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Abstract

Background: Urinary Ca2+ excretion increases with dietary NaCl. NaCl-induced calciuria may be associated with
hypertension, urinary stone formation and osteoporosis, but its mechanism and long-term effects are not fully
understood. This study examined alterations in the expressions of renal Ca2+ transporters, channels and claudins
upon salt loading to better understand the mechanism of salt-induced urinary Ca2+ loss.

Methods: Eight-week old Wistar-Kyoto rats were fed either 0.3% or 8% NaCl diet for 8 weeks. Renal cortical
expressions of Na+/Ca2+ exchanger 1 (NCX1), Ca2+ pump (PCMA1b), Ca2+ channel (TRPV5), calbindin-D28k, and
claudins (CLDN-2, -7, -8, -16 and −19) were analyzed by quantitative PCR, western blot and/or
immunohistochemistry.

Results: Fractional excretion of Ca2+ increased 6.0 fold with high-salt diet. Renal cortical claudin-2 protein
decreased by approximately 20% with decreased immunological staining on tissue sections. Claudin-16 and −19
expressions were not altered. Renal cortical TRPV5, calbindin-D28k and NCX1 expressions increased 1.6, 1.5 and 1.2
fold, respectively.

Conclusions: Chronic high-salt diet decreased claudin-2 protein and increased renal TRPV5, calbindin-D28k, and
NCX1. Salt loading is known to reduce the proximal tubular reabsorption of both Na+ and Ca2+. The reduction in
claudin-2 protein expression may be partly responsible for the reduced Ca2+ reabsorption in this segment. The
concerted upregulation of more distal Ca2+-transporting molecules may be a physiological response to curtail the
loss of Ca2+, although the magnitude of compensation does not seem adequate to bring the urinary Ca2+ excretion
down to that of the normal-diet group.
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Background
Urinary Ca2+ excretion increases with sodium chloride
(NaCl) ingestion [1]. This dietary NaCl-induced cal-
ciuria may lead to osteoporosis at low calcium intake
[2,3] and also is associated with urinary stone forma-
tion [1] and hypertension [4]. The increase in urinary
Ca2+ excretion is postulated to be due to salt-induced
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reproduction in any medium, provided the or
volume expansion [5] and/or competition between
sodium and calcium ions in the renal tubule [6]. How-
ever, the precise mechanism for the dietary NaCl-
induced urinary Ca2+ increase is not fully understood.
In addition, it is not clear if long-term salt loading has
any effects on Ca2+-transporting molecule expressions
in the kidney.
The bulk of Ca2+ in the pro-urine is reabsorbed in the

proximal tubule and the thick ascending loop of Henle
through a passive, paracellular movement. Transepithe-
lial Ca2+ permeability is high in these segments, and the
rate-limiting barrier is the tight junction. Claudins and
other tight junction proteins are known to be important
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in determining the permeability characteristics of vari-
ous epithelia [7]. For example, renal expression of clau-
din 2 is restricted to the proximal nephron [8], and
claudin 2 is believed to form high-conductance cation
pores [9]. The distributions and functions of these tight
junction proteins are becoming known, but information
on their regulation, especially in the kidney, is just
emerging.
In contrast, regulated transcellular Ca2+ reabsorption

occurs primarily in the distal tubule. In the distal neph-
ron, Ca2+ in the pro-urine enters the cytosol of tubule
cells through Ca2+ channel, mainly TRPV5 [10]. The
transport of intracellular Ca2+ to the basolateral side is
facilitated by a Ca2+-binding protein called calbindin-
D28k [10,11], and Ca2+ exits the cell on the basolateral
side through Na+/Ca2+ exchanger 1 (NCX1) and Ca2+

pump (PMCA1b) [12,13]. NCX1 counter-transports 3
Na+ for Ca2+, but the role of NCX1 in NaCl-induced cal-
ciuria has not been studied.
Alterations in the expressions of tight junction pro-

teins and transcellular Ca2+ transporters may in part ex-
plain the urinary calcium loss upon salt loading or
provide clues on long-term effects of dietary NaCl inges-
tion. Therefore, we examined the expression changes of
renal Ca2+ transport molecules in rat with chronic high-
NaCl diet.
Methods
Animal experiment
All experimental procedures were approved by the
Fukushima Medical University School of Medicine Ani-
mal Committee. Eight-week old Wistar-Kyoto rats
(Japan SLC Inc. Sendai, Japan) were fed either 0.3% or
8% NaCl chow (Oriental Yeast Co., Tokyo, Japan) for
8 weeks with tap water ad libitum. Unanesthetized sys-
tolic blood pressure was measured by the tail-cuff
method (Blood Pressure Analyzer model BP-98A;
Softron, Tokyo, Japan). Ten measurements were taken
and averaged per rat per day. Urine was collected regu-
larly using metabolic cages. At the end of the study,
under intraperitoneal pentobarbital anesthesia, blood
was drawn from abdominal aorta, and kidneys were col-
lected for assays.
Biochemical analysis
Biochemical analyses were performed by SRL Inc.
(Tokyo, Japan) using creatinase-sarcosine-oxidase-POD
method for creatinine, electrode method for Na, K and
Cl, arsenazo III method for Ca, direct molybdate assay
for inorganic phosphate (P) and xylidyl blue method for
Mg. Serum concentrations of 1,25-dihydroxyvitamin D3

were measured by radioimmunoassay using the two anti-
body method.
Quantitative Real-Time RT-PCR
Total RNA was prepared from renal cortex using RNeasy
plus mini kit (Qiagen). Subsequently, 0.25 μg of total RNA
was reverse-transcribed into cDNA using iScript cDNA
Synthesis Kit (Bio Rad) in a 20 μl reaction volume. One μl
of reverse-transcription sample was used for real-time
quantitative PCR using the iQ5 Real-Time PCR Detection
System and iQ SYBR Green Supermix (Bio Rad). The
primers used were as follows: NCX1 forward CAGTT
GTGTTTGTCGCTCTTGG and reverse GTTGGCCG
CATGGTAGATGG, with annealing temperature (Ta)
57°C; GAPDH forward GCAAGTTCAACGGCACAGT
CAAG and reverse ACATACTCAGCACCAGCATC
ACC with Ta 56°C, TRPV5 forward CTTACGGGTT
GAACACCACCA and reverse TTGCAGAACCACAG
AGCCTCTA with Ta 56°C; PMCA1b forward CGCCAT
CTTCTGCACAATT and reverse CAGCCATTGTTC
TATTGAAAGTTC with Ta 56°C, calbindin-D28k for-
ward GGAGCTGCAGAACTTGATCCand reverse GC
AGCAGGAAATTCTCTTCG with Ta 57°C, claudin 2
forward TCTGGATGGAGTGTGCGAC and reverse AGT
GGCAAGAGGCTGGGC with Ta 63°C, claudin 7 forward
GACTCGGTGCTTGCCCTGCC and reverse GGAGCG
GGGTGCACGGTATG with Ta 59°C, claudin 8 forward
GTGCTGCGTCCGTCCTGTCC and reverse CCAAGCT
CGCGCTTTTGGGC with Ta 59°C. NCX1 and GAPDH
primers were designed using Beacon Designer soft-
ware (PREMIER Biosoft International, Palo Alto, Cali-
fornia, USA), claudin 7 and 8 primers were designed
using PrimerBlast (NCBI), and TRPV5, PMCA1b and
claudin 2, 16 and 19 primers were adopted from else-
where [14-16]. PCR reactions were performed in tripli-
cate, and mRNA was quantified based on the Ct value,
normalized to GAPDH, and expressed as relative
amounts.

Immunoblotting
Immunoblotting of renal cortical proteins was per-
formed similarly as previously reported [17]. The anti-
bodies used were monoclonal anti-rat NCX1 antibody
(Abcam), polyclonal anti-claudin 2 antibody (Life Tech-
nologies, Carlsbad, CA), and polyclonal anti-TRPV5,
anti-NHE3, and anti-GAPDH antibodies (Santa Cruz
Biotechnology). The bands were visualized by ECL or
ECL plus reagents (Amersham) and quantified by densi-
tometry using ImageJ software.

Immunohistochemistry
Sections of rat kidney paraffin blocks were made with 2-μm
thickness. Kidney sections of normal- and high-salt diet fed
rats were placed on a single slide glass for comparison.
After deparaffinization and blocking, the slices were
treated with anti-claudin 2 antibody (Life Technologies,
Carlsbad, CA), anti-rabbit secondary antibody and DAB



Table 1 Blood pressure and biochemistry data at the end
of the study
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using VECTASTAIN-ABC kit (Vector laboratories,
Burlingame, CA). The slides were counterstained with
haematoxylin and eosin.
Systolic Blood Pressure (mmHg) 133 ± 2.8 141 ± 3 n.s.

Serum creatinine (mg/dL) 0.29 ± 0.01 0.33 ± 0.02 n.s.

Serum Na (mmol/L) 143 ± 0.5 142 ± 0.3 n.s.

Serum K (mmol/L) 4.33 ± 0.07 4.36 ± 0.11 n.s.

Serum Cl (mmol/L) 104 ± 0.69 103 ± 0.64 n.s.

Serum Ca (mmol/L) 9.26 ± 0.07 9.22 ± 0.09 n.s.
Data analysis
All values are expressed as means ± SE. Statistical com-
parisons were performed by Student's t-test or ANOVA
where appropriate. P values <0.05 were considered sta-
tistically significant.
Serum Mg (mmol/L) 2.29 ± 0.03 2.23 ± 0.04 n.s.

Serum P (mmol/L) 7.05 ± 0.17 7.06 ± 0.23 n.s.

Abbreviations: n.s.: not significant.

Results
Serum electrolytes were similar between the normal- and
high-salt fed rats
Food intake was similar between the groups (normal-salt
vs high-salt groups, 18.8±0.9 vs 17.8±0.5 g/day, n.s.,
n=15 /group), although the high-salt group weighed
slightly less than the normal-salt group at the end of the
study (369±5 vs 354±4 g, P <0.05). This may partly be
due to the reduced caloric intake of the high-salt fed rats
because 8% (by weight) of the chow was sodium chlor-
ide. As expected, the high-salt group drank and urinated
significantly more than the normal-salt group, 2.7 times
and 4.8 times the control rats, respectively (Figure 1).
However, the serum electrolyte concentrations measured
did not differ between the normal-salt and high-salt
groups (Table 1). Creatinine clearance, which is used as
an approximate of glomerular filtration rate, was also
not significantly different between the groups (2.51±0.12
vs 2.63±0.14 ml/min, n=12-15 /group). Systolic blood
pressures also did not differ significantly between the
groups (133±2.8 vs 141±3.0 mmHg, n=15/group).
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Figure 1 Intake and output data at the end of the study in
Wistar-Kyoto rats fed 0.3% or 8% NaCl diet for 8 weeks. The
bars are shown as relative amounts of the 8% NaCl group to those
of 0.3% NaCl control group. Numbers by the bars are the averages
of actual measurements, with the units indicated below the item
labels. * P <0.05, ** P <0.01, and *** P <0.001 vs. 0.3% NaCl group of
same age, n=15.
Urinary calcium excretion was markedly increased in the
high-salt rats
At the end of the study, urinary calcium concentration
(Figure 2A) and daily urinary calcium excretion
(Figure 2B) of rats on high-salt diet were higher than those
of the normal-salt group, and fractional Ca excretion of
the salt-loaded rats was 6 times that of the control rats
(Figure 3). Fractional Mg excretion also increased with salt
loading, although the increase was smaller than that of the
fractional Ca excretion (Figure 3).

Renal claudin-2 protein decreased, but claudin-7, -8, -16
or -19 mRNA was not altered with chronic salt loading
Claudin-2 forms paracellular cation pore in the proximal
tubule. Rats fed 8% NaCl for 8 weeks showed increased
renal cortical claudin-2 mRNA (Figure 4A), but salt
loading significantly decreased the protein expression of
claudin-2 by about 20% (Figure 4B). There may be post-
transcriptional regulation of claudin-2. Immunohisto-
chemical staining of kidney cortex was performed for
claudin-2 to further examine the change in expression.
Although by subjective observation, the staining of renal
cortical claudin-2 also suggested a decrease by salt load-
ing (Figure 4C and 4D). In the proximal tubule, NHE3
expressed primarily in the apical membrane is shown to
be necessary for calcium reabsorption by providing the
driving force for paracellular calcium transport [18]. Un-
expectedly, this study found that renal cortical NHE3
protein level of salt-loaded rats was significantly
increased compared to that of rats on normal diet (100
±20 vs 292±38%, n=9-11, P<0.01, figure not shown).
Claudin-16 and −19 are expressed primarily in the thick

ascending limb [19], and mutations of claudin-16 [20] and
−19 [21] result in renal Mg2+ and Ca2+ wasting. In this
study, no significant change in renal claudin-16 or −19
was observed by salt loading (Figure 5A and 5B).
Claudin-7 and −8 are found from distal convoluted tu-

bule to the inner medullary collecting duct [22].
Claudin-8 is believed to act as a paracellular cation bar-
rier [23], inhibiting the backflow of Ca2+ that has been
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Figure 2 Urinary calcium concentration (2A) and daily urinary calcium excretion (2B) of rats fed normal-salt or high-salt diet from 8 to
16 weeks of age. * P <0.05 and *** P <0.001 vs. 0.3% NaCl group of same age, n=5-15.
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reabsorbed through transcellular mechanisms. Claudin-7
is generally assumed to be an anion barrier. No signifi-
cant change was observed in the mRNA expression of
claudin-7 or claudin-8 (Figure 5C and 5D).
High-salt diet increased distal, transcellular Ca2+ trans-

porting molecules,TRPV5, calbindin-D28, and NCX1.
TRPV5 Ca2+ expression in the renal cortex increased

with high-salt diet both in terms of mRNA
(Figure 6A) and protein levels (Figure 6B). TRPV5 is
the apical Ca2+ entry mechanism and the gatekeeper
of the distal tubular Ca2+ transport [24]. In addition,
the renal cortical mRNA of calbindin-D28k, an intracel-
lular Ca2+ transport molecule [11], also increased by
about 48% (Figure 6C). NCX1 and PMCA1b are the
basolateral Ca2+ extrusion mechanisms in this segment
[25]. Renal cortical NCX1 mRNA and protein levels
increased in the high-salt group by about 20% and
26%, respectively (Figure 6D and E). In contrast, renal
cortical expression of PMCA1b was not altered by
high-salt diet (Figure 6F).
0

2

4

6

8

10

12

14

16

18

20

FENa FECl FEK FECa FEP FEMg

0.3% NaCl
8% NaCl

fo
ld

 o
ve

r 
co

nt
ro

l 

***

***

***
*

*    p<0.05
*** p<0.001

Figure 3 Fractional excretion of electrolytes at the end of the
study. The bars are shown as relative amounts of the 8% NaCl
group to those of 0.3% NaCl control group. * P <0.05 and ***
P <0.001 vs. 0.3% NaCl group of same age, n=15.
Modeling of NCX1 function
The functions of NCX1 with different electrolyte settings
were modeled to interpret the effects of high-salt diet be-
cause the transport of NCX1 is bidirectional. Even under
normal conditions, estimates of NCX1 contribution to
distal tubular, basolateral Ca2+ transport vary from 15%
[26] to 70% [27]. Figure 7 shows the relationship among
intracellular Na+ concentration ([Na+]i), intracellular Ca

2+

concentration [Ca2+]i, and equilibrium potential for NCX
(ENCX), calculated using the equation, ENCX = 3 ENa - 2
ECa [28], where ENa and ECa are respective equilibrium
potentials for Na+ and Ca2+ given by the Nernst equation.
Basolateral extracellular Na+ concentration is set at
140 mM and basolateral extracellular Ca2+ concentration
at 1 mM. In the literature, the basolateral membrane po-
tential of the distal convoluted tubule and connecting tu-
bule cells is reported to be −70 mV [29], while [Na+]i in
those cells is reported to be 17.5 mM [26,30]. Under these
conditions, the model in Figure 7 gives [Ca2+]i of 142 nM
(shown as a dotted circle). This [Ca2+]i is below the esti-
mated [Ca2+]i of 200 nM [29], indicating that NCX1 likely
extrudes Ca2+ under normal conditions. However, the
effects of high-salt diet on Na+ and Ca2+ gradients and
membrane potential have not been determined. As dietary
NaCl reduces plasma aldosterone and increases endogen-
ous Na+/K+ pump inhibitors such as ouabain [31] and
marinobufagenin [32,33], [Na+]i is likely to be elevated. If
[Na+]i rises to 22 mM at -70mV, the equilibrium [Ca2+]i
will be 282 nM (shown as a solid circle on Figure 7). Then,
NCX1 extrudes less Ca2+ from the cell, or may even re-
verse to Ca2+ entry mode on high-salt diet. As TRPV5 is
inhibited by a rise in [Ca2+]I [34], the elevation of intracel-
lular [Ca2+]i along with [Na+]i may reduce the rate of Ca2+

entry via TRPV5.

Chronic salt loading decreased serum
1,25-dihydroxyvitamin D3 concentration
To investigate the mechanism of upregulation of
TRPV5, calbindin-D28k and NCX1 with salt loading,
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serum concentrations of 1,25-dihydroxyvitamin D3 [1,25
(OH)2D] were measured. 1,25(OH)2D is known to upre-
gulate renal TRPV5, calbindin-D28k and NCX1 [35].
However, rats fed 8% NaCl diet for 8 weeks showed sig-
nificantly reduced serum concentration of 1,25(OH)2D
(176±19 vs 129±7 pg/ml, P <0.05, n=9-11), suggesting
the presence of mechanisms other than 1,25(OH)2D for
the salt-induced upregulation of these molecules.

Discussion
This study, for the first time, examined the effects of long-
term dietary sodium chloride on renal Ca2+-transporting
molecule and claudin expressions. Chronic salt loading
decreased the protein expression of claudin 2, a compo-
nent of proximal, paracellular Ca2+ transport pathway.
Concomitantly, dietary NaCl increased the expression of
more distal, transcellular Ca2+ reabsorption machinery,
TRPV5, calbindin-D28k and NCX1.
Salt loading acutely increases urinary excretion of Ca2+

along with Na+ [3,6]. In this study, the fractional Ca2+

excretion of salt-loaded rats increased approximately 6.0
fold. Generally, the cause for this phenomenon is attrib-
uted to an extracellular fluid volume expansion and/or
to the reduced reabsorption of both Na+ and Ca2+ in the
proximal tubule [36]. Although renal blood flow is
reported to be unchanged or sometimes even reduced
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when salt loading is chronic such as over 8 weeks [37],
from this study, the contribution of volume expansion
and/or hyperfiltration cannot be ruled out as creatinine
clearance tended to increase in the salt-loaded rats, al-
though not significant. As creatinine determination in
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significant. Renal artery servo-control experiments
would be useful to delineate these in the future.
Approximately 65% of calcium in the pro-urine is

reabsorbed in the proximal tubule. In the proximal tu-
bule, claudin-2 is postulated to form tight junction cat-
ion pores [9]. Muto et al. have reported that fractional
excretion of Ca2+ in claudin-2 knockout mice is 3 times
that of wild-type mice, further supporting a role of
claudin-2 in proximal tubular paracellular Ca2+ re-
absorption [39]. In this study, we found that chronic salt
loading decreased renal cortical claudin-2 protein ex-
pression. Although there is not enough functional stud-
ies of rat claudin-2, sequence similarity to mouse
claudin-2 suggests a similar role in Na+ and Ca2+ trans-
port. Therefore, the decreased expression of claudin-2
with high-salt diet may, to some degree, account for the
decrease in Ca2+ reabsorption, while limiting Na+ and
water reabsorption, as Na+ [9] and water [40] in addition
to Ca2+ may pass through the pores formed by claudin-
2. It has been reported that hyperosmolarity stress
decreased claudin-2 expression in Madin-Darby canine
kidney cells [41], and hyperosmolarity due to NaCl load
may be a possible mechanism of claudin-2 downregula-
tion in this study. As claudin-2 facilitates Ca2+ move-
ment from the luminal to interstitial fluid in the
proximal tubule, reduction in claudin-2 may underlie
the increased urinary Ca2+ excretion observed under
high-salt diet.
In the proximal tubule, NHE3 is shown to be import-

ant as a part of driving force for Ca2+ reabsorption,
mediating apical Na+ entry and consequently water re-
absorption to produce osmotic gradient [18]. In our
study, renal NHE3 protein significantly increased with
salt loading. However, this finding is not in accordance
with some previous studies, such as that of Frindt and
Palmer who found no change in luminal NHE3 with
5% NaCl diet for 1 week in rats using in situ biotinyla-
tion [42]. As regulation of NHE3 occurs on multiple
levels, including trafficking, interacting proteins and
oligomerization [43], protein level may not be directly
related to apical NHE3 activity. If NHE3 activity is in-
deed increased in the high salt-fed rats, this may in-
crease the pressure for Ca2+ reabsorption in the
proximal tubule. However, competition between Na+

and Ca2+ for paracellular transport binding site may
occur in the proximal tubule. It has been reported that
Ca2+ inhibits paracellular Na+ conductance by competi-
tive binding on claudin-2 [44]. If Na+ and Ca2+ share a
binding site, inversely, high Na+ may inhibit claudin-2
Ca2+ conductance. This competition between Na+ and
Ca2+ may play a large role in the dietary NaCl-induced
hypercalciuria.
Thick ascending limb of the loop of Henle is respon-

sible for approximately 20% of Ca2+ reabsorption.
Claudin-16 and −19 are shown to be important for para-
cellular Mg2+ and Ca2+ in this segment. In our study,
there was an increase in the fractional excretion of Mg,
albeit smaller than that of Ca. However, there was no
significant difference in renal claudin-16 or −19 mRNA
in rats on high-salt diet. Extracellular volume expansion
decreases transepithelial voltage and Mg2+ reabsorption
in the TAL [45]. Although not directly detectable in our
experimental setting, there may have been some volume
expansion in the high-salt fed rats which may have con-
tributed to the increase in Mg2+ fractional excretion.
Distal nephron is the final and most-regulated site of

urinary Ca2+ reabsorption [46,47]. A concerted increase
in the expression levels of TRPV5, calbindin-D28k, and
NCX1, was observed with salt loading in this study.
Claudin-8, the distal tubular paracellular cation barrier,
was not altered by salt loading. It may be that with salt
loading, the proximal, paracellular Ca2+ reabsorption is
reduced, and more distal, transcellular Ca2+ transport
molecules are upregulated to facilitate Ca2+ reabsorption
as a compensatory mechanism. However, salt loading
may reduce the Ca2+ reabsorption via NCX1, as illu-
strated in Figure 7. Therefore, the upregulation of distal
Ca2+ transport machinery with chronic salt-loading may
partially compensate for the urinary Ca2+ loss, although
with a limited effect.
As for the mechanism of TRPV5, calbindin-D28k, and

NCX1 upregulations by dietary NaCl, one possibility is
the endocrine factors that regulate Ca2+-related mole-
cules, such as parathyroid hormone [48] and vitamin D
[49]. For example, 1,25(OH)2D has been shown to in-
crease the expressions of TRPV5, calbindinD28k, and
NCX1 [35]. However, in this study, serum concentration
of 1,25(OH)2D was significantly lower in the high-salt
group than the control group. Unless there is a signifi-
cant difference between serum and intrarenal 1,25(OH)2D
levels, it is likely that salt-induced transcellular Ca2+-trans-
porter upregulation is mediated by pathway(s) other than
1,25(OH)2D.
The weakness of the study includes a lack of regional

expression data, as excised renal cortex was used in the
study. Higher-resolution immunohistological staining
experiments and qRT-PCR/Western blotting from
micro-dissected tissue specimens are necessary in the fu-
ture. However, this study aimed to lay the foundation for
a more detailed mechanistic examination of the effects
of chronically high dietary sodium on the expression of
renal Ca transporters and on urinary calcium excretion.

Conclusions
Our findings suggest that the decrease in renal claudin-2
protein by salt loading may increase the Ca2+ in tubular
fluid reaching the distal tubule, while the concerted
upregulation of more distal Ca2+-handling molecules



Yatabe et al. BMC Nephrology 2012, 13:160 Page 8 of 9
http://www.biomedcentral.com/1471-2369/13/160
may curtail some of the Ca2+ loss in the urine. Findings
of our study may have implications on further research
on the pathophysiology of osteoporosis, urinary stone
formation and hypertension associated with excessive
salt intake.
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