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Abstract
Background The use of tools that allow estimation of the probability of progression of chronic kidney disease (CKD) 
to advanced stages has not yet achieved significant practical importance in clinical setting. This study aimed to 
develop and validate a machine learning-based model for predicting the need for renal replacement therapy (RRT) 
and disease progression for patients with stage 3–5 CKD.

Methods This was a retrospective, closed cohort, observational study. Patients with CKD affiliated with a private 
insurer with five-year follow-up data were selected. Demographic, clinical, and laboratory variables were included, and 
the models were developed based on machine learning methods. The outcomes were CKD progression, a significant 
decrease in the estimated glomerular filtration rate (eGFR), and the need for RRT.

Results Three prediction models were developed—Model 1 (risk at 4.5 years, n = 1446) with a F1 of 0.82, 0.53, and 
0.55 for RRT, stage progression, and reduction in the eGFR, respectively,— Model 2 (time- to-event, n = 2143) with a 
C-index of 0.89, 0.67, and 0.67 for RRT, stage progression, reduction in the eGFR, respectively, and Model 3 (reduced 
Model 2) with C-index = 0.68, 0.68 and 0.88, for RRT, stage progression, reduction in the eGFR, respectively.

Conclusion The time-to-event model performed well in predicting the three outcomes of CKD progression at five 
years. This model can be useful for predicting the onset and time of occurrence of the outcomes of interest in the 
population with established CKD.
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Introduction
Chronic Kidney Disease (CKD) is a global public health 
problem [1–3]. In 2017, the global prevalence was 9.1%, 
with approximately 700  million cases [4]. In Colombia, 
it has been estimated a gross and underdiagnosed preva-
lence of 1.54 CKD cases per 100 inhabitants in 2022 [5]. 
Primary and secondary prevention are the mainstay of 
treatment, and management according to the risk pro-
file is a priority. However, according to the United States 
Renal Data System (USRDS) report, approximately 35.4% 
of patients with CKD are referred late to interdisciplin-
ary programs, probably due to failure in adequate risk 
profile classification [6, 7]. During the last decade, several 
prediction models to estimate the probability of CKD 
progression, with predictors such as age, estimated glo-
merular filtration rate (eGFR), serum albumin level, and 
the presence of comorbidities, are being used. These 
models usually predict CKD progression through eGFR 
loss or need for RRT (dialysis or kidney transplant).[8] 
However, the models available show some limitations, 
such as lack of estimation of the competing risk of death 
or non-fatal cardiovascular disease associated with dis-
ease progression [9], lack of validation in reference cen-
ters for patients with CKD, significant predominance of 
an ethnic group in the cohorts used [10], and low rates 
of outcomes such as need of RRT [11]. Prediction mod-
els are usually built using logistic regression or Cox pro-
portional hazards, and recently, some have used artificial 
intelligence methods, such as neural networks and ran-
dom forests, among others [12].

One of the most validated models around the world, 
ESKD, have an excellent performance, with a C statis-
tic of 0.917 (95% confidence interval [CI], 0.901–0.933; 
P < 0.001) in the development cohort, and 0.841 (95% CI, 
0.825–0.857) in the validation cohort [8, 9]. No predictive 
models have been developed or validated in Colombia. 
The primary rationale for developing a new model in our 
context stems from the fact that current prediction mod-
els include variables present in fewer than 50% of our 
patients (such as albuminuria, phosphorus, bicarbonate). 
[13] These are often substituted with qualitative measures 
of proteinuria, proteinuria in a 24-hour urine sample, or 
indirectly with lipid profiles or blood albumin levels. [5] 
Constructing a model based on the available variables 
is imperative for our country and may be applicable to 
other low-income countries. Therefore, this study aimed 
to develop and validate a predictive model for the risk of 
progression and the need for RRT in patients with stage 
3–5 CKD, which may be clinically useful for assisting our 
country’s healthcare system.

Methods
Design and population
This was a retrospective, closed cohort, observational 
study. The cohort was selected based on the electronic 
medical records and clinical laboratory data of patients 
affiliated with a private health insurer in Colombia (EPS 
Sanitas). This register correspond to all patients treated 
for chronic kidney disease. In the year of selection of the 
cohort, it had approximately 2.5  million members and 
a geographical distribution mostly represented by the 
country’s capital, with 48.5% of the population, followed 
by the central and northern regions with 13.8% and 
12.4%, respectively, including patients with CKD both in 
primary care units as well as in high complexity centers.

Patients with a confirmed diagnosis of CKD in stages 
3–5 were included, and a 5- year follow-up from 2013 
to 2018 was implemented. Confirmed diagnosis of CKD 
was defined as a decrease in eGFR (between 60 and 15 
mL/min/1.73 m2) or albuminuria (24-h urine albumin 
excretion rate > 30  mg/24  h or urine albumin/creatinine 
ratio > 30  mg/g [3  mg/mmol]) of any etiology for more 
than 3 months. eGFR was calculated using the Chronic 
Kidney Disease Epidemiology Collaboration (CKD-EPI) 
2009 formula based on serum creatinine, sex, and the age 
of the research subject.13 Pregnant patients and patients 
who met the clinical criteria for starting RRT (dialysis or 
transplant) or those who were already receiving it at the 
start of follow-up were excluded.

Outcomes
The outcomes evaluated were as follows: (1) CKD pro-
gression: defined as progression in the stages of this con-
dition based on a decrease in the eGFR; (2) significant 
decrease in the eGFR: defined as a progression to greater 
than 25% reduction in the eGFR; and (3) indication for 
RRT: defined as the need for dialysis and/or kidney 
transplant.

Predictors
The predictors that were initially considered according 
to the importance reported in the literature are shown 
in the supplementary data (Supplementary data, Table 
S1). Physical examination and laboratory test predic-
tors were measured within a time window of ± 120 days 
with respect to the initial eGFR. Predictors were selected 
through a heuristic factor; based on information avail-
ability for at least 50% of the patients, the combination of 
these factors that keeps the greatest number of patients 
is studied and selected. This approach lies mainly in the 
availability of information on clinical results and rules 
out the use of data imputation due to confidence intervals 
could be artificially narrow. Predictors based on medical 
history (comorbidities) were identified when recorded 
on previous dates or on the same date in which the eGFR 
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was obtained, and cases in which their incidence in the 
samples was less than 1% were excluded.

Three predictive models were developed using two 
different statistical approaches: Model 1, risk analysis at 
4.5 years; Model 2, time-to-event analysis; and Model 3, 
time-to-event analysis with reduced variables. Model 3 
corresponds to a reduced version of Model 2 predictors, 
which were obtained after implementing a validation in 
an external cohort.

Population size and selection
Patients with at least one eGFR record of less than 60 
mL/min/1.73 m2 were selected from a sample of 21,356 

patients with a confirmed diagnosis of CKD identified in 
the institutional registry (Fig. 1). Next, the presence of at 
least two eGFR measurements during follow-up and the 
availability of complete data in relation to the selected 
predictors were verified. For Model 1, patients with a 
eGFR measurement in the first year of follow-up (the 
lowest value) and at 4.5 years were selected, with a final 
population of 1,466 patients. For Models 2 and 3, patients 
with the first eGFR measurement in 2013 (beginning of 
the cohort) were included, for a total of 2,143 subjects. 
Sensitivity analyses for clinical and laboratory predictors 
were performed for each model (Supplementary data, 
Tables S1 and S3).

Model development and validation
The following two strategies were used for the selec-
tion of predictors: (1) A review of the linear correlation 
between the same predictors and (2) An evaluation of the 
level of importance for prediction of each one through an 
engineering process using the Recursive Feature Elimina-
tion (RFE) algorithm. The coefficients of each predictor 
and subsets of predictors with optimal performance were 
estimated for each outcome of interest. Performance, 
according to this algorithm, was estimated with the accu-
racy metric. No imputation procedure for missing data 
was performed. Qualitative variables with multiple cat-
egories were classified into subgroups of dichotomous 
predictors before this process, following the dummy vari-
ables strategy for optimal training of the base algorithm.

The predictors included in Models 1 and 2 were age, 
sex, marital status, geographical region of residence, 
socioeconomic status, initial eGFR in mL/min/1.73 m2, 
presence of diabetes mellitus, coronary heart disease, 
arterial hypertension, anemia, heart failure, cerebrovas-
cular disease, rheumatoid arthritis, Non-steroidal anti-
inflammatory drugs (NSAID) consumption, creatinine 
levels (mg/dL), hemoglobin (gr/dL), serum potassium 
(mEq/L), HDL cholesterol (mg/dL), LDL cholesterol 
(mg/dL), and triglycerides (mg/dL). In the case of Model 
3, only age, sex, region of residence, diabetes mellitus, 
arterial hypertension, hemoglobin, creatinine, HDL cho-
lesterol, LDL cholesterol, and baseline eGFR were con-
sidered because the external validation cohort relied only 
on these predictors.

Baseline eGFR was estimated taking as reference the 
minimum value among the measurements recorded in 
2013. This same strategy was used to identify the final 
eGFR; we recorded the minimum measurement within 
a range of ± 120 days of the date corresponding to 4.5 
years from the baseline eGFR. Qualitative variables are 
presented as absolute and relative frequencies. Quantita-
tive variables are reported as medians and interquartile 
ranges (IQR).

Fig. 1 Selection of the population for Models 1 and 2
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Model 1
Models were generated for each outcome using the fol-
lowing three methods: logistic regression and two other 
methods based on machine learning called Neural Net-
works (NN) and Random Forests (RF). A black box 
method was used for the neural network model, which 
was robust for complex data patterns. Their performance 
was evaluated individually once the resulting models 
were generated and compared using F1, accuracy, sensi-
tivity, and precision metrics.

Model 2
A follow-up mechanism (in months) was initially 
designed to establish the risk of appearance of the three 
outcomes of interest over time. For the outcomes, signifi-
cant decrease in eGFR and CKD stage progression, the 
first eGFR measurement that showed this deterioration, 
or change in stage was selected. For the RRT outcome, 
the need to start replacement therapy was determined 
as the end point of follow-up. Three artificial intelli-
gence methods were used for modeling: Cox Penalty 
(P-Cox), Random Survival Forest (RSF), and Gradient 
Boosting Model (GBM). The concordance index metric 
(C-index) was used to compare the results of these three 
approaches.

Model 3
As in model 2, the same follow-up design was used for 
the three outcomes. The same three survival models were 
estimated: P-Cox, RSF, and GBM. Furthermore, based on 
the purpose of this reduced model, an external validation 
was performed for a fully audited cohort, extracted using 
data from the Sanitas Renal Unit (URS) between 2019 
and 2021. This validation cohort included 648 patients. 
(Supplementary data, Figure S1). The sample was divided 
into the following two groups for implementation and 
evaluation of the models: training (70%) and test (30%), 
and a cross-validation process was performed on the 
training set.

Development of the electronic calculator
Based on the model obtained, an electronic calculator 
with a graphical interface was developed on a web plat-
form using the Extreme Programming software develop-
ment process model for clinical use.

Model 3 was chosen to develop an electronic risk cal-
culator given the optimal validation results and the data 
completeness challenges in electronic health records. 
Three endpoints (API) were formulated for each outcome 
(CKD progression, significant decrease in the eGFR, and 
RRT). These subroutines were integrated into a RESTful 
service, providing a response that includes the C-index 
model performance, follow-up time periods risk proba-
bilities, and an encoded image for the survival curve. This 

information is retrieved and presented in the electronic 
calculator for clinical use.

Results
Model 1
The sociodemographic, clinical, and laboratory char-
acteristics of the Model 1 cohort are shown in Table  1. 
There was a high proportion of female subjects, more 
than 90% of the population corresponded to the middle 
stratum, and the region of origin with the highest pro-
portion corresponded to the country’s capital. The most 
frequent clinical history variables were the presence of 
arterial hypertension, consumption of NSAIDs, and dia-
betes mellitus.

The cumulative incidence for the outcome of stage pro-
gression was 26.3% (95% CI 24.2–28.7); for decreased 
eGFR was 18.3% (95% CI 16.4–20.4); and for RRT was 
3.8% (95% CI 2.9–4.9). The bivariate analysis between 
predictors and outcomes is shown in the supplementary 
data (Tables S4, S5 for Model 1; Tables S6, S7 for Model 
2).

The selection of predictors according to the RFE algo-
rithm for each outcome is shown in Fig. 2. The most rel-
evant predictors were age, initial eGFR, creatinine, LDL, 
triglycerides, HDL, hemoglobin, potassium, and history 
of diabetes mellitus or arterial hypertension, especially 
for the outcomes of significant decrease in eGFR and 
stage progression.

The performance of the different models for risk pre-
diction at 4.5 years based on artificial intelligence metrics 
are shown in Table 3. The NN and RF models showed a 
similar performance according to F1 for the estimation 
of significant decrease in eGFR and stage progression. 
Logistic regression showed better performance than NN 
and RF for the RRT.

Model 2
The main sociodemographic, clinical, and laboratory 
characteristics of the time-to- event analysis model 
cohort are shown in Table  2. The 5-year incidence rate 
for stage progression was 48.3% (95% CI 46.2–50.5); 
for decreased eGFR was 37.4% (95% CI 35.4–39.5); and 
for RRT was 3.9% (95% CI 3.1–4.8). The survival curves 
according to the initial eGFR stage for the outcomes of 
interest are shown in Fig. 3. The probability of RRT was 
higher for subjects with stage 4 and 5 CKD. The per-
formance of the estimated models for prediction based 
on time-to-event analysis is presented in Table  4. The 
model with the best performance for prediction of time-
to-event was RSF according to the C-index. For RRT 
and significant decrease in eGFR, the three algorithms 
showed a similar performance, while for stage progres-
sion, the GBM showed the best performance.
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Model 3
For this model, the sociodemographic, clinical, and labo-
ratory characteristics were identical to those of the time-
to-event analysis model cohort (Table  2), but omitting 
the predictors of marital status, socioeconomic status, 
coronary heart disease, anemia, heart failure, cerebro-
vascular disease, consumption of NSAIDs, serum potas-
sium, and triglycerides.

The training results for the three estimated models are 
shown in Table 5. The GBM showed slightly better per-
formance than the other models for all three outcomes. 
It was determined that the RRT outcome showed better 
results than the other outcomes in the three models.

Regarding the external validation with the URS cohort, 
the results of the C-index metric for the different models 
reduced from the validation data, compared against the 
test results (20% of 2,143 patients) from the initial cohort, 

are shown in Table  6. In this case, the GBM algorithm 
performed better for the outcomes of significant decrease 
in eGFR and RRT. In contrast, the RSF algorithm was 
slightly better than GBM in terms of CKD progression.

Discussion
A model for predicting the progression of CKD to 
advanced stages and the need for RRT was developed 
and validated in this study. Risk at 4.5 years and time-
to-event (survival analysis) in patients with CKD stages 
3–5 were assessed based on data analysis using artificial 
intelligence tools. The proposed model showed adequate 
performance, allowing its systematic implementation in 
CKD clinical management programs, and guaranteeing 
its usefulness as part of the strategies that guide clinical 
decision making.

Table 1 Sociodemographic, clinical, and laboratory characteristics for the population in Model 1
Predictor All Stage Progression Decrease in eGFR RRT

N = 1466 n = 386 n = 268 n = 56
Sex (%F) 59.70% 52.07% 51.12% 42.86%
Stratum
Low (1–2) % 4.42% 4.40% 4.47% 1.78%
Mid-level (3–4) % 90.61% 89.38% 88.44% 94.65%
High (5–6) % 4.97% 6.22% 7.09% 3.57%
Region
Bogotá %

63.64% 65.54% 65.29% 71.44%

Eastern % 5.52% 6.99% 6.71% 10.71%
Central % 13.17% 8.55% 6.35% 7.14%
Pacific % 11.36% 12.44% 15.30% 3.57%
Caribbean % 6.23% 6.48% 6.35% 7.14%
Other 0.08% 0% 0% 0%
Marital Status
Married % 45.35% 43.26% 41.42% 53.57%
Unmarried % 54.65% 56.74% 58.58% 46.43%
Age (IQR) 77 (72–81) 77 (71–81) 76 (71–80) 66 (57–73)
Lab tests (IQR)
eGFR mL/min/1.73 m2 48.78 (40.18–55.20) 47.11 (37.22–53.02) 43.34 (32.44–53.01) 22.62 (15.53–30.33)
Triglycerides mg/dL 133.95 (102–180.12) 138.2 (104–192.72) 134.1 (105–191.42) 162.1 (112.57–239.32)
Hemoglobin gr/dL 14 [13–15] 14.1 (12.8–15.1) 13.9 (12.5–15.1) 12.35 (11.07–14.5)
Creatinine mg/dL 1.24 (1.05–1.47) 1.32 (1.11–1.54) 1.36 (1.16–1.84) 2.58 (1.99–3.22)
Potassium mg/dL 4.52 (4.23–4.88) 4.58 (4.24–4.96) 4.61 (4.22–5.01) 4.93 (4.42–5.35)
Cholesterol HDL mg/dL 49.95 (40.79–60.1) 48.3 (39.4–59.3) 47.65 (38.87–56.8) 43.75 (36.41–52.57)
Cholesterol LDL mg/dL 102.21 (79.19–127.53) 102.68 (77.04–126.05) 97.58 (73.75–124.07) 99.28 (75.49–132.49)
Comorbidities
Diabetes 24.68% 31.60% 36.19% 44.64%
Hypertension 92.90% 88.08% 87.31% 75%
Anemia 3.85% 4.40% 5.22% 3.57%
Coronary disease. 18.14% 20.72% 22.39% 16.07%
Cerebrovascular disease 1.42% - - 0%
Heart failure 15.06% 17.87 20.15% 12.5%
Rheumatoid arthritis 1.49% - - -
Consumption of NSAIDs 28.08% 23.83% 20.52% 17.85%
eGFR: Glomerular Filtration Rate. F: Feminine. NSAIDs: Non-steroidal anti-inflammatory drugs
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Publications of prediction models for chronic kidney 
disease have increased in recent years, and this has been 
analyzed in four recently published systematic reviews 
[14–17].However, skepticism still remains among cli-
nicians regarding the performance and applicability of 
these models, apart from the fact that clinical practice 
standards are generic when it comes to defining a precise 
recommendation on this subject. For example, KDIGO 
recommends using prediction models for timely referral 
to RRT. However, it does not define how and when to use 
these tools [18].

In this context, it is important to have prediction tools 
that guide decision making, the management of pre-
vention programs, and timely multidisciplinary inter-
vention strategies. However, several of the published 
models include populations with different levels of 

Table 3 Performance of Model 1 according to the prediction 
algorithm
Outcome Sensitivity Accuracy F1 Precision
Renal replace therapy
Logistic Regression 0.79 0.97 0.82 0. 85
Neural Network 0.61 0.95 0.64 0.70
Random Forest 0.62 0.96 0.67 0.88
Stage Progression
Logistic Regression 0.54 0.67 0.52 0.57
Neural Network 0.53 0.68 0.51 0.57
Random Forest 0.54 0.69 0.53 0.60
eGFR Progression
Logistic Regression 0.55 0.78 0.55 0.64
Neural Network 0.53 0.78 0.51 0.62
Random Forest 0.53 0.79 0.51 0.65

Fig. 2 Predictors in order of importance for each outcome according to the recursive feature elimination method
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disease severity and do not precisely define the outcomes 
and the time of disease progression in which they should 
be used [14]. Our study developed a prediction model 
that can be applied in patients with CKD stages 3–5, with 
a 5-year follow-up, determining the following as main 
outcomes: (i) progression of CKD stage based on the 
eGFR (ii) reduction greater than 25% in the eGFR com-
pared to baseline, and (iii) onset of RRT (dialysis for more 
than 3 months or kidney transplant).

To minimize the risk of bias, a cohort of 2,143 patients 
distributed in three arms was included for each out-
come. For the incidence of RRT, the entire cohort of 
2,143 patients was included. For progression of CKD 
stage and significant decrease in eGFR, there were 2,060 
patients, of which 1,035 and 802 presented the respective 
outcomes. Furthermore, the external validation process 
included a cohort of 648 patients. As it became evident 
during the cohort selection process, when working with 
real data, this study was contingent upon missing infor-
mation, as is the case of alkaline phosphatase, where no 
data was found for 92.6% of the patients. Because these 
are precise clinical data, the use of imputation strategies 
was ruled out. On the other hand, as demonstrated by 
the performance metrics, the models that predict RRT 
could be showing data overfitting due to imbalance in the 
classes; there were very few patients who presented the 
outcome. This was especially evident in the external vali-
dation for RRT, where a C-index of 0.9518 was obtained, 
but this cohort only had two patients who showed this 
outcome.

The inclusion of a validation cohort increases the 
reliability of the models. This is how the kidney fail-
ure risk equation (KFRE) developed by Tangri et al. [7] 
has become the standard for comparison, given that 
the model has shown consistently good performance in 
patients with CKD stages 3–5 in several external valida-
tion studies with a low risk of bias. One of these valida-
tions included 31 multinational cohorts with a mean 
baseline eGFR of 46 mL/min/1.73 m2 and showed that 
the KFRE model has a high discrimination capacity and 
adequate calibration [15]. Another model validated with 
an external cohort and a low risk of bias is the Kaiser Per-
manente Northwest (KPNW) model [9].

Although some clear prognostic factors of this and 
other prediction models are the main ingredients of our 
model, the context of our country requires particular 
sociodemographic factors that are included here. Our 
cohort is consistent with the country’s reality, with an 
absence of relevant variables that limit the sample, and 
with greater participation of patients from the central 
region. Upon admission to the cohort, the largest partici-
pation included stage 3 patients, and the frequency RRT 
initiation decreased over time.

Table 2 Sociodemographic, clinical, and laboratory 
characteristics for the population in Model 2
Predictor All Stage 

Progression
Decrease 
in eGFR

RRT

N = 2143 n = 1035 n = 802 n = 83
Sex (%F) 52.97% 53.43% 51.12% 44.58%
Stratum
Low (1–2) % 3.94% 4.63% 5.11% 1.21%
Mid-level (3–4) % 91.41% 90.16% 89.65% 95.18%
High (5–6) % 4.65% 5.21% 5.24% 3.61%
Region
Bogotá %

67.92% 63.19% 65.46% 66.26%

Eastern % 6.59% 6.86% 6.36% 9.64%
Central % 9.86% 12.66% 9.85% 12.05%
Pacific % 10.56% 12.17% 13.22% 6.03%
Caribbean % 5.07% 5.12% 4.99% 6.02%
Other 0.06% 0% 0.12% 0%
Marital Status
Married %

45.44% 45.22% 42.77% 55.42%

Unmarried % 54.66% 54.88% 57.33% 44.58%
Age (IQR) 77 (71–82) 78 (73–83) 78 (73–83) 70 

(58–75)
Lab tests (IQR)
TFG mL/min/1.73 
m2

44.97 
(35.25–
52.93)

47.31 
(37.01–52.68)

44.90 
(34.46–
52.58)

22.35 
(15.52–
32.31)

Triglycerides mg 
/dL

134.0 
(100.5–
182.4)

134.4 
(100.1–185.05)

134.35 
(101.80–
184.75)

147.8 
(109.85–
211.45)

Hemoglobin gr/dL 13.9 
(12.7–15.0)

13.9 
(12.7–15.01)

13.8 (12.6–
14.97)

12.6 
(11.35–
14.5)

Creatinine mg/dL 1.33 
(1.13–1.67)

1.29 
(1.09–1.55)

1.33 
(1.13–1.68)

0 (0–26)

Potassium mg/dL 4.58 
(4.26–4.97)

4.56 
(4.26–4.93)

4.61 
(4.28–4.98)

4.91 
(4.43–
5.35)

Cholesterol HDL 
mg/dL

48.4 
(39.5–58.7)

48.4 
(39.55–59.25)

47.5 
(38.83–
58.28)

45.7 
(37.45–
53.4)

Cholesterol LDL 
mg/dL

99.1 
(74.1–125.1)

101.68 
(76.95–126.98)

98.48 
(73.95–
124.27)

101.66 
(74.72–
131.17)

Comorbidities
Diabetes 24.42% 23.38% 24.94% 34.94%
Hypertension 80.58% 77.29% 74.31% 67.47%
Anemia 4.15% 3.77% 3.61% 2.4%
Coronary disease 19.74% 15.84% 17.95% 14.46%
Cerebrovascular 
disease

1.60% - - 1.21%

Heart failure 20.18% 17.49% 19.95% 12.05%
Rheumatoid 
arthritis

1.99% - - -

Consumption of 
NSAIDs

21.80% 21.83% 19.2% 13.25%

eGFR: Glomerular Filtration Rate. F: Feminine. NSAIDs: Non-steroidal anti-
inflammatory drugs
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The prediction of CKD progression to advanced stages 
or admission to dialysis allows for the implementation 
of strategies for individualized treatment, control of risk 
factors, evaluation of population indicators, establish-
ment of education management strategies, selection of 
renal support therapies, and preemptive renal transplan-
tation [19].

Conventionally, risk factors related to CKD progres-
sion included in most prediction models have been 

demographic variables such as age, sex, and geographic 
origin, and clinical variables such as comorbidities, eGFR 
or its deterioration in the previous year, albuminuria, 
serum bicarbonate, albumin, calcium, hemoglobin, and 
phosphorus, among others [6].In recent publications 
describing other models proposed concomitantly with 
our own model, we found unconventional predictors 
such as biomarkers (CXCL12, NT-proBNP, NGAL, and 

Table 4 Performance of time-to-event models for the outcomes 
of interest
Model Stage Progression eGFR

Progression (sig-
nificant reduction)

RRT

P-COX
Test 0.5790 0.6297 0.9082
Random survival forest
Test 0.6650 0.6759 0.8926
Gradient boosted model
Test 0.6733 0.6701 0.8953
Test: C- Statistic concordance Index, eGFR: Glomerular Filtration Rate, P-cox: 
Penalization cox, RRT: Renal replacement Therapy

Table 5 Performance of reduced time-to-event models for the 
outcomes of interest
Model Stage Progression eGFR

Progression (sig-
nificant reduction)

RRT

P-COX
Test 0.5648 0.6917 0.8603
Random survival forest
Test 0.6713 0.6807 0.8603
Gradient boosted model
Test 0.6874 0.6847 0.8887
Test: C- Statistic concordance Index, eGFR: Glomerular Filtration Rate, P-cox: 
Penalization cox, RRT: Renal Replacement Therapy

Fig. 3 Survival curves for outcomes according to Model 2
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troponin T) and the application of artificial intelligence 
methods [20–22].

Although CKD management programs in Colombia 
seem to be very well structured, they do not offer sub-
specialized management programs for the entire popu-
lation with CKD in terms of health policies. This is due 
to several reasons, in particular, a disproportion between 
the number of patients with CKD and the current num-
ber of nephrologists in the country. In their daily roles, 
these nephrologists cover different areas of work, such 
as critical care, hospital nephrology, kidney units, trans-
plant groups, and outpatient and preventive services. 
This reveals an insufficient human resource, far from 
international standards (a nephrologist–patient ratio of 
approximately 1:2000 patients), requiring the support of 
non-nephrologists, trained and familiar with this group 
of patients. In general, these programs are configured 
based on an initial snapshot of the stage of the disease 
exclusively on the eGFR. It is possible to optimize the 
care of these patients with the implementation of the 
prediction models. Thus, a possible scenario can be pro-
posed in which the care of stage 3 patients with a low 
risk of progression could continue in first level centers, 
improving the window of opportunity for the highly spe-
cialized care of patients classified showing a high risk of 
progression. This would lead to an improvement in cost-
effectiveness indicators.

Among the strengths of our model, we can highlight 
the following: (1) the creation of a machine learning-
based technological tool that makes it possible for non- 
specialized healthcare personnel to estimate the risk for 
patients. This is useful in prevention programs in the 
context of a limited specialized human resource; (2) the 
estimation of the risk of a significant decrease in eGFR as 
an additional outcome to stage progression benefits the 
early implementation of prevention strategies to avoid 
the deterioration of renal function, even within the same 

risk category; (3) the predictors were obtained from fre-
quent registration data in the clinical follow-up records 
of this group of patients. The use of additional resources 
was not necessary for their application; (4) to date, 
no models have been developed in a population with 
sociodemographic characteristics like ours. This repre-
sents an opportunity to use a tool based on the context of 
our country and others in the Latin American region; (5) 
an external validation cohort was included, and the tool 
is designed to be implemented in a specific population of 
patients with stage 3–5 CKD; and (6) the translation of 
a mathematical model into a digital tool in the form of 
a calculator with a graphical, easy-to-use interface facili-
tates its use in these patient care scenarios.

This model has certain limitations as follows: (1) the 
follow-up period was 5 years, which limits the analysis of 
disease progression in some groups of patients; (2) there 
was no differentiation into racial groups, which affects 
the analysis of subgroups and progression according to 
this predictor, which is part of the tools frequently used 
to calculate the eGFR; (3) model development was based 
on a retrospective cohort, which reduced the availability 
of complete data in relation to the predictors of interest 
for the final analysis; (4) the population subgroup belong-
ing to the middle-income socioeconomic stratum was 
overrepresented (90%), which is well above the percent-
ages recorded in national evaluation surveys (45.5%) and 
which may imply more favorable socioeconomic contexts 
and determinants than those of the average Colombian 
population; 6) the percentage of representation of women 
was greater than 50%, which may not be related to the 
proportion of the population on dialysis or subjected to 
kidney transplant; and 7) the geographical distribution 
of the patients included in the sample was linked to the 
distribution of affiliates of the selected insurer, which 
does not have members in all regions of the country. This 
prevents the generalization of estimates to the entire 
national territory.

In conclusion, the developed model constitutes a tool 
to help manage the progression of CKD in terms of 
early intervention and optimization of available human 
resources.
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