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Abstract

Background: Monitoring of volatile organic compounds (VOCs) in exhaled breath shows great potential as a non-invasive
method for assessing hemodialysis efficiency. In this work we aim at identifying and quantifying of a wide range of VOCs
characterizing uremic breath and blood, with a particular focus on species responding to the dialysis treatment.

Methods: Gas chromatography with mass spectrometric detection coupled with solid-phase microextraction as
pre-concentration method.

Results: A total of 60 VOCs were reliably identified and quantified in blood and breath of CKD patients.
Excluding contaminants, six compounds (isoprene, dimethyl sulfide, methyl propyl sulfide, allyl methyl sulfide,
thiophene and benzene) changed their blood and breath levels during the hemodialysis treatment.

Conclusions: Uremic breath and blood patterns were found to be notably affected by the contaminants from

the extracorporeal circuits and hospital room air. Consequently, patient exposure to a wide spectrum of volatile
species (hydrocarbons, aldehydes, ketones, aromatics, heterocyclic compounds) is expected during hemodialysis.
Whereas highly volatile pollutants were relatively quickly removed from blood by exhalation, more soluble ones

organic compounds

were retained and contributed to the uremic syndrome. At least two of the species observed (cyclohexanone
and 2-propenal) are uremic toxins. Perhaps other volatile substances reported within this study may be toxic
and have negative impact on human body functions. Further studies are required to investigate if VOCs
responding to HD treatment could be used as markers for monitoring hemodialysis efficiency.
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Background

Chronic kidney disease (CKD) usually is a progressive dis-
order and patients with end stage renal failure need treat-
ment by transplantation or dialysis. Even though dialysis is
lifesaving, overall patient mortality by far exceeds that of
an age-matched population without CKD. This is at least
in part due to the fact that current dialysis techniques can-
not completely replace native kidney function. Guidelines
recommend that dialysis dose should be prescribed based
on measures of urea clearance [1] even though it is
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recognized that urea is only a weak surrogate for the ex-
tent of uremia. However other, potentially more relevant
toxins [2] cannot be determined easily due to technical
difficulties and a rapid, low-cost measurement method,
which could be used routinely during each HD session,
would be highly desirable. Breath gas analysis could
meet the requirements as it is non-invasive and breath
biomarkers have already proved to provide valuable in-
formation on disease processes, or metabolic disorders
occurring even in distant parts of the body [3-8]. Rely-
ing on simple-in-use, hand-held, and sensitive devices
this diagnostic technique could considerably support
the HD treatment.

The composition of uremic breath and its evolution
during hemodialysis has already received some attention.
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Simenhoff et al. [9] reported elevated levels of dimethy-
lamine (DMA) and trimethylamine (TMA) in patients
with end-stage renal disease and their decrease after the
HD treatment. In case of TMA this response to HD has
been confirmed by Endre et al. [10]. A number of stud-
ies investigated breath ammonia during dialysis as a po-
tential marker of efficiency of this treatment [10-14].
The observed drop in NHj concentrations correlated
reasonably well with blood urea nitrogen (BUN) and cre-
atinine [12,14]. Monitoring of breath ethane in HD pa-
tients evidenced a rapid rise of this marker during the
first minutes after initiation of dialysis, which has been
attributed to treatment-induced oxidative stress [15-17].
Numerous investigators reported a significant increase
of isoprene in breath during and after hemodialysis
[18-22], but not during peritoneal dialysis [23]. Recently,
Lee et al. [24] employing breath analysis documented
the exposure of dialyzed populations to some hydrocar-
bons and halocarbons emitted by dialyzer materials.

The primary goal of this work was the untargeted
identification and quantification of volatile organic com-
pounds characterizing uremic breath and blood with a
particular focus on species responding to the dialysis
treatment, the latter being potential markers of dialysis
efficiency. Gas chromatography with mass spectrometric
detection using solid phase microextraction (SPME-
GCMS) as a preconcentration step was selected as the
adequate analytical method for this purpose. In particu-
lar, we aimed at extending the classic definition of
uremic breath and blood (encompassing mainly odorous
compounds such as ammonia or amines) to include a
wider spectrum of volatiles, induced by either CKD or
by the hemodialysis procedure itself.

Methods

Human subjects and HD treatment

Patients (7 males and 7 females) were recruited from the
Dialyse Trainingszentrum Innsbruck and the Department
of Nephrology and Hypertension of Innsbruck Medical
University. Their baseline characteristics are presented in
Table 1. All test subjects were dialyzed three times a week
during 4-hours-sessions using high-flux Helixone Frese-
nius FX-100 dialyzers (Fresenius Medical Care, Germany)
and a Fresenius type 5008, or Gambro type AK 200 S de-
vice. Patients suffered from a variety of underlying condi-
tions including coronary heart disease, peripheral vascular
disease, asthma, cancer, liver diseases and urinary tract in-
fections. Four patients were diabetic. The recruitment was
carried out with the following exclusions: inability to pro-
vide breath samples, immaturity and legal incompetence.
No special dietary regimes were applied both before and
during HD treatment. All subjects gave written consent to
participate. The collection of samples was approved by the
Ethics Commission of Innsbruck Medical University.
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Table 1 Baseline characteristics of CKD patients
under study

Patient Gender Type of dialysis Dialytic age Dialysis efficiency

D mmF  [HD/HDR [months] [Kt/V]
193 M HD 65 16°
195 F HD 45 17
202 M HOF 31 15
203 F HD 20 15
04 M HD 13 08
205 F HOF 10 22
06 M HD ) 18
207 F HOF 8 13
08 M HD 47 144
00 M HDF e, 14
210 F HD 37 1
211 F HD 16 5%
213 F HD 6 08
24 M HD 13 5%

Patients’ mean age was 66 years (36-83).
*Not calculated on the sampling day.

Identification of volatiles emitted by dialyzer materials
Contaminants emitted by the extracorporeal circuit ma-
terials and thus being introduced into the organism dur-
ing the HD treatment were identified on the basis of
analyses of air within freshly unpacked bloodlines and
Helixone membranes as well as head-space above frag-
ments of the aforementioned materials placed in sealed
vials. In the latter case vials were stored for 1-2 hours to
let potential pollutants accumulate.

Blood and breath sampling

Patients were dialyzed via an upper extremity native fistula
and provided two blood samples taken from the arterial
inflow line into 2.7 mL blood monovettes (Sarstedt,
Germany) using a protocol described in our recent article
[25]. The first blood sample was taken shortly (<10 min)
after the onset of dialysis procedure and the second one a
few minutes before its end. In parallel, one blank sample
containing 2.7 mL of distilled water was collected using
the same materials as in the case of blood sampling. This
was done to identify possible contaminants stemming
from sources other than blood. Blank samples were ana-
lyzed in the same way as blood samples and the resulting
concentration levels were subtracted from the respective
blood sample values.

End-exhaled breath samples were collected into 3-liter
Tedlar bags (SKC Inc., USA) in a CO, controlled manner
using breath sampler developed at Innsbruck Medical
University, Austria [25-27]. The evolution of breath con-
stituents during dialysis was monitored by taking breath
samples every 40-60 minutes throughout the dialysis
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session. The first sampling instant was at the onset of
hemodialysis, the last one just before removing the extra-
corporeal circuit. Effectively, 5-7 breath samples were col-
lected per patient. Additionally, two separate room air
samples were taken (one at the onset of dialysis and one
at the end of the treatment) for determining the back-
ground levels of VOCs under study.

Blood/breath sample preparation and chromatographic
analysis

Blood sample preparation, breath and blood calibration
and the chromatographic analysis itself were performed
in analogy with the procedures outlined in our recent
article [25]. However, breath sample preparation relied
on solid phase microextraction (SPME) and followed
procedure described in King et al. [28].

We stress the fact that the identification of compounds
was performed in two steps. First, the peak spectrum
was checked against the NIST mass spectral library.
Next, the NIST identification was confirmed by compar-
ing the retention times of peaks of interest with reten-
tion times obtained for standard mixtures prepared from
pure compounds. Peak integration was based on ex-
tracted ion chromatograms. The applied quantifier ions
are presented in Table 2.

Results and discussion

Method validation

Limits of detection/quantification (LOD/LOQ) as well as
relative standard deviations (RSDs) for the measurements
were calculated as described in [25]. The obtained valid-
ation parameters are shown in Table 2 and were recog-
nized as satisfactory for the goals of this study. With a few
exceptions (pyrrole, pyrimidine and 2-pentyl-furan), most
of the reported compounds could be quantified in both
blood and breath. Blood acetone levels generally exceeded
the dynamic range of the MS detector.

Contaminants emitted by dialyzer materials

The Helixone membrane was found to emit predominantly
n-alkanes (C3-C7), methylated alkanes (2-methyl-propane,
2-methyl-butane, 2-methyl-pentane and 2,4-dimethyl-
heptane) and alkenes (propene, 2-methyl-1-propene,
2-pentene, 1-hexene and 24-dimethyl-1-heptene). Apart
from hydrocarbons it also emitted considerable amounts
of acetone and hexamethyl disiloxane.

More than 60 volatile contaminants were found to be
released by the bloodlines and 43 of them could reliably
be identified. Among these, hydrocarbons were the pre-
dominant chemical class with eighteen representatives. This
number includes n-alkanes (C4-C7), methylated alkanes
(2-methyl-propane, 2-methyl-pentane, 3-methyl-pentane,
4-methyl-heptane, 4-methyl-octane), cyclic HCs (methyl
cyclopentane and cyclohexane) and alkenes (2-methyl-
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1-propene, 1-pentene, 2-heptene, 3-heptene, 3-ethyl-3-
hexene, 3-methylene-heptane, 4-octene and 2,4-dimethyl-
1-heptene). Furthermore, there were nine aldehydes
(2-propenal, propanal, 2-methyl-2-propenal, pentanal, he-
xanal, heptanal, benzaldehyde, 2-ethyl-hexanal and nona-
nal), seven ketones (acetone, 3-buten-2-one, 2-hexanone,
cyclohexanone, 2-cyclohexen-1-one, 3-methyl-2-hexanone
and 3-heptanone), three furans (furan, 2,3-dihydroxy-
furan and tetrahydrofuran), three terpenes (a-pinene,
B-pinene and 3-carene) and two aromatics (toluene and
p-xylene). The only alcohol present was 2-ethyl-hexanol.
Two species namely tetrahydrofuran and 2-ethyl-hexanol
exhibited especially high abundances. Pollutants affecting
the levels of species reported within this study have been
marked in Table 3.

Blood and breath profiles of volatiles during HD
Altogether 60 compounds were quantified in blood
and breath of patients undergoing HD. Their detection
and quantification incidences as well as the observed
concentrations are given in Tables 3 and 4. In blood
hydrocarbons comprised 32% of all quantified species,
ketones 20%, heterocyclic compounds 14%, terpenes
11%, aromatics 7%, volatile sulphur compounds 7% and
aldehydes 5%. In breath the predominant chemical clas-
ses were hydrocarbons (40%) and ketones (21%). Other
well represented classes were heterocyclic compounds
(10%), terpenes (8%), volatile sulphur compounds (6%),
aromatics (6%) and aldehydes (6%).

Four volatile sulphur compounds (DMS, AMS, MPS
and thiophene) were quantified in blood and breath. Inter-
estingly, their concentrations were decreasing during the
HD treatment in both investigated fluids (see Tables 3 and
4 for Wilcoxon tests and Figure 1 for representative MPS
and DMS profiles). For example, blood levels of DMS after
the HD session were on average three-fold lower than at
the onset of the treatment. Analogously, breath concentra-
tions dropped approximately by a factor of 1.5. The reason
for this response of sulphur species remains unclear. They
were not found to be released by the dialyzer materials
and their room air levels were relatively low. Thus, ex-
ogenous contamination can be excluded as a potential rea-
son for elevated VSC concentrations before HD. It rather
seems that volatile sulphur species were effectively re-
moved from blood during the haemodialysis session. Con-
versely, Goerl et al. [29] reported stable levels of DMS in
breath of patients undergoing dialysis. The reason for this
discrepancy remains speculative. Perhaps, some differ-
ences in HD treatment affect DMS washout.

22 aliphatic hydrocarbons were detected in the blood or
breath of HD patients. A great majority of them (17) were
pollutants originating from the dialyzer materials. Breath
levels of four species (n-butane, n-pentane, 2-methyl-1-
pentene, and 1-hexene) were significantly higher than



Mochalski et al. BMC Nephrology 2014, 15:43 Page 4 of 14
http://www.biomedcentral.com/1471-2369/15/43

Table 2 Retention times R [min], quantifier ions, LODs [nmol-L", ppb], RSDs (%), coefficients of variation (R?) and
linear ranges [nmol-L", ppb] of compounds under study for blood and breath measurements

VvOC CAS R¢ Quantifier Blood Breath/room air
ion LOD RSD R? Linearrange LOD RSD R? Linear range
[min] [nmol/L]  [%] [nmol/L] [ppb]l  [%] [ppb]
Propane, 2-methyl- 75-28-5 10.86 43 0.36 36  099% 1.1-16 03 7 0.998 0.9-30
1,3-Butadiene 106-99-0 11.04 54 0.08 5 0.997 0.25-13 04 15 0995 1.2-60
Acetonitrile 75-05-8 11.32 41 21 14 0.998 63-11000 4 8 0.999 11-150
n-Butane 106-97-8 11.78 43 0.13 35 0999 04-16 0.2 45 0988 0.6-100
2-Propenal 107-02-8 12.80 56 800 9 0.965 2500-25000 09 7 0.997 2.7-63
Furan 110-00-9 13.32 68 0.03 3 0.991 0.07-70 02 2 0.999 0.6-23
Propanal 123-38-6 1342 58 1.5 5 0.991 4.5-1700 0.7 3 0.997 2-150
Acetone 67-64-1 13.56 58 - - - - 0.8 3 0.999 2.4-10000
Dimethy! sulfide (DMS) 75-18-3 14.27 62 0.24 15 0995 0.7-140 0.06 1.5 0999 0.17-60
Butane, 2-methyl- 78-78-4 15.90 57 0.10 7 0.995 0.3-4 03 2 0.996 0.9-46
Isoprene 78-79-5 16.05 67 0.02 35 0995 0.06-58 0.04 1.5 0999 0.12-500
2-Pentene, (2)- 627-20-3 1641 55 0.02 6 0.989 0.06-3.5 015 25 0998 0.45-20
n-Pentane 109-66-0 16.54 43 0.1 25 0988 0.3-5 0.12 16 099 0.36-60
1,3-Pentadiene, (F)- 2004-70-8  16.75 67 0.02 34 0999 0.06-2 0.07 15 0999 0.2-20
1,3-Pentadiene, (2)- 1574-41-0 16.86 67 0.02 45 0997 0.06-1.5 0.07 2 0.998 0.2-13
2-Propenal, 2-methyl- 78-85-3 16.92 70 3 9 0.993 10-250 0.1 1 0.998 0.3-50
3-Buten-2-one 78-94-4 17.54 55 40 " 0.985 120-10000 0.2 7 0.998 06-23
Furan, 2-methyl- 534-22-5 18.05 82 0.02 35 0993 0.06-6.5 0.08 2 0.998 0.24-18
2,3-Butanedione 431-03-8 18.06 86 10 13 0.986 30-4000 04 33 099% 1-200
2-Butanone 78-93-3 1811 43 04 6 0.999 1.3-3000 0.13 7 0.997 0.38-250
Furan, 3-methyl- 930-27-8 18.21 82 0.02 4 0.991 0.06-4 0.09 2 0.997 0.3-10
Ethyl Acetate 141-78-6 1891 43 03 9 0.960 0.9-400 0.13 25 09% 0.39-200
Thiophene 110-02-1 19.84 84 0.04 1 0.994 0.12-6.5 - - - -
Pentane, 2-methyl- 107-83-5 19.95 43 03 15 0993 0.9-5 0.17 1 0.999 0.53-150
1-Pentene, 2-methyl- 763-29-1 19.99 56 0.07 55 0997 0.2-7 0.1 32 0999 0.3-15
1-Hexene 592-41-6 20.17 56 0.03 55 0997 0.09-10 0.2 1.7 0999 0.6-70
Pentane, 3-methyl- 96-14-0 20.21 57 0.12 4 0.998 0.38-5 0.08 1.5 0999 0.24-40
Benzene 71-43-2 20.32 78 0.04 32 0995 0.12-8 0.1 38 0998 0.33-36
n-Hexane 110-54-3 20.65 57 0.03 25 0993 0.1-8 0.12 16 0995 0.36-110
Pyrrole 109-97-7 20.81 67 05 14 0982 1.5-100 - - - -
Cyclohexane 110-82-7 2133 56 0.07 3 0.99% 021-6 0.1 6 0.997 0.3-100
Pyrimidine 289-95-2 21.64 80 7 12 0.990 20-950 - - - -
2-Pentanone 107-87-9 21.88 43 1 8 0975 3-1000 0.08 22 0998 0.24-24
Furan, 2,5-dimethyl- 625-86-5 22.00 96 0.08 4 0.995 0.24-55 0.08 14 0999 0.24-15
Sulfide, allyl methyl (AMS) 10152-76-8  22.05 88 0.1 2 0.998 0.3-15 0.14 2 0.999 043-15
Pyridine 110-86-1 22.05 79 0.6 9 0.988 2-450 0.04 9 0975 0.12-100
Sulfide, methyl propyl (MPS)  3877-15-4 2267 61 0.12 15 0999 0.36-50 0.04 2.1 0.996 0.12-30
Hexane, 2-methyl- 591-76-4 23.60 85 0.07 3 0.990 0.2-45 0.09 3 0.998 0.26-11
1-Heptene 592-76-7 23.87 56 0.09 5 0.998 0.27-4.2 013 2 0.999 0.38-70
2-Heptene, (E)- 592-77-8 24.09 55 0.07 6 0.996 0.21-53 04 14 09% 1.2-13
Toluene 108-88-3 24.26 91 0.02 7 0.998 0.06-15 0.05 3 0.993 0.15-30
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Table 2 Retention times R, [min], quantifier ions, LODs [nmol-L™, ppb], RSDs (%), coefficients of variation (R?) and
linear ranges [nmol-L", ppb] of compounds under study for blood and breath measurements (Continued)

n-Heptane 142-82-5 24.30 43 0.13
2-Hexanone 591-78-6 2549 58 0.1
Heptane, 3-methylene- 1632-16-2 2691 70 0.03
3-Octene, (E)- 14919-01-8  27.25 55 0.07
Cyclohexanone 108-94-1 2741 55 13
p-Xylene 106-42-3 2768 91 0.03
2-Cyclohexen-1-one 930-68-7  27.89 63 2
o-Xylene 95-47-6 27.95 91 0.03
4-Heptanone 123-19-3 2829 71 0.17
3-Heptanone 106-35-4 28.51 57 044
2-Heptanone 110-43-0 28.68 43 0.6
Heptane, 2,4-dimethyl- 2213-23-2 9201 85 0.06
a-Pinene 80-56-8 30.69 93 2
Furan, 2-pentyl- 3777-69-3  31.53 81 35
3-Carene 13466-78-9  32.09 93 14
m-Cymene 535-77-3 32.34 119 0.6
p-Cymene 99-87-6 3262 119 1
DL-Limonene 138-86-3 32.84 68 1
Eucalyptol 470-82-6 3340 43 0.7

2 0.997 04-4 0.13 1.5 0998 0.39-40
9 0.997 0.3-25 0.18 1 0.989 0.54-13
3 0.998 0.09-45 0.09 1 0.994 0.26-20
4 0.991 0.2-20 032 2 0.991 1-13
13 0999 4-700 0.12 8 0.956 0.34-80
8 0.998 0.09-10 0.07 8 0.986 0.2-18
12 0998 6-460 0.1 10 0981 0.3-15
7 0.998 0.09-11 0.08 9 0.991 0.24-10
9 0.997 0.5-430 0.05 63 0978 0.16-17
11 0.998 1.3-350 0.2 5 0977 0.6-6
10 0997 1.8-320 0.1 6.3 099 0.3-9
6 0.975 0.2-3 0.1 6 0.987 0.3-9
9 0.986 6-440 046 8 0.985 1.4-20
13 0989 10-350 - - - -
8 0.997 4.2-280 0.6 53 0954 1.8-12
9 0.992 1.8-90 0.1 55 0981 0.3-10
95 0993 3-160 0.1 6 0973 0.3-21
9 0.983 3-1000 0.46 6 0.954 14-30
14 0989 2-3 - - - -

Compounds are ordered with respect to increasing retention time.

room air ones and exhibited a statistically significant de-
crease during the treatment (see Figure 2 for exemplary
profiles). This observation is in good agreement with the
results reported by Lee et al. [24] evidencing the influx of
hydrocarbon pollutants into blood from the extracorpor-
eal circuit. Whereas Lee et al. [24] reported HC levels that
were elevated only for a rather short period of time (20 mi-
nutes), the increased HC concentrations observed within
this study were still present at the end of hemodialysis.
The composition and intensity of the contaminant influx
are clearly manufacturing process dependent and may dif-
fer significantly between different vendors. Strikingly, the
aforementioned concentration drops were not observed in
blood samples. This discrepancy can be explained by the
poor blood solubility of aliphatic hydrocarbons [30] as
well as the fact that the arterial blood sampling point was
located at the beginning of the extracorporeal circulation
before the membrane. Consequently, the samples corres-
pond to blood degassed during pulmonary gas exchange.
Thus, it seems that this excess of hydrocarbons is quickly
and effectively removed by the lungs and the exposure of
tissues to these pollutants is probably limited. Amongst
the hydrocarbons not being treatment-related pollutants
there were four smoking-induced species (1,3-Butadiene,
(E/Z)-1,3-Pentadiene and 1-heptene) and isoprene. Both
blood and breath levels of isoprene increased significantly
after the hemodialysis (see Figure 3 and Figure 4). In ex-
haled air this rise amounted to about 36%, whereas in

blood an average difference of 52% was observed. This
characteristic breath isoprene behavior in response to
dialysis has already been reported by numerous investiga-
tors [18-29], however, this is the first time that it is con-
firmed by parallel blood measurements. The advanced
explanations for this phenomenon include hemodynamic
stress, fluctuations of respiratory variables, or activation of
metabolic pathways leading to mevalonic acid synthesis
[19,21-23], nevertheless, none of them seems to be ad-
equate [18]. Isoprene has received a growing interest in
the field of breath gas analysis due to the fact that it may
serve as a sensitive, non-invasive indicator of several
diseases in human organism [31]. Strikingly, despite this
interest the source of isoprene and its function in humans
are still a matter of debate [32,33]. In this context, the
elucidation of isoprene evolution during hemodialysis
could be valuable for understanding its function in human
organism.

A total of number of eleven ketones were quantified in
blood and breath samples. For 6 of them significant dif-
ferences between breath and room air levels were found
(Wilcoxon signed-rank test) both before and after HD.
Species from this family were also found to be affected
by background emission from the dialyzer fabrics. This
especially applies to cyclohexanone, 2-cyclohexen-1-one,
3-heptanone, 3-buten-2-one and 2-hexanone. Due to the
shortage of the literature values for arterial blood levels
of ketones in humans it is difficult to evaluate the blood



Table 3 Detection (ng) and quantification (n,) incidences and concentration ranges of blood volatile organic compounds

Class vocC CAS Blood before HD Blood after HD Wilcoxon Contaminants
Incidence Range (median) Incidence Range (median) bbeli(’)oor:/ Tubing Membrane
ng(ng) [nmol/L] ng(ng) [nmol/L] after
VSC Dimethy! sulfide (DMS) 75-18-3 14(14) 2.3-146(18.7) 14(14) 1.2-38.7(5.7) <0.001
Thiophene 110-02-1 8(6) 0.11-0.66(0.13) 2(1) 0.36 0.03
Sulfide, allyl methyl (AMS) 10152-76-8 8(8) 0.6-13(3.3) 8(6) 0.67-3.7(2.4) 0.02
Sulfide, methyl propyl (MPS) 3877-15-4 11(8) 0.7-56(4.3) 10(7) 04-17.5(1.1) 0.008
Ketones Acetone 67-64-1 14(14) n.g. 14(14) ng. - ° °
3-Buten-2-one 78-94-4 7(7) 488-7370(1090) 10(10) 385-47360(1170) ns. .
2,3-Butanedione 431-03-8 (1) 967 (1) 285 -
2-Butanone 78-93-3 14(14) 13-1895(60) 14(14) 32-4330(164) n.s.
2-Pentanone 107-87-9 14(14) 11.5-387(68) 14(14) 31.3-341(77) n.s.
2-Hexanone 591-78-6 4(2) 24-3.2(2.8) 7(5) 04-6.8(0.75) ns. )
Cyclohexanone 108-94-1 8(8) 57-478(238) 8(8) 11-780(150) ns. .
2-Cyclohexen-1-one 930-68-7 4(4) 73-344(232) 4(4) 55-225(98.5) - .
4-Heptanone 123-19-3 14(14) 1.8-130(35) 14(14) 14.5-200(41) 0.03
3-Heptanone 106-35-4 8(8) 1.5-148(5) 9(9) 1.5-87(2.6) n.s. (]
2-Heptanone 110-43-0 9(9) 1.5-31(6) 12(12) 3.5-128(19) <0.001
Ald. 2-Propenal 107-02-8 8(8) 4080-26100(12800) 303) 10200-15200(14800) ns. °
Propanal* 123-38-6 7(7) 5.9-44(17.5) 5(5) 6.5-820(23) n.s. .
2-Propenal, 2-methyl- 78-85-3 1(1) 54 1(1) 54 - °
Hydrocarbons Propane, 2-methyl- 75-28-5 (1) 1.1 0(0) <LOD - ° °
1,3-Butadiene 106-99-0 2(2) 0.57-0.9(0.74) (1) 0.27 -
n-Butane 106-97-8 7(7) 0.5-2.3(1.25) 5(5) 04-5.6(1.2) ns. . .
Butane, 2-methyl- 78-78-4 7(7) 0.21-2.2(0.57) 202) 0.12-0.46(0.29) ns. .
Isoprene 78-79-5 14(14) 1.3-25.6(4.1) 14(14) 2.8-36(6.6) <0.001
2-Pentene, (2)- 627-20-3 2(2) 0.13-0.6(0.37) 2(2) 0.1-0.27(0.19) - .
n-Pentane 109-66-0 6(6) 0.35-2(0.67) 7(7) 03-2.7(1.1) ns. . .
1,3-Pentadiene, (E)- 2004-70-8 2(2) 0.6-0.9(0.74) (1) 0.28 -
1,3-Pentadiene, (2)- 1574-41-0 2(2) 0.17-0.18(0.17) (1) 0.07 -
1-Pentene, 2-methyl- 763-29-1 0(0) <LOD 0(0) <LOD - °
Pentane, 2-methyl- 107-83-5 5(4) 1.1-4.8(24) 5(3) 1.1-2.5(2.1) ns. ] .
Cyclohexane 110-82-7 1(1) 027 0(0) <LOD - ° °
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Table 3 Detection (ng) and quantification (ng) incidences and concentration ranges of blood volatile organic compounds (Continued)

1-Hexene 592-41-6 4(4) 0.15-8.7(3.3) 5(5) 0.09-6.1(0.4) - .
Pentane, 3-methyl- 96-14-0 2(0) <LOQ 2(0) <LOQ - .
n-Hexane 110-54-3 10(10) 0.09-7.3(0.35) 9(9) 0.16-2.9(0.33) ns. . .
Hexane, 2-methyl- 591-76-4 4(4) 0.22-0.83(0.28) 4(4) 0.20-0.4(0.24) - .
1-Heptene 592-76-7 202) 0.28-0.63(0.46) (1) 18 -
2-Heptene 592-77-8 1(1) 3.8 1(1) 2.7 - °
n-Heptane 142-82-5 8(8) 0.36-2(0.6) 7(7) 04-2.3(0.6) ns. . .
Heptane, 3-methylene- 1632-16-2 909) 0.09-52(0.62) 10(10) 0.26-44(0.95) ns. °
3-Octene, (B)- 14919-01-8 5(5) 0.2-16(0.75) 5(5) 0.3-12(1.6) - .
Heptane, 2,4-dimethyl- 2213-23-2 0(0) <LOD 0(0) <LOD - °
Terpenes a-Pinene 80-56-8 6(6) 13.7-239(48) 6(6) 134-183(35.5) 0.03 °
3-Carene 13466-78-9 12(12) 6.2-116(12.5) 12(11) 4-65(11.6) ns. °
m-Cymene 535-77-3 (M 2.33 (1) 2 -
p-Cymene 99-87-6 14(14) 34-84.5(17) 14(14) 3.6-69.5(11.7) ns.
DL-Limonene 138-86-3 13(13) 22.6-982(163) 13(13) 23.7-1210(109) n.s.
Eucalyptol 470-82-6 2(2) 126-310(218) 2(2) 79-173(126) -
Aromatics Benzene 71-43-2 10(10) 0.14-7.1(1) 5(5) 0.19-2.33(1.3) 0.01
Toluene 108-88-3 11011) 0.28-14(1.2) 10(10) 0.22-9.5(0.65) 0.01 °
p-Xylene 106-42-3 13(13) 0.36-9.4(0.9) 1(11) 044-6.2(1.2) n.s. ]
o-Xylene 95-47-6 2(2) 0.39-2.7(1.54) 2(2) 0.17-0.24(0.21) -
Heterocyclic Furan 110-00-9 7(7) 0.06-37(0.7) 9(9) 0.21-113(1.7) 0.03 .
Furan, 2-methyl- 534-22-5 5(5) 0.18-6.3(0.7) 5(5) 0.1-1.7(0.6) -
Furan, 3-methyl- 930-27-8 4(4) 0.07-0.37(0.08) 4(4) 0.06-0.16(0.07) -
Pyrrole 109-97-7 2(2) 16-20.8(18.4) 0(0) <LOD -
Pyrimidine 289-95-2 9(8) 15.9-485(45) 8(8) 22.4-166(44.5) n.s.
Furan, 2,5-dimethyl- 625-86-5 303) 0.25-2.6(2.16) 303) 0.25-2.45(1.29) -
Pyridine 110-86-1 10(10) 11.4-359(28.6) 8(8) 7.2-47(22.6) ns.
Furan, 2-pentyl- 3777-69-3 5(4) 11-68(13) 5(3) 10-34(13) n.s.
Other Acetonitrile 75-05-8 6(6) 201-6790(835) 4(4) 180-2280(1000) -
Ethyl Acetate 141-78-6 202) 0.9-916(458) 202) 254-53(39) -
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n.s. — not significant. Isoprene increases in concentration during dialysis, whereas dimethyl sulfide (DMS), methyl propyl sulfide (MPS) and benzene decrease in concentration during dialysis. *Due to some technical
problems breath profiles of one patient were excluded from the data analysis.
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Table 4 Detection (ny) and quantification (n,) incidences and concentration ranges of breath and room air compounds

Class VOC Breath before HD Room air before HD Breath after HD Room air after HD Wilcoxon Wilcoxon Wilcoxon
breath breath/ breath/

Incidence Range Incidence Range Breath Before range  After incidence Range . .
(median) (median)  after incidence (median) (median) before/  room air  room air
ng(ng) [ppb] ng(ng) [ppb] ng(ng) [ppb] ng(ng) [ppb]
VSC Dimethyl sulfide (DMS) 13(13) 1.1-583(7.8) 13(12) 0.35-29(0.85) 13(13) 1.1-31(6.5) 13(12) 0.18-1.7(0.75) <0.001 <0.001 <0.001
Thiophene 0(0) <LOD 000) <LOD 000) <LOD 0(0) <LOD - - -
Sulfide, allyl methyl (AMS) 7(6) 066-49(1.2) 0(0) <LOD 7(5) 0.7-4.8(1.7) 0(0) <LOD ns. 003 003
Sulfide, methyl propyl 7(7) 03-125(15) 7(6) 0.14-082(02) 7(7) 033-12(1.5) 6(4) 0.15-0.36 003 002 002
(MPS) (0.24)
Ketones Acetone 13(13) 760-9070(1600) 13(13) 106-850(240) 13(13) 580-3900(1500) 13(13) 100-350(200) ns. <0.001 <0.001
3-Buten-2-one 12(12) 2.7-65(4.3) 12(12) 2-64(32) 12(12) 32-81(49) 12(12) 19-105(29) ns. 0.005 001
2-Butanone 13(13) 2.7-225(19) 13(13) 29-140(43) 13(13) 2-49(12.6) 13(13) 2-67(12.5) 003 ns. ns.
2,3-Butanedione 12(12) 46-73(235) 12(12) 28-77(6.1) 12(12) 4.5-142(18) 12(12) 25-104(53) ns. <0.001 <0.001
2-Pentanone 13(13) 043-162(1.2) 13(10) 0.25-0.83(04) 13(13) 064-62(1.3) 13(10) 0.26-1(044) ns. <0001 <0001
2-Hexanone 1(1) 207 1(1) 056 (1) 061 1(1) 059 - - -
Cyclohexanone 99 0.76-43(18) 8(8) 1.2-118(32) 8(8) 0.77-21.3(11.6) 8(8) 092-70(32.3) ns. 002 001
2-Cyclohexen-1-one 6(6) 0.7-5(2) 6(6) 2.1-12(3) 5@) 1-25(1.8) 5(5) 1.3-5(3.5) - - -
4-Heptanone 10(10) 0.17-135(0.5) 1(0) <LOD 1009 0.21-1.5(0.55) 1(0) <LOD ns. 0003 0004
3-Heptanone 702) 0.79-0.85(0.82) 7(1) 064 7(0) <LOQ 7(0) <LOQ - - -
2-Heptanone 2(2) 045-096(0.7) 2(2) 0.34-04(0.37) 2(1) 062 2(2) 0.36-04(0.38) - - -
Ald. 2-Propenal 12(12) 10-51(22) 12(12) 8.7-47(206) 12(12) 9-57(21.8) 12(12) 96-50(21.3) ns. ns. ns.
Propanar 12(12) 64-80(18) 12(12) 15.7-227(49) 12(12) 4.7-373(11.7) 12(12) 11.7-744(344) 0.005 <0.001 <0.001
2-Propenal, 2-methyl- 12(12) 28-58(4.2) 12(12) 29-14(34) 12(12) 22-15(4.8) 12(12) 1.7-22(37) ns. ns. ns.
Hydrocarbons 1,3-Butadiene 303) 56-18(10) 3(3) 2-35(29) 3(3) 3.7-7(5) 3(3) 18-3(2.5) - - -
Propane, 2-methyl- 4(4) 8.6-244(17) 4(4) 2.14-23.7(55) 4(4) 6.7-20(134) 4(4) 2.74-189(54) ns. ns. ns.
n-Butane 12(12) 8.1-147(194) 12(12) 275214(79) 12(12) 3.1-111(129) 12(12) 266-192(7.2) <0.001 0.002 ns.
Butane, 2-methyl- 12(12) 7-273(136) 12(12) 39-32(114) 12(12) 4.8-26(9.4) 12(12) 44-26(11.5) ns. ns. ns.
Isoprene 13(13) 50-563(101) 13(13) 19-7(3) 13(13) 116-547(199) 13(13) 24-66(44) 0.009 <0.001 <0.001
2-Pentene, (2)- 4(4) 25-17(14.7) 4(4) 1.1-86(5.2) 4(4) 097-105(7) 4(4) 0.7-156(8.2) ns. ns. ns.
n-Pentane 13(13) 9.3-70(169) 13(13) 2.1-149(6) 13(13) 207-144(4.8) 13(13) 148-1199) <0001 <0001 <0001
1,3-Pentadiene, (E)- 303) 56-18.1(11.3) 33) 2-35(28) 33) 37-7(5.3) 303) 1.79-3.1(244) - - -
1,3-Pentadiene, (2)- 303 26-69(4.3) 303) 037-1(067) 303 1.1-29019) 303 0.36-0.8(0.59) - - -
1-Pentene, 2-methyl- 7(7) 143-158(2.7) 74 03-1.3(0.55) 7(4) 044-1.77(09) 6(2) 0.8-0.89(0.85) 002 002 ns.
Pentane, 2-methyl- 6(6) 94-130(41) 6(6) 92-171(364) 6(6) 23-31(233) 6(6) 2.7-45(14.6) 003 ns. ns.
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Table 4 Detection (ny) and quantification (n,) incidences and concentration ranges of breath and room air compounds (Continued)

Cyclohexane
Hexane, 2-methyl-
1-Hexene
Pentane, 3-methyl-
n-Hexane
1-Heptene
2-Heptene
n-Heptane
Heptane, 3-methylene-
3-Octene, (E)-
Heptane, 24-dimethyl-
Terpenes a-Pinene
3-Carene
m-Cymene

p-Cymene

DL-Limonene
Eucalyptol
Aromatics Benzene
Toluene
p-Xylene
o-Xylene
Heterocyclic Furan

Furan, 2-methyl-

Furan, 3-methyl-
Furan, 2,5-dimethyl-
Pyridine
Furan, 2-pentyl-
Other Acetonitrile

Ethyl Acetate

13(11)
13(13)

099-34(2.2)
047-4.8(0.84)
1.32-77(54)
25-325(73)
14-21(44)
0.57-56(14)
<LOD
091-334(1.9)
095-17.5(2.6)
1.7-47(22)
<LOD
194-163(2.8)
7.1
<LOD
036-3.7(097)

16-22(5.1)
<LOD
2.1-15(4.2)
22-152(5.1)
28-77(43)
<LOD
068-9.8(2.0)
052-7.1(1.32)

03-1.1(043)
0.58-28(1.7)
0.75-58(7.3)
<LOD
12-165(154)
08-211(1.3)

11(11)
9(8)

to)
L

oo

(

(

@
13(13)

(

(

(

(

o
©w

13
3

13(2)
2(0)
13(13)
0(0)
13(8)
13(13)

053-113(1.5)
0.71-2.8(0.9)
093-77(55)
3.1-42(75)
1-13.7(4.6)
047-5(0.77)
<LOD
062-2.8(14)
0.28-13(0.52)
098-1.7(1.3)
<LOD
16-72(2.1)
<LOQ
<LOD
03-1.58(0.77)

1.7-7.3(4)
<LOD
191-6.7(3.8)
212-944)
29-79(44)
<LOD
0.7-2.2(1.5)
047-1.77(068)

035-042(038)
<LOQ
04-75(5.9)
<LOD
11.5-46.5(14.5)
09-47.7(15)

1@
el

13(8)
2(1)
13(13)
0(0)
13(8)
13(13)

057-123(2.1)
056-32(1.3)
0.79-20(4.5)
093-84(44)
12-121(58)
046-73(16)
<LOD
069-33(1.7)
05-96(19)
0.98-2.5(1.9)
<LOD
1.85-7.2(24)
253
<LOD
0.29-3.1(0.86)

1.7-19.7(44)
<LOD
19-87(4.0)
2-102(4.3)
3-85(4.2)
<LOD
085-4.1(1.8)
059-3.24(1)

032-1.1(041)
1.13
066-141(11)
<LOD
13-56(16.8)
068-48(1.04)

1)
8
©)
8)
13)
8)
000

0 WO O

3(
(

o)

1
1
1

13(3)
2(0)
13(13)
0(0)
1309)
13(13)

04-95(1.7)
0.51-2.5(0.86)
093-166(3.7)
094-114(29)
09-3539)
039-38(09)
<LOD
053-35(1.3)
0.33-24(0.57)
1-24(1.6)
<LOD
1.7-353(2.7)
<LOQ
<LOD

0.29-2.15
(0.76)

1.7-69(4.3)
<LOD
1.7-8135)
2.14-99(4.2)
33-78(43)
<LOD
065-29(1.3)

052-1.88
(084)

039-05(04)
<LOQ
04-74(153)
<LOD
12-55(15.1)
098-45.7(14)

ns.
ns.
004
0.008
ns.

ns.

<0001

n.s.
ns.
ns.
ns.

002

ns.
0.002
002

ns.

<0001

ns.

ns.

n.s.

ns.

n.s.

ns.
ns.
003
ns.
ns.
002
<0.001
<0.001
0.008
ns.
ns.

0.04

ns.
<0001
0.008
ns.
<0001
0.04

<0.001

ns.

ns.

ns.

ns.

0.008
ns.
ns.
ns.

0.04

002
<0001

ns.

ns.

ns.

005

ns.
ns.
ns.
ns.
n.s.

003

<0.001

ns.

ns.

ns.

n.s. — not significant.

"Due to some technical problems breath profiles of one patient were excluded from the data analysis.
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Figure 1 Representative breath profiles of MPS and DMS during hemodialysis. Hollow and filled symbols denote room air and breath
levels respectively.

concentrations obtained within this study. In our recent
paper [25] we established venous blood levels of 62
VOCs including ketones in healthy volunteers. While
VOC:s levels in arterial blood are significantly lower than
in venous blood due to pulmonary gas exchange [34], a
comparison of results obtained within this study with
the ones reported in our recent paper can provide some
valuable information. In general despite degassing the
arterial blood levels observed within this study were
much higher than the ones observed in venous blood of
healthy volunteers. For example, pre-dialysis blood levels
of 2-pentanone were approx. three times higher (mean:
94 vs 35 nmol/L), 2-heptanone four times higher (mean:
10.5 vs 2.7 nmol/L) and 4-heptanone sixty five times

higher (mean: 54 vs 0.83 nmol/L) than in healthy indi-
viduals (see Figure 4). The same holds true for the aver-
age breath levels (e.g. 2.78 vs 0.62 ppb for 2-pentanone,
0.6 vs 0.03 ppb for 4-heptanone). Interestingly, elevated
levels of ketones in ESRD patients were present already
before the HD treatment. Since ketones were reported
to be particularly abundant in human urine [30,35,36],
this fluid seem to be an important sink of these species
in human organism. Consequently, any impairment of
kidney function may significantly affect the excretion of
ketones and hence lead to their retention within the
uremic syndrome. Two heptanone isomers (2- and 4-
heptanone) exhibited high levels in blood and breath des-
pite the fact that they were neither found room in air nor
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Figure 2 Representative breath profiles of n-butane and n-pentane during hemodialysis. Hollow and filled symbols denote room air and
breath levels respectively.
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Figure 3 Representative breath profiles of benzene, and isoprene during hemodialysis. Hollow and filled symbols denote room air and
breath levels respectively.

extracorporeal circuit contaminants. Moreover, their blood
levels increased significantly during the hemodialysis. Such
an excess of 4-heptanone in hemodialysis patients has
already been reported in the literature and attributed to
the metabolism of di(2-ethylhexyl) phthalate (DEHP)
[37]- a plasticizer used in polyvinyl chloride products.
In humans DEHP is rapidly metabolized to 2-ethylhexanol,
which is then oxidized to 2-ethylhexanoic acid and finally
to 2-heptanone and 4-heptanone [37,38]. Indeed, the
bloodlines used within this study were found to emit sig-
nificant amounts of 2-ethylhexanol and its oxidation prod-
uct 2-ethyl-hexanal. Consequently, it is plausible that the
high concentrations of 2- and 4-heptanone in HD patients
originated from this source. At least one of aforementioned
ketones can be considered as a uremic toxin: cyclohexa-
none emitted from extracorporeal circuits was reported to
impair cardiovascular function [39].

Only three aldehydes (2-propenal, propanal and 2-metyl-
2-propenal) were found in blood samples. 2-propenal
and propanal showed incidence rates of 50% and 2-metyl-
2-propenal was detected only once. In breath all three spe-
cies were omnipresent, however, their levels were lower
(propanal), or comparable (2-propenal and 2-metyl-2-
propenal) to the ones in room air. The high room air
levels and the observed emission by bloodlines render
the aforementioned species pollutants rather than en-
dogenous compounds. 2-propenal was also reported to
accumulate in blood of renal failure patients as the re-
sult of spermine degradation by polyamine oxidase be-
ing released from damaged kidney [40]. Since this
compound was also found to be a uremic toxin dam-
aging the functions of cells and proteins [40] its additional
exogenous influx may accelerate the progression of uremia.
Interestingly, while the dialyzer bloodlines also emitted

several heavier aldehydes (pentanal, hexanal, heptanal, ben-
zaldehyde, 2-ethyl-hexanal and nonanal), the latter were
not detected in blood. Perhaps, the analysis of species
from this chemical class requires a special sample
treatment (e.g., derivatisation) [41], or they are rapidly
metabolized by human tissues [42,43]. Moreover, room
air concentrations of these aldehydes were generally much
higher than in breath (data not shown), suggesting an add-
itional influx of these analytes from the surrounding
atmosphere.

Amongst terpenes a-pinene and 3-carene were con-
taminants from fabrics showing relatively high occur-
rences and levels in HD patients as compared to healthy
volunteers [25]. p-cymene and DL-limonene also dis-
played very high abundances in blood, usually 20-30
times higher than in healthy individuals. However, it is
not clear if they result from renal impairment, or stems
from relatively high room air levels of these compounds.

Amongst aromatics there were two dialyzer pollutants
(toluene and p-xylene), benzene and o-xylene. The levels
of toluene tended to decrease over the course of dialysis
both in blood and breath, whereas p-xylene showed
stable concentrations. Benzene decreased in both fluids
after haemodialysis, perhaps due to a treatment-related
washout that would be consistent with the findings re-
ported by Goerl et al. [29] (see Figure 3 and Figure 4).
Since only 3 patients were smokers the elevated levels of
benzene seem to stem from an environmental exposure.
If so, this finding would evidence the retention of ben-
zene within the uremic syndrome.

Amongst heterocyclic species only furan exhibited a
difference between pre- and post-dialysis levels. Never-
theless, this effect can be ascribed to the excretion of
this compound in lungs in response to its emission by
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Figure 4 Comparison of blood levels of selected species in dialyzed patients (before and after HD) and healthy volunteers. Data for the

bloodlines. Several heterocyclic compounds, although
not detected in blood of healthy individuals [25], were
quite abundant in blood of HD patients. Pyrimidine
(found in 65% of all samples) showed concentration
levels around 45 nmol/L, pyridine (found in 70% of all
samples) around 28.6 (before HD) and 22.6 nmol/L
(after HD) and 2-pentyl-furan (found in 35% of all sam-
ples) exhibited mean concentration values of 13 nmol/L.
The elevated pyrimidine levels are consistent with

previous studies reporting an accumulation of pyrimi-
dine compounds in blood of patients with CKD [44].

Conclusions

Breath and blood patterns of VOCs in dialyzed patients
are notably affected by the influx of contaminants from
the dialyzer materials and hospital room air. Of 60 com-
pounds quantified in both fluids 31 were found to be emit-
ted by extracorporeal circuit involved in the treatment.



Mochalski et al. BMC Nephrology 2014, 15:43
http://www.biomedcentral.com/1471-2369/15/43

The identified pollutants belong to numerous chemical
classes, however, hydrocarbons, aldehydes and ketones
hold a distinguished status in this context. More vola-
tile and poorly soluble compounds seem to be relatively
quickly eliminated during pulmonary gas exchange. Ex-
posure to highly soluble species seems to be more per-
sistent. At least two contaminants (2-propenal and
cyclohexanone) have already been identified as uremic
toxins. Perhaps some other volatiles reported here are
biochemically active and have negative impact on hu-
man body functions.

Excluding pollutants six volatiles tended to change their
blood, or breath levels in response to the HD treatment.
Only isoprene increased its concentration over the course
of the hemodialysis. This finding agrees with earlier re-
ports, however, the results within this study for the first
time confirm an analogous behavior in blood. All sulphur
volatiles quantified within this study decreased in concen-
tration with dialysis time. It is not clear whether this drop
stems from an effective removal of these species by the di-
alyzer, from changes in their endogenous production, or
both. As such, additional studies are required to investi-
gate if these species could be used as markers of
hemodialysis efficiency. A concentration drop was also
noted for benzene. Since an endogenous production of
this compound is rather unlikely, its levels and behavior
during HD may reflect previous exogenous exposure and/
or reduced renal excretion and subsequent washout dur-
ing the treatment.
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