to pre-
dict the time to RRT with continuous values based on 
data obtained at a single time point. The proposed model 
can also be used for first time patients. Furthermore, 
we examine the accuracy of the conventional prediction 
method using eGFR time series data and compare it with 
that of the machine learning model.

Methods
Adult patients (aged 20 years or older) with CKD who 
underwent hemodialysis at Oita University Hospital from 
April 2016 to March 2021 were selected retrospectively 
from electronic medical records. These patients were 
monitored at our hospital for at least three months until 
the induction of hemodialysis. Patients who had previ-
ously undergone RRT other than hemodialysis (perito-
neal dialysis or renal transplantation) were excluded.

A total of 35 items were extracted from patient back-
ground and laboratory data up to the start of dialysis 
(Table  1). For laboratory data, we used CKD treatment 
items (anemia, CKD-MBD, blood glucose, and lipids) and 
indicators of nutritional status (albumin, total lympho-
cyte count (TLC), and cholinesterase (ChE)). These items 
have been used in previous studies on predictive mod-
els or noted in CKD guidelines as being associated with 
CKD progression [3, 17, 22–26]. For eGFR, we used the 
glomerular filtration rate estimation formula frequently 
used in Japan [27]:

eGFR (ml/min/1.73 m2) = 194 × Cr− 1.094× 
age− 0.287(multiply by 0.739 for women).

Table 1 Survey items (35 items)
Data types Items
Patient background age*, sex*, height*, weight*, CKD etiology*
Laboratory data red blood cell (RBC)*, hemoglobin (Hb)*, 

hematocrit (Ht)*, mean corpuscular volume 
(MCV)*, mean corpuscular hemoglobin 
concentration (MCHC)*, total lympho-
cyte count (TLC), albumin(Alb)*, choline 
esterase (ChE), uric acid (UA), blood urea 
nitrogen (BUN)*, creatinine (Cr)*, estimated 
glomerular filtration rate (eGFR)*, sodium 
(Na)*, potassium (K)*, chlorine (Cl)*, calcium 
(Ca) *, phosphorus (P) *, glucose (Glu), 
hemoglobin A1c (HbA1c), triglyceride (TG), 
high-density lipoprotein cholesterol (HDL-
C), low-density lipoprotein cholesterol 
(LDL-C), ferritin, iron (Fe), unsaturated iron 
binding capacity (UIBC), intact parathyroid 
hormone (i-PTH), hydrogen carbonate ion 
(HCO3-), urinary occult blood (UOb), uri-
nary protein to creatinine ratio (UP/UCr)*, 
estimated urinary salt excretion (UNaCl)

*Final 20 items used for analysis
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Data were processed and analyzed using Microsoft 
Excel 2021 and Python (version 3.8.16) from Google 
Colaboratory. The following packages were used in 
Python: Scikit-Learn (version 1.4.0) and Statsmod-
els (version 0.14.1). As an exploratory data analysis, the 
missing values and correlation coefficients were exam-
ined, and the data series with missing data were excluded 
from the analysis. Removal of missing data is necessary 
for the analysis, but it reduces the overall data volume 
and may introduce data bias. Categorical variables were 
converted to numeric values; CKD etiology was a 5-item 
categorical variable, including diabetic nephropathy 
(DN), with an additional data column created for each 
item and converted to 0 or 1 (one-hot encoding). This 
approach homogenizes the information and tends to 
increase the number of data items. The other items were 
continuous variables and were standardized.

Using Scikit-Learn’s GroupShuffleSplit function, the 
data were randomly split, with 75% for training and 
25% for validation, such that data from the same case 
were not included in either group. Using the training 
data, supervised learning was performed with the num-
ber of days from the date of examination to the start of 
dialysis as the objective variable and the other items as 
explanatory variables. The learning algorithms used were 
linear regression, ridge regression, least absolute shrink-
age and selection operator (LASSO) regression, elastic 
net, random forest, and gradient boosting decision tree 
(GBDT) based on the cheat sheet in Scikit-Learn [28]. 
Using Scikit-Learn’s GroupKfold function, the training 
data were divided randomly into four groups such that 
data from the same case were not included in the same 
group. Then, using Scikit-Learn’s GridSearchCV function 
the hyperparameters were adjusted by a grid search using 
cross-validation [29]. Hyperparameters control model 
performance and can be adjusted during model develop-
ment to improve accuracy or address overfitting [30].

The coefficient of determination (R2) and mean abso-
lute error (MAE) were used in previous reports to evalu-
ate the accuracy of the regression model [16, 31, 32].
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where yi , fi , −
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predicted value, average of measured values, and num-
ber of samples, respectively. R2 assumes a value of 1.0 
or less, and the closer it is to 1.0, the higher is the accu-
racy. R2 does not mean square, as can be seen from the 

above definition, and it can be negative if the accuracy is 
extremely low [32]. The closer the MAE is to 0, the bet-
ter is the model. In this study, R2 and MAE were calcu-
lated using the validation data to verify the accuracy of 
the model. In machine learning models, the smaller the 
difference in accuracy between the training data and vali-
dation data, the higher is the generalization performance. 
If the accuracy on the validation data is lower than that 
on the training data, the model is considered to be spe-
cialized for the training data and has low generalization 
performance; this condition is known as overfitting [29]. 
A learning curve shows the validation and training score 
of an estimator for varying numbers of training samples. 
It is a tool to determine the benefit derived from add-
ing more training data and whether the estimator suf-
fers more from underfitting or overfitting [33, 34]. In this 
study, we evaluated the generalization performance by 
comparing the R2 values on the training and validation 
data and by creating a learning curve.

We selected patients from the participants who were 
followed for more than two years and had a minimum 
of three eGFR measurements to examine the accuracy 
of the conventional prediction method using the eGFR 
decline rate. We calculated the eGFR decline rate at each 
time point using the SLOPE function (based on the least 
squares method) in Excel, referring to previous reports 
[35–37]. According to the guidelines of the Japanese 
Society for Dialysis Therapy, the number of days that the 
eGFR was estimated to be less than eight from each time 
point was used as the predicted value [38].

This study was approved by the Ethics Committee 
of Oita University, Faculty of Medicine (approval No. 
2139: 2021). Additionally, because this is a retrospective 
study, the committee also approved the waiver of writ-
ten informed consent and the adoption of the opt-out 
method. Information was disclosed on the website of 
the Department of Endocrinology, Metabolism, Rheu-
matology and Nephrology, Faculty of Medicine, Oita 
University.

Results
Figure 1 shows the flowchart from patient enrollment to 
model evaluation. A total of 135 patients met the crite-
ria. Hemodialysis cases were selected for this study, and 
patients who had previously started other renal replace-
ment therapies were excluded: only one patient was 
on peritoneal dialysis and no patient underwent post 
renal transplant. The patient characteristics are listed 
in Table  2. The median age at the induction of dialysis 
was 71 years, median observation period was 496 days, 
most common CKD etiology was DN, and median lab-
oratory findings at induction were Cr 7.5  mg/dL and 
eGFR 6.3 ml/min/1.73 m2. The details of the exploratory 
data analysis and machine learning are provided in the 
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supplemental materials. A total of 10,916 data series 
containing 35 items were obtained from all patients. The 
number of missing data points for the survey items was 
examined, and items with numerous missing data points, 
such as bicarbonate ions and glucose, were difficult to use 
for the analysis (Supplementary Table S1). For the sur-
vey items, the Pearson’s correlation coefficient exhibited 
a correlation between renal function-related items and 
time to RRT, with a positive correlation for eGFR and a 
negative correlation for blood urea nitrogen (BUN) and 
Cr (Supplementary Figures S1–S2, Supplementary Table 
S2). Calcium, phosphorus, urinary protein/creatinine 
ratio, and albumin exhibited extremely weak correla-
tions with time to RRT. These items have been used in 
prediction equations such as KFRE and were expected 
to be useful in this study. Among the items, very strong 
correlations were observed for red blood cells (RBCs), 
hemoglobin (Hb), and hematocrit (Ht), which are related 
to anemia, and when the variance inflation factor (VIF) 
was examined, multicollinearity was suspected for these 
items (Supplementary Tables S3–S4).

Data series with missing values were excluded in pre-
processing. The items were reduced stepwise in the pre-
liminary study because this method reduces the overall 
number of data series when more items are used. Finally, 
the highest accuracy was achieved using 3,026 data series 
containing 20 items (shown in Table  1). The training 
algorithm and cross-validation results for this dataset 
are summarized in Table  3 and the hyperparameters in 
Supplementary Table S5. In LASSO regression, the R2 

for cross-validation was 0.59 with moderate accuracy, 
and the R2 difference between cross-validation and train-
ing was small compared to those of other algorithms. 
The MAE was 488, implying that the model had a mean 
error of 488 days. Conversely, ensemble models such as 
GBDT appeared to be overfitting, with large R2 differ-
ences between cross-validation and training. The learn-
ing curves visually confirmed the overfitting, showing 
that LASSO converged to the same value for the training 
and validation data (Fig. 2-c), whereas GBDT converged 
with a divergence between the two (Fig.  2-f ). Table  4 
summarizes the results of validating the accuracy of the 
created models on the validation data. LASSO regres-
sion exhibited an R2 of 0.60, which is as stable as that of 
the cross-validation results, while GBDT exhibited an R2 
of 0.51, which is lower than that of the cross-validation 
results. GBDT was overfitting, which may have reduced 
its accuracy on unknown data. Figure 3 shows a scatter 
plot of the relationship between the predictions and the 
measured values for the validation data. The larger the 
measured values, the larger was the deviation from the 
predictions.

LASSO is a linear regression model that uses L1 regu-
larization. A linear regression model is represented by the 
prediction equation y = a1  x  1 + a2  x  2+… + anxn+ b, where 
y, x, and a represent the objective variable (predicted 
value), explanatory variable (data items), and regression 
coefficient, respectively. LASSO can automatically select 
explanatory variables by adjusting the regression coeffi-
cients with L1 regularization. Regression coefficients for 

Fig. 1 Flowchart from patient enrollment to model evaluation
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the LASSO regression are listed in Table  5, with eGFR 
having the largest value and highest contribution to the 
prediction, and the coefficients for several items, such as 
RBC being 0, implying no contribution to the prediction.

After running the prediction, SHAplay Additive exPla-
nations (SHAP) can be used to visualize the impact of 

each item on the prediction [39]. The waterfall plot pro-
vides an explanation of the predicted results for each 
individual case. Figure  4-a is a waterfall plot of a ran-
domly selected case that specifically shows the output 
of predicted values by eGFR, BUN, and other inputs. 
Figure  4-b is a summary plot (scatter plot) for all cases 
analyzed in this study, and Fig. 4-c is a summary plot (bar 
chart) of the average SHAP absolute value for all cases. 
The summary plot also shows a high contribution of 
eGFR. In this way, SHAP is useful for interpreting pre-
dictions not only for individual cases but also for entire 
cases.

The small number of cases in this study did not allow 
for sufficient subgroup analysis by CKD etiology or stage. 
However, when reanalyzing only the data series with 
DN as the CKD etiology in the LASSO regression, the 
R2 was 0.60 and MAE was 302 in 1096 data series, indi-
cating a decrease in MAE. Elsewhere, when reanalyzed 
only in the KDIGO CKD heatmap high-risk data series 
with LASSO regression, the R2 was 0.62 and MAE was 
396 in the 3025 data series, indicating an increase in R2. 
In addition, we reduced the number of items with sus-
pected multicollinearity and items with small contribu-
tions to prediction by referring to the correlation matrix, 
VIF, regression coefficient, and SHAP values described, 
and we reanalyzed them with 12 items (age, sex, height, 
weight, CKD etiology, Hb, albumin, sodium, potassium, 
chlorine, eGFR, and urinary protein to creatinine ratio.) 
LASSO regression had an R2 of 0.59 and MAE of 407, 
indicating a slight decrease in accuracy.

For the conventional prediction method that uses the 
rate of eGFR decline, 97 patients met the criteria, with a 
total of 6,209 eGFR measurements. A scatter plot of the 
relationship between the predicted and measured val-
ues is shown in Fig.  5. The predicted values tended to 
be larger than the measured values. The accuracy was 
R2 = − 17.1 and MAE = 2466, indicating an extremely low 
prediction accuracy.

Discussion
A notable feature of this study is that, unlike existing 
ESKD risk, we focused on predicting time to RRT using 
continuous values and created a moderately accurate pre-
diction model. This model can predict the time to RRT 
(RRT start date) based on data obtained at a single time 
point, and therefore it can provide concrete informa-
tion even for first-time patients and clearly indicate the 
need to start treatment. As conditions change over time 
after intervention, the repeated prediction model can be 
used to predict the RRT start date each time. If the pre-
dicted RRT start date is extended, the patient will realize 
the benefits of treatment and will be more motivated to 
continue treatment. Even in the unfortunate case that the 
predicted RRT start date is moved up, it may be helpful 

Table 2 Patient characteristics (N = 135)
Characteristics n (%) or median (IQR)
Age (years) 71 (60–79)
Sex
Male 87 (64%)
Female 48 (36%)
Observation period (days) 496 (160–1207)
CKD etiology
Diabetic nephropathy (DN) 52 (38%)
Nephrosclerosis (NS) 42 (31%)
Chronic glomerulonephritis (CGN) 17 (12%)
Polycystic kidney disease (PKD) 5 (3%)
Other 19 (16%)
Comorbidities
Diabetes mellitus 60 (44%)
Hypertension 130 (96%)
Dyslipidemia 97 (72%)
Hyperuricemia 70 (52%)
Heart failure with reduced ejection fraction 9 (7%)
Ischemic heart disease 12 (9%)
Cerebrovascular disease 16 (12%)
Peripheral vascular disease 5 (4%)
Medication at initial visit
Renin-angiotensin system inhibitors 95 (70%)
Mineralocorticoid-receptor antagonists 9 (7%)
Sodium-glucose cotransporter 2 inhibitors 4 (3%)
Glucagon-like peptide-1 receptor agonist 8 (6%)
Statin 81 (22%)
Uric acid-lowering drug 69 (51%)
AST-120 30 (22%)
Erythropoiesis stimulating agent 18 (13%)
Sodium bicarbonate 7 (5%)
Cr at RRT initiation (mg/dL) 7.3 (6.0–8.7)
eGFR at RRT initiation (ml/min/1.73 m2) 6.2 (4.7–7.6)
Categorical variables are presented as n (%) and continuous variables as median 
(IQR).

N: total number of people, n: number of items, IQR: interquartile range

Table 3 Cross-validation results
Algorithm R2

(training 
fold)

MAE
(training 
fold)

R2 (cross-
validation 
fold)

MAE 
(cross-
valida-
tion fold)

Linear regression 0.72 418 0.50 531
Ridge regression 0.68 443 0.56 509
LASSO regression 0.69 427 0.59 488
Elastic net 0.68 439 0.58 500
Random forest 0.86 294 0.58 484
GBDT 0.93 198 0.62 459
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Fig. 2 Learning curves for each algorithm.(a) Linear regression, (b) Ridge regression, (c) LASSO regression, (d) Elastic net, (e) Random forest, and (f) GBDT. 
LASSO regression shows that the accuracy of the training data and the validation data converge to a close value as the number of samples increases. On 
the other hand, in the GBDT, the accuracy of the training data and the validation data remain divergent even as the number of samples increases
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to identify the reason for this change. Planned dialysis 
induction has a better prognosis [40]; if machine learn-
ing can predict the RRT start date, it will enable planned 
therapy selection and access construction. In addition, 
because the start of dialysis has a significant impact on 
a patient’s life, predicting the RRT start date is useful for 
the patient’s own life planning. The prediction of time to 
RRT based on regression may be a more patient-oriented 
outcome than the prediction of the risk of ESKD based 
on classification. For other progressive diseases, e.g., in 
the case of malignant tumors, prognosis and treatment 
efficacy are discussed in terms of a five-year survival rate 
(risk) in the early stages; however, the life expectancy 
(time) is often considered in advanced stages or when 
treatment is difficult. Numerous methods have been 
reported to predict life expectancy in days rather than 
risk [41, 42]. In the case of CKD, life can be maintained 
with RRT; however, the lifestyle needs to be changed 
drastically. Therefore, the argument of predicting time 
to renal death in CKD may be useful, at least in the 
cases of high risk for ESKD. The number of elderly CKD 
patients with complications has increased in recent years, 

causing the concept of conservative kidney management 
to emerge [43]. The indication for renal biopsy, immu-
nosuppressive therapy, and RRT should be determined 
based on the prognosis for time to renal death and com-
plications, and in this regard, prediction of time to RRT 
is important. Some people become depressed when they 
are told how long it will take to reach RRT, and therefore 
care must be taken in actual use. However, it is expected 
to be a useful tool to realize better treatments of CKD 
when used effectively.

On the other hand, the accuracy of the conventional 
prediction method using the eGFR decline rate was 
extremely low. As illustrated in Fig.  3-b, the predicted 
values tended to be larger than the measured values. The 
difference between the measured and predicted values 
would be small if the eGFR decline rate is constant dur-
ing the observation period; however, the predicted values 
would be larger than the measured values if the eGFR 
decline rate increased with time. For instance, in dia-
betic nephropathy, which was the most common etiology 
in this study, the eGFR decline rate increased after the 
appearance of a urinary protein, as shown in Supplemen-
tary Figure S3 [44, 45]. In this case, the eGFR decline rate 
was small in the initial stage, and the time to RRT was 
predicted to be long; however, if the eGFR decline rate 
increased during the course, the time to RRT became 
shorter than that during the initial prediction. Consid-
ering a nonlinear approximate curve instead of a linear 
regression may be necessary; however, it is difficult to 
apply a constant rule because the rate of decline varies for 
each case. The method using the decline rate of the recip-
rocal Cr cannot be used unless it is limited to patients 
with advanced CKD whose renal function worsens in 
a linear manner. Even in that case, this method suffers 
from an error of approximately one year [6]. Although 
time series information on renal function is important, it 
seems difficult to predict time to RRT based on the eGFR 
decline rate alone.

In this study, 10,916 data points were extracted from 
135 cases and analyzed, assuming that the data were 
independent; however, data from the same cases are not 
completely independent and data bias is likely to occur. 
Data used in machine learning models should be inde-
pendent and identically distributed for training and vali-
dation [46]. When using multiple time series data from 
the same case, as in this study, it is necessary to ensure 
that data from the same case do not leak into both the 
training and validation groups. In this study, data from 
the same cases were grouped together to address leak-
age, but other methods may also be useful, like dividing 
data by the time axis [47, 48]. The learning models used 
in this study were linear models: linear regression, ridge 
regression, LASSO regression, and elastic net, and non-
linear models: random forest and GBDT. In general, the 

Table 4 Validation data results
Algorithm R2 (validation data) MAE (validation data)
Linear regression 0.55 471
Ridge regression 0.56 471
LASSO regression 0.60 450
Elastic net 0.58 463
Random forest 0.48 485
GBDT 0.51 440

Table 5 Regression coefficients for LASSO regression
Explanatory variable Regression coefficients
Age 17.6
Sex 0
Height -95.0
Weight 0
CKD etiology 0
RBC 0
Hb 0
Ht 3.7
MCV 0
MCHC 0
Alb 80.8
BUN -126.5
Cr -11.5
Na 31.8
K 0
Cl 0
Ca 0
P 0
eGFR 551.0
UP/UCr -130.0
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Fig. 3 Relationship between predicted and measured values for each algorithm. (a) Linear regression, (b) Ridge regression, (c) LASSO regression, (d) 
Elastic net, (e) Random forest, and (f) GBDT. For all algorithms, the error in the predictions tended to increase as the measured values increased
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Fig. 4 SHAP value(a) Waterfall plot of a randomly selected case. The bottom of the waterfall plot begins with the expected value of the model output, 
each row shows the positive (red) or negative (blue) contribution of each item, and the top shows the final output. This patient already had severe renal 
dysfunction, and the expected value was 1,234.956; however, the final output was 401.096 because there were changes such as a standardized eGFR of 
− 695.53 and a standardized BUN of − 139.3. (b) Summary plot (scatter plot) of all cases analyzed in this study. As shown at the top of the plot, the larger 
and redder the eGFR feature, the larger is the positive contribution (SHAP value) to prediction, which indicates a positive correlation. (c) Summary plot 
(bar chart) of the average absolute SHAP values for all cases, which shows that eGFR had the greatest influence
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use of nonlinear models is expected to increase accuracy 
when the linear regression model does not adequately 
represent the characteristics of the data. With refer-
ence to the cheat sheet in Scikit-Learn, the aforemen-
tioned models were used in this study. However, in this 
case, the nonlinear model tended to overfit even after 
hyperparameter adjustment and cross-validation, and 
its accuracy on validation data was low. By contrast, the 
LASSO model, a linear model, exhibited low overfitting 
tendency and stable accuracy on validation data. Over-
fitting countermeasures include increasing the training 
data, simplifying the model by adjusting hyperparam-
eters, cross-validation, regularization, and bootstrap-
ping [49–51]. LASSO is an algorithm that can reduce the 
number of variables through regularization, which may 
have led to stable results. The small number of cases and 
the relatively large number of feature variables may have 
caused the nonlinear model to overfit [34]. However, in 
this study, the LASSO model has a limitation in that reg-
ularization prevents the incorporation of useful informa-
tion such as the CKD etiology. In fact, subgroup analysis 
in DN has improved accuracy, and if the number of cases 
is increased and analyzed by etiology in future, the over-
all accuracy of the model may be improved. Other gen-
eral machine learning issues include multicollinearity, 
which is often a problem when using multiple regression 
models in statistics [52, 53]. Multicollinearity is a prob-
lem in which the predictors are correlated, and creating 
a model with multicollinear items makes it impossible to 
estimate the contribution by the regression coefficient. 

Multicollinearity is estimated using correlation matrices 
and VIF, and it is common to remove multicollinear items 
from the model. However, in machine learning, methods 
such as regularization and principal component analysis 
have been used to reduce the effect of multicollinearity, 
and good results have been obtained [54]. In this study, 
multicollinearity was suspected in anemia-related items, 
and variables were selected by regularization using 
LASSO regression. The accuracy decreased slightly when 
we used the conventional method of removing items 
with multicollinearity. In addition, there is concern that 
machine learning creates complex predictive models 
that cannot be interpreted easily by humans, making it 
a black box. The explainability of predictive models and 
the interpretability of predictions are especially impor-
tant when used in medical applications where decisions 
can be life-threatening [55]. LASSO regression uses the 
regression coefficients to explain the contribution of the 
explanatory variables in the model. In the present model, 
eGFR contributes the most, indicating that the model 
reflects the results of eGFR to a large extent, which is a 
reasonable result. In addition, after running the predic-
tions, SHAP can be used to visualize the actual contribu-
tion of the explanatory variables to the predictions [39, 
55, 56]. In the case shown in Fig.  4-a, it is understand-
able that inputs such as eGFR and BUN had a significant 
impact on the number of days predicted. When used 
in actual practice, the machine learning model can be 
applied to display the predicted number of days to RRT 
and the contribution of these items. Although the model 
is not designed for causal inference in this case, it could 
be clinically useful to examine the items that the AI 
focused on to make its predictions.

Limitations of this study include the fact that it was a 
single-center study, the regional nature of the cases, the 
small number of cases compared to previous studies, 
and the concern about data bias due to this. In addi-
tion, although only hemodialysis cases were included in 
this study, if peritoneal dialysis and renal transplanta-
tion cases can be added to the analysis in the future, it 
may be possible to apply this study to more general CKD 
cases. Owing to the small sample size, it was difficult to 
adequately analyze subgroups by etiology, stage, blood 
pressure, and glucose control status of CKD. The etiology 
and high-risk cases of CKD may have different modes of 
renal function deterioration, and in this study, increased 
accuracy was obtained in the analysis of DN and high-
risk cases. Reanalysis with more cases is desirable in 
future. In addition, it was difficult to extract drug data at 
each time point. Validation on an external cohort is also 
an issue for the future. Another limitation of the machine 
learning model in this study is that, unlike the eGFR time 
series method, it does not incorporate time series infor-
mation. The model calculates the same predicted value 

Fig. 5 Relationship between predicted and measured values for the con-
ventional eGFR time series method.Predictions tended to be very large, 
with a maximum predicted value of 73,549, which is considered an outlier, 
and for readability, the Y-axis is shown with a range up to 50,000
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if the clinical data at the time of prediction are similar, 
regardless of whether renal function has been stable for 
several years or has deteriorated rapidly. Presently, it is 
safe to use this model in combination with the eGFR time 
series method, and the incorporation of time series infor-
mation is an issue for the future. However, there have 
been no similar reports to date. We believe that this study 
is useful because it represents a potential new patient-
based outcome.

Conclusions
A moderately accurate prediction model was developed 
by using a machine learning regression model to predict 
time to RRT with continuous values using data obtained 
at a single time point. This approach yielded better results 
than the conventional prediction method that uses eGFR 
time series data. The ability to specify the time to RRT is 
useful not only for medical practitioners to make treat-
ment decisions but also for patients to motivate them-
selves to undergo treatment and for life planning.
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