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Abstract 

Background Chronic kidney disease (CKD) requires accurate prediction of renal replacement therapy (RRT) initiation 
risk. This study developed deep learning algorithms (DLAs) to predict RRT risk in CKD patients by incorporating medi‑
cal history and prescriptions in addition to biochemical investigations.

Methods A multi‑centre retrospective cohort study was conducted in three major hospitals in Hong Kong. CKD 
patients with an eGFR < 30ml/min/1.73m2 were included. DLAs of various structures were created and trained using 
patient data. Using a test set, the DLAs’ predictive performance was compared to Kidney Failure Risk Equation (KFRE).

Results DLAs outperformed KFRE in predicting RRT initiation risk (CNN + LSTM + ANN layers ROC‑AUC = 0.90; CNN 
ROC‑AUC = 0.91; 4‑variable KFRE: ROC‑AUC = 0.84; 8‑variable KFRE: ROC‑AUC = 0.84). DLAs accurately predicted 
uncoded renal transplants and patients requiring dialysis after 5 years, demonstrating their ability to capture non‑
linear relationships.

Conclusions DLAs provide accurate predictions of RRT risk in CKD patients, surpassing traditional methods like KFRE. 
Incorporating medical history and prescriptions improves prediction performance. While our findings suggest 
that DLAs hold promise for improving patient care and resource allocation in CKD management, further prospec‑
tive observational studies and randomized controlled trials are necessary to fully understand their impact, particu‑
larly regarding DLA interpretability, bias minimization, and overfitting reduction. Overall, our research underscores 
the emerging role of DLAs as potentially valuable tools in advancing the management of CKD and predicting RRT 
initiation risk.

Keywords Artificial intelligence, Chronic renal failure, Data‑driven modeling, Predictive analytics, Renal replacement 
therapy

Background
Chronic kidney disease (CKD) significantly contributes 
to global mortality, affecting approximately 10% of adults 
worldwide [1]. In Hong Kong, the burden of chronic ill-
ness management on hospital-based internal medicine 
specialist clinics is notable [2], evidenced by patients in 
primary care clinics reduced by around 400,000 from 
2015 to 2021, while internal medicine specialty clinics 
increased by around 200,000 patient load in the same 
period [3]. The referral process in this three-tiered system 

Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecom‑
mons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

BMC Nephrology

*Correspondence:
Ka‑Chun Leung
leungkc.kachun@gmail.com
1 Department of Medicine and Geriatrics, Tuen Mun Hospital, Hong Kong, 
China
2 Adult Intensive Care Unit, Queen Mary Hospital, Hong Kong, China

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12882-024-03538-6&domain=pdf


Page 2 of 10Leung et al. BMC Nephrology           (2024) 25:95 

– from primary care to internal medicine and then to 
renal clinics – is often guided by primary care and inter-
nal medicine physicians using biochemical markers (e.g. 
serum creatinine, urine protein-to-creatinine ratio) and 
clinical symptoms (e.g. haematuria, persistent lower limb 
oedema). However, this referral system may not accu-
rately predict the imminent risk of end-stage renal failure 
(ESRF), indicating a need for improved prediction meth-
ods for progression to ESRF requiring renal replacement 
therapy (RRT).

Tangri et al. developed a statistical model to predict the 
risk of initiating RRT over a decade ago [4]. Although its 
robustness has been validated by multiple localized stud-
ies [5, 6], this model did not consider one’s previous med-
ical history and ongoing prescriptions, and often faces 
data availability challenges in typical clinical settings. For 
instance, the requirement for urine albumin-creatinine 
ratio in some models may not always be practical. Fur-
thermore, these studies predominantly involved Cau-
casian populations, raising questions about their global 
applicability. The recent emergence of new treatments, 
such as SGLT-2 inhibitors that markedly slow CKD pro-
gression, further emphasizes the need for predictive 
models adaptable to these evolving therapeutic land-
scapes [7].

Recent computerization and processing power 
advances have made life easier for clinicians and aca-
demic researchers to retrieve and analyze patient 
records, investigation reports, and prescriptions. The 
advancement in data science enables the development of 
Deep Learning Algorithms (DLAs). These DLAs, exem-
plified by the model of Tomašev et  al. for acute kidney 
injury prediction, can capture intricate multidimensional 
relationships beyond linear dependencies [8, 9]. Yet, the 
efficacy of DLAs in predicting RRT risk in CKD patients 
remains unexplored.

Our study endeavors to develop a DLA that surpasses 
the Kidney Failure Risk Equation (KFRE), an established 
risk prediction tool, in predicting RRT initiation [4]. This 
endeavor is not only a stride in CKD management but 
also a testament to the evolving landscape of medical 
data analysis.

Methods
Data collection and preprocessing
This multi-centre retrospective cohort study was con-
ducted at Tuen Mun Hospital (TMH), Pok Oi Hospi-
tal (POH), and Tin Shui Wai Hospital (TSH), which are 
major acute hospitals in Hong Kong with a combined 
total of 3000 beds. The study period was from January 1, 
2009, to March 31, 2022. Eligible patients were males and 
females over 18 years of age with an estimated glomeru-
lar filtration rate (eGFR) of less than 30 ml/min/1.73m2 

according to the Chronic Kidney Disease Epidemiology 
Collaboration (CKD-EPI) formula [10], who attended 
follow-up for at least 3 months in internal medicine clin-
ics at the three hospitals from January 1, 2009, to Decem-
ber 31, 2019. Patients on chronic dialysis, who received 
renal transplantation or had an eGFR less than 15 ml/
min/1.73m2 before referral were excluded. Patients on 
chronic dialysis, who received renal transplantation or 
had an eGFR less than 15 ml/min/1.73m2 before referral 
were excluded.

Patient data within 10 years before attending clinical 
follow-up was collected from the Clinical Data Analysis 
and Reporting System (CDARS), the data management 
system of all public hospitals and clinics managed by the 
Hospital Authority (HA) in Hong Kong.

Four categories of data were collected as features for 
model training and validation: Demographic, Biochemi-
cal, Pharmacological, and ICD-10 code. Demographic 
data, including age and gender, were recorded. Bio-
chemical tests, including haemoglobin, haematocrit, 
haemoglobin A1C (Hba1c), serum sodium, potassium, 
urea, creatinine, alanine transaminase (ALT), aspartate 
aminotransferase (AST), bilirubin, uric acid, calcium, 
phosphate, bicarbonate, high-density lipoprotein (HDL), 
low-density lipoprotein (LDL), hepatitis serology, auto-
immune markers, urine protein-creatinine ratio, and 
24-h urine total protein, will be collected. Categorical 
data, including gender, ICD-10 codes, hepatitis serology, 
and auto-immune markers, were encoded using the one-
hot approach. Each drug used in patients was recorded as 
one category with the total daily dosage as values.

To minimize data leakage, 10% of the patients were 
randomly selected and set aside as a test set. Their data 
would not be used in model training or validation. Fif-
teen per cent of the remaining training set was randomly 
selected and set aside as a validation set. The validation 
set was used during model training to prevent overfitting. 
The diagram of patient allocation this study is presented 
in Fig. 1.

Missing data for each clinical visit entry were imputed 
using the last observation carried forward (LOCF) 
approach [11]. The latest available value was used in 
model training for missing data. Unavailable prescription 
and biochemical investigation data were attributed with 
a value of 0 before feeding into the model as they were 
considered unprescribed or not done.

Primary outcome
Data of all participants was collected till March 31, 2022. 
The primary outcome of this study was the initiation of 
renal replacement therapy (RRT). Each entry of clinical 
visit was labelled based on the date of starting RRT as 
one of the following: "no risk of RRT initiation in 5 years", 
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"RRT initiated within 5 years", or "RRT initiated within 2 
years". Data for each patient after initiation of RRT was 
discarded for analysis. This outcome was used to com-
pare the model’s performance with the Kidney Failure 
Risk Equation (KFRE).

Explanatory data analysis
Pearson’s correlation coefficient was used to assess the 
relationship between each continuous variable and the 
primary outcome. The correlation coefficient among 
the variables was computed to prevent multicollinear-
ity. Before model training, all continuous variables were 
scaled to fit within 0 and 1.

We discarded all ICD-10 codes and drug prescriptions 
with frequencies less than 1% of the total training data-
set entries to reduce overfitting and computational costs. 
Each variable underwent a Chi-square test with the pri-
mary outcome, and only variables with p-values less than 
0.05 were included in the model training.

Model training
Five supervised multi-classification DLAs were created 
and trained using TensorFlow 2.0 Python open-source 
machine learning platform [9], including convolutional 
neural network (CNN), artificial neural network (ANN), 
long short-term memory (LSTM), and two different 

Fig. 1 The flowchart of study population retrieval and splitting
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combined networks base on the above 3 networks. The 
models were optimized using a randomized hyperpa-
rameter optimization algorithm provided by scikit-learn 
1.1.3 Python open-source machine learning library [12]. 
The output of the model will be in the format of the 
probability of a patient belonging to each of the defined 
outcomes: "no risk of RRT initiation in 5 years," "RRT ini-
tiated within 5 years," or "RRT initiated within 2 years”.

Model performance assessment
For each entry in the test set, the probabilistic catego-
rization predictions of each DLA (CNN, ANN, LSTM, 
and their combinations) were compared with the ground 
truth to calculate their respective ROC-AUC and F1 
scores. Since the dataset was imbalanced, these metrics 
were more appropriate than accuracy [13]. Sensitivity, 
specificity, PPV, and NPV were presented, too. All evalu-
ations were computed using Python.

To make a fair comparison with the KFRE equation, 
each entry in the test dataset had its risk of RRT calcu-
lated by each KFRE Eq.  [4]. Using a 50% probability as 
the cutoff, each clinical visit was classified into one of 

the following categories: no risk of RRT in 5 years, risk 
of RRT in 5 years, and risk of RRT in 2 years. The perfor-
mance of the KFRE equation was then compared with the 
DLAs using a two-sided Mann–Whitney U test on 200 
bootstrap samples per model.

Results
Patient characteristics
This study recruited a total of 4992 patients with 188,222 
clinic visit entries. Data from 499 patients with 19,960 
clinic visit entries were isolated as a test set and not 
used for model training to avoid data leakage and ensure 
unbiased performance evaluation. During the follow-up 
period, 1576 patients were diagnosed with Stage 5 CKD, 
and 989 patients required renal replacement therapy. The 
comparison of baseline characteristics between patients 
in the treatment and test sets is presented in Table 1. The 
comparison of patient baseline characteristics between 
the training and validation sets is presented in Table ST1 
in the Supplementary documents.

The study identified 1100 unique ICD-10 codes from 
the clinical visit entries. ICD-10 Codes with less than 

Table 1 Comparison of baseline characteristics of patients in training/validation set and test set

Feature Training and validation set patients 
N = 4493

Test set patients N = 499 p-value

G5 CKD progression during study period (%) 1437 (31.98%) 139 (27.86%) 0.067

RRT initiation during study period (%) 882 (19.63%) 107 (21.44%) 0.366

eGFR on recruitment (ml/min/1.73m2) 24.43 (24.32—24.56) 24.58 (24.24—24.93) 0.451

Demographic data
 Age (years) (95% CI) 70.54 (70.17—70.92) 70.72 (69.62—71.82) 0.771

 Female gender (%) 1971 (43.87%) 216 (43.29%) 0.841

Medical History
 Hypertension 2585 (57.53%) 289 (57.92%) 0.908

 Type 2 diabetes mellitus 1479 (32.92%) 172 (34.47%) 0.517

 Heart failure 1035 (23.04%) 123 (24.65%) 0.182

 Glomerular disorders 996 (22.17%) 107 (21.44%) 0.754

Biochemical Data
 Creatinine (µmol/L) 194.47 (192.97—195.98) 194.88 (190.1—199.66) 0.869

 Urea (mmol/L) 13.07 (12.93—13.21) 12.97 (12.55—13.38) 0.628

 ALT (U/L) 19.11 (18.64—19.58) 18.47 (17.39—19.56) 0.393

 AST (U/L) 34.18 (29.32—39.04) 34.14 (24.27—44.01) 0.996

 ALP (U/L) 87.40 (86.0—88.8) 88.22 (84.80 ‑s 91.65) 0.708

 Albumin (g/L) 39.16 (39.02—39.3) 39.41 (39.01—39.81) 0.258

 Urate (mmol/L) 0.47 (0.46—0.48) 0.47 (0.46—0.49) 0.627

 Calcium (mmol/L) 2.32 (2.32—2.33) 2.34 (2.33—2.35) 0.019

 Phosphate(mmol/L) 1.17 (1.17‑ 1.18) 1.19 (1.17—1.21) 0.071

 Ca X PO4 (mg2/dL2) 33.75 (33.55—33.94) 34.56 (33.94—35.18) 0.011

 Haemoglobin (g/L) 11.43 (11.4—11.8) 11.60 (11.4—11.8) 0.121

 Haemoglobin a1c (%) 7.80 (7.73—7.87) 7.89 (7.7—8.09) 0.400

 Spot urine protein: creatinine (mg/mg Cr) 2.20 (2.00—2.41) 1.75 (1.35—2.16) 0.156
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1060 counts, representing less than 1% of the total fol-
low-up entries, were discarded, remaining 116 codes 
for chi-square testing. Among these, 95 ICD-10 codes 
were significantly correlated with the primary outcome 
(p < 0.05), as shown in Figure SF1 of the Supplementary 
document.

From 1,552,856 laboratory investigation results, 26 
continuous and 14 categorical features were extracted. 
Two features, calcium-phosphate product and 24-h urine 
protein, were removed to prevent collinearity, while 
autoantibodies, except for anti-nuclear antibody (ANA), 
were also excluded due to high rates of missing data. The 
remaining 28 biochemical features were used for model 
training, and their distribution, Pearson correlation, and 
chi-square test results are presented in Figures SF2, SF3, 
and SF4 of the Supplementary document.

167 drugs were identified from 1,076,750 prescrip-
tions in the training dataset. Using a student’s t-test, 99 
medications were statistically significant and selected for 
model training. The results of the t-test can be found in 
Table ST2 of the Supplementary document. All chosen 
features for model training are listed in Table ST3 of the 
supplementary document.

Model training and optimization
Five different neural networks were developed in this 
study during model training and optimization. These 
networks included CNN, ANN, and LSTM, as well as 
two networks that combined these different layers dif-
ferently. To optimize the performance of these networks, 
all of their parameters were optimized using a rand-
omized hyperparameter optimization algorithm [10]. The 
details of the optimized hyperparameters and the struc-
tures of the neural network layers used in each model 
are included in Figures SF5-SF9 in the Supplementary 
document.

Model evaluation
All DLAs outperformed KFRE in predicting the risk of 
initiating RRT in 2 years and 5 years with significantly 

higher ROC-AUC scores (p < 0.001). The CNN algo-
rithm showed the best overall performance with a ROC-
AUC score of 0.91 (95% CI 0.907—0.914), F1 score of 
0.79 (95% CI 0.781—0.795), specificity of 0.97 (95% CI 
0.973—0.975), and PPV of 0.9 (95% CI 0.895—0.906). The 
4-factor and 8-factor KFRE performed the worst with the 
lowest ROC-AUC score and sensitivity (Table  2), when 
using a threshold of 50%. Figure  2 presents the ROC 
curves of all DLAs and KFRE. Figure 3 presents the cali-
bration curve for KFRE and DLAs.

Mislabeling analyze
To analyze mislabeling, we reviewed the ICD codes and 
prescriptions of patients mislabeled by the two most 
robust models (CNN and CNN + LSTM + ANN). While 
the CNN had fewer false positive predictions, the com-
bined model demonstrated a better ability to identify 
patients who required dialysis after 5 years and those who 
underwent renal transplantation outside the local health-
care system. Among the false negative predictions made 
by both models, the combined model identified a higher 
proportion of patients with a risk of RRT (47 out of 80 
patients, or 58.75%) and predicted RRT within 5 years for 
more than one-fourth of them (22 out of 80 patients, or 
27.50%). Additionally, the combined model made fewer 
completely missed mislabeling (predicting that a patient 
had no risk of starting RRT while they initiated RRT in 5 
years). Further details of the mislabeling analysis are pro-
vided in Table ST4 of the Supplementary document.

Discussion
This study aims to find the most effective algorithm to 
predict the risk of starting RRT among CKD patients 
within a given period. This was done by DLAs and com-
paring their performance to that of the KFRE. To the best 
of the authors’ knowledge, this was the first head-to-head 
comparison between KFRE and different neural networks 
using datasets of patients who had not been recruited in 
other studies before.

Table 2 Evaluation of different deep learning models, using KFRE as comparison

ROC AUC F1 score Sensitivity Specificity PPV NPV

CNN 0.91 (0.907—0.914) 0.79 (0.781—0.795) 0.47 (0.465—0.474) 0.97 (0.973—0.975) 0.90 (0.895—0.906) 0.79 (0.784—0.787)

CNN + LSTM + ANN 0.90 (0.896—0.902) 0.76 (0.758—0.769) 0.74 (0.733—0.744) 0.88 (0.879—0.885) 0.76 (0.752—0.764) 0.87 (0.868—0.874)

ANN 0.88 (0.876—0.882) 0.76 (0.756—0.767) 0.71 (0.706—0.719) 0.87 (0.870—0.876) 0.74 (0.732—0.743) 0.86 (0.856—0.862)

ConvLSTM + ANN 0.88 (0.875—0.881) 0.76 (0.755—0.763) 0.71 (0.707—0.715) 0.87 (0.870—0.874) 0.73 (0.732—0.740) 0.86 (0.856—0.860)

LSTM 0.85 (0.844—0.852) 0.68 (0.673—0.684) 0.50 (0.493—0.505) 0.88 (0.875—0.881) 0.67 (0.664—0.679) 0.78 (0.776—0.781)

KFRE (4 variable) 0.84 (0.841—0.842) 0.32 (0.313—0.319) 0.40 (0.395—0.405) 0.75 (0.747—0.754) 0.42 (0.410—0.429) 0.88 (0.870—0.882)

KFRE (8 variable) 0.84 (0.836—0.837) 0.40 (0.394—0.406) 0.40 (0.395—0.405) 0.75 (0.747—0.754) 0.42 (0.410—0.429) 0.88 (0.870—0.882)
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The study used different techniques in deep learning 
and developed five different models to predict the risk of 
starting RRT in two years and five years. All models were 
validated using a subset of patient data which was com-
pletely isolated from the dataset since the start of model 
development.

Of the five DLAs developed, the convolutional neural 
network (CNN) and a neural network combining CNN, 
long short-term memory (LSTM), and artificial neural 
network (ANN) layers showed the most accurate per-
formance with the highest ROC-AUC score. In fact, the 
CNN model slightly outperformed the combined neural 
networks. This was unexpected as a more complex neu-
ral network was assumed to be able to consider more fea-
tures and temporal relationships. The most likely reason 
for this was the relatively small training and validation 
dataset size causing overfitting in complex models. Fur-
ther model development with larger datasets involving 
multiple centers should improve models’ performance.

The review of the mislabeled patients, particularly false 
positives, proved that DLAs can pick up non-linear rela-
tionships among different features and provide predic-
tions which may outperform the initial labelling system 

(Supplementary Table ST4). The less completely missed 
predictions and predicting uncoded renal transplantation 
of the combined model also suggested that a combined 
model may outperform single structured neural networks 
with adequate training data.

The superior performance of DLAs in this study has 
three implications. Firstly, a patient’s medical history and 
recent prescriptions are essential features when estimat-
ing the risk of renal failure, and they should be included 
in any RRT risk estimation algorithms. Secondly, 
machine learning or deep learning can provide more 
accurate predictions than traditional linear, logistic, or 
Cox regression methods. Compared with the traditional 
methods, including temporal relationships during model 
development brings an advantage to neural networks. 
Thirdly, the potential to label unrecorded renal trans-
plants and patients who started dialysis 5 years later has 
proven the ability of AI algorithms to recognize complex 
patterns that may not be apparent to humans.

This study offers a significant advantage by providing 
an enhanced, rapid, and automated prediction of RRT 
risk in CKD patients, eliminating the need for additional 
investigations and without disrupting existing protocols 

Fig. 2 ROC curve of different deep learning models, using KFRE as comparison
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or workflows. The entire training and validation process 
can be conducted locally on a standard laptop computer. 
The implementation of AI-based DLAs can lead to bet-
ter decision-making in clinical settings [14]. By accurately 
identifying patients who are more likely to require Renal 
Replacement Therapy (RRT), DLAs have the potential to 
reduce referrals that may not be necessary, particularly in 
cases where traditional methods might overestimate the 
risk of disease progression. The scalability of neural net-
work training allows for efficient allocation of resources 
in local medical centers, optimizing patient care. In the 
era of growing CKD patient numbers and strained renal 
services, DLAs offer an objective and practical tool to 
assess RRT initiation risk, enabling patients to receive 
extended primary or community-based medical care 
before referral to specialist services.

To address the generalizability of these tools to pri-
mary care settings, where the scope of data collection 

might differ from that in specialized care. Our study lev-
erages the extensive data available through the Hospital 
Authority, the sole public primary healthcare provider, 
which maintains a centralized patient record database 
ensuring comprehensive data collection and accessibil-
ity. This centralized system is instrumental in collecting 
demographic, biochemical, pharmacological, and ICD-10 
code data, which are pivotal for the accuracy and applica-
bility of our models. The interoperability between public 
and private healthcare sectors significantly enhances the 
utility of our models across diverse care settings. Private 
primary care providers have access to data recorded and 
maintained by public centers, thanks to established data-
sharing protocols [15]. This interconnectivity ensures a 
broader data foundation, which is vital for the effective 
implementation of predictive models in primary care.

However, the study also has few limitations. Firstly, the 
neural networks developed in this study are still "black 

Fig. 3 Calibration curve of different deep learning models and KFRE
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box" in nature, making it difficult for clinicians to explain 
and build rapport with patients when they need RRT. An 
explainable prediction by AI will also gain trust from cli-
nicians to be more confident in applying them in clinical 
practice [16]. Implementing SHapley Additive exPlana-
tions (SHAP) may help address this issue by showing 
important risk factors to patients in graphics [17].

Secondly, the performance of neural networks relies 
on the quality and quantity of training data. The data 
collected from the three medical centers predominantly 
represent the Chinese population, without recorded eth-
nicity. Implementing models trained solely on this data 
may introduce bias when applied to foreign medical cent-
ers. The usage of historical data from second tier clinics 
may introduce concept drift, which limiting the accuracy 
of the model when applying to a realistic primary care 
setting [18]. To handle missing data, our study utilized 
the Last Observation Carried Forward (LOCF) approach, 
suitable for our healthcare system’s centralized data 
mechanism. In more decentralized systems, techniques 
such as Multiple Imputation using Chained Equations 
(MICE) or Probabilistic Principal Component Analysis 
(PPCA) should be considered [17].

Additionally, due to ethical constraints, the research 
team only had access to limited patient information, 
including ICD coding, prescriptions, and biochemical 
investigation reports, without consultation records. This 
may lead to imperfect patient labeling and model train-
ing, potentially excluding individuals who received pre-
scriptions, renal transplantations, or hemodialysis in 
other countries. The low donation and transplantation 
rate in Hong Kong also limited the number of training 
data involving renal transplantation, possibly causing bias 
[19]. Recruiting data from other localities for training 
would be the most effective solution.

Thirdly, the study was limited by the hardware avail-
able, and the neural networks could only be optimized 
by a randomized hyperparameter optimization algorithm 
with 30 iterations. Other optimization methods, such as 
Bayesian algorithms, may produce better models but also 
consume more computation resources [20].

Lastly, while the data foundation is robust in terms of 
accessibility and interoperability, challenges remain, par-
ticularly in accessing and integrating private primary care 
data into public health systems. The variation in medica-
tion availability between public and private sectors, with 
public clinics offering a more limited selection within 
certain medication families, exemplifies the complexities 
of data integration across different healthcare settings. 
Addressing this issue is critical for the seamless appli-
cation of AI-based predictive models in primary care, 
ensuring that patients across the healthcare continuum 
benefit from advanced, data-driven care methodologies.

Regarding the integration of our model into exist-
ing healthcare systems and handling the concept drift, 
we emphasize the necessity of specialized knowledge 
in Machine Learning Operations (MLOps) for manag-
ing data and automating processes. We believe that the 
design of data collection, management, and handling 
strategies should be a collaborative effort involving cli-
nicians, data scientists, and machine learning experts 
prior to implementation. The balance between sensitivity 
and specificity is critical, and determining an appropri-
ate threshold for clinical action is not solely a data sci-
ence issue; it involves considering the tolerability of the 
local healthcare system, including manpower and budget 
constraints. This underscores the necessity for a collabo-
rative approach between clinicians and data scientists to 
determine thresholds that optimize clinical utility with-
out compromising patient safety. Currently, we are in the 
process of planning a prospective observational study to 
further validate the algorithm’s performance in clinical 
settings. This step is crucial for ensuring that our model 
not only demonstrates theoretical efficacy but also prac-
tical applicability and integration into the existing health-
care infrastructure.

In our study, we trained our algorithm as a classifica-
tion model. Our intention is to facilitate a clear and intui-
tive evaluation of our model’s ability to predict high-risk 
patients requiring Renal Replacement Therapy (RRT). 
However, we acknowledge that this simplification may 
not entirely align with the continuous risk assessment 
provided by the KFRE and provide a suboptimal com-
parison. Presenting results as a median time or probabil-
ity to RRT initiation is possible and may offer additional 
insights. Consequently, we suggest that future research 
could explore the development of a regression model 
using the same dataset, which might provide a different 
perspective on patient risk stratification.

Overall, the study’s findings suggest that DLAs can 
be a valuable tool in predicting the risk of RRT in CKD 
patients. The ability of DLAs to identify complex patterns 
and non-linear relationships among different features can 
outperform traditional methods, such as linear, logistic 
or Cox regression models. The study also highlights the 
importance of including a patient’s medical history and 
recent prescriptions as key features in risk estimation 
algorithms.

One potential application of these findings is the 
development of decision-support tools for clinicians. 
With the accurate predictions provided by DLAs, clini-
cians could use these tools to inform their clinical deci-
sion-making and improve patient care. For example, a 
tool that predicts the risk of RRT could help a clinician 
decide whether to refer a patient to a specialist, initi-
ate specific treatments or implement lifestyle changes. 
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Nevertheless, details of data pipeline design, storage, 
missing data handling and result interpretation should be 
openly discussed. Cooperation between data scientists, 
AI researchers and clinical care collegues are essential to 
implement AI in modern healthcare.

Conclusion
In conclusion, this study demonstrated that deep learning 
models, particularly CNN and a combination of CNN, 
LSTM, and ANN layers, outperformed KFRE in predict-
ing the risk of initiating RRT in CKD patients. The use of 
deep learning algorithms in predicting RRT risk provides 
a promising approach to minimizing manpower-related 
errors, reducing administration costs, and decreasing 
non-indicated referrals to speciality outpatient clinics, 
ultimately leading to better patient outcomes. Future 
research should focus on developing more optimized 
models with larger amounts of training data from dif-
ferent localities and developing methods to explain the 
decision-making process of deep learning algorithms to 
patients and clinicians.
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