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Loss of Dgcr8-mediated microRNA expression in
the kidney results in hydronephrosis and renal
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Abstract

Background: Small non-coding RNA molecules (miRNAs) play a pivotal role in regulating gene expression in
development. miRNAs regulate key processes at the cellular level and thereby influence organismal and tissue
development including kidney morphogenesis. A miRNA molecule is initially synthesized as a longer hairneedle-shaped
RNA transcript and then processed through an enzymatic complex that contains the RNA-processing enzyme Drosha
and its essential interactor Dgcr8. Resulting pre-miRNAs are then cleaved by Dicer. Recent data showed that loss
of Dicer resulted in severe developmental kidney phenotypes. However, as Dicer has multiple miRNA-independent
functions, it was not entirely clear whether the observed renal phenotypes could be exclusively attributed to a lack of
miRNA expression.

Methods: We analyzed the role of miRNAs in kidney development by conditional gene deletion of Dgcr8 in the
developing kidney using a transgenic mouse line that expresses Cre recombinase in the distal nephron and derivatives
of the ureteric bud in kidney development.

Results: Animals with a gene deletion of Dgcr8 in these tissues developed severe hydronephrosis, kidney cysts,
progressive renal failure and premature death within the first two months after birth, a phenotype strongly resembling
Dicer deletion.

Conclusions: Here we show that conditional gene deletion of the essential mMiRNA-processing enzyme Dgcr8 in the
developing renal tubular system results in severe developmental defects and kidney failure. These data confirm earlier
findings obtained in Dicer knock-out animals and clearly illustrate the essential role of miRNAs in kidney development.
The data suggests that miRNA dysregulation may play an important, yet ill-defined role in the pathogenesis of inborn
defects of the genitourinary system and indicate that miRNA defects may be causative in the development of human
disease.
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Background

MicroRNAs are important regulators of gene expression
and have been shown to be crucial to developmental
processes in many different tissues [1]. To study the role
of miRNAs in the kidney several publications have ad-
dressed this question using a conditional knockout of
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Dicer, the RNAse III enzyme catalyzing the maturation
from pre-miRNA to mature microRNAs [2-9]. This
strategy revealed major defects in both tubular and
glomerular development and maintenance. The loss of
Dicer in derivatives of the ureteric bud and in the tubu-
lar system lead to a severe hydronephrosis coupled with
cystic kidneys and loss of functional parenchyme [2-4,6].
These phenotypes strongly resemble congenital anomal-
ies of the kidney and urinary tract (CAKUT) in the clin-
ical setting. However, whether this is truly due to loss of
microRNAs has remained elusive since Dicer fulfills
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several other important functions which may well be in-
volved in renal development [10]. Among these are its
role as a DNAse in genomic DNA fragmentation during
apoptosis, the processing of endogenous siRNA and the
detoxification of repeat elements [11-13]. In an elegant
study elucidating the role of microRNAs in skin devel-
opment this issue has been addressed using the condi-
tional knockout of genes involved in different steps of
miRNA processing displaying a phenotypic overlap
[14,15]. As to the kidney this has been done successfully
regarding the effects of podocyte-specific loss of micro-
RNAs using a conditional knockout allele of Drosha
[16], which confirmed previous studies based on Dicer
knockout in podocytes [7-9].

Consequently, we set out to confirm the role of micro-
RNAs in renal development using a conditional allele of
Dgcr8. Dgcr8 interacts with Drosha and is essential for
its role in processing pri-microRNAs in the nucleus [17].

Methods

Mice

Dgcr8 fl/fl animals were described before [18] and gener-
ously provided by Elaine Fuchs (Rockefeller University,
NYC, USA). To generate a kidney tubulus specific Dgcr8
knockout these mice were crossed to a KspCre transgenic
line (contributed by Peter Igarashi, UT Southwestern
Medical Center, Dallas, USA) that expresses the Cre re-
combinase under the control of a ksp-cadherin promotor
resulting in Cre expression in the developing genitouri-
nary tract and kidney tubulus system was performed as
described before [19]. Animals were housed in standard-
ized specific pathogen-free conditions in the animal facil-
ity of the CMMC (University of Cologne).

All animal procedures were performed according to
European (EU directive 86/609/EEC), national (TierSchG),
and institutional guidelines and were approved by local
governmental authorities (LANUV NRW).

Histology

The kidneys were fixed in formalin, embedded in paraffin
and stained with PAS according to standard protocols. To
analyse the expression of Ki-67, slides of fixed and
paraffin-embedded mouse kidneys were de-paraffinized
using Xylol and descending concentrations of ethanol.
Antigen retrieval was carried out by warming kidney slides
in citrate buffer (10 mM, pH6) for 10 min using a micro-
wave. After blocking with 3% H,O, and Avidin and Biotin
(Vector Laboratories, Inc.) for 15 min each, slides were se-
quentially incubated with the Ki-67 antibody (rabbit Ki-67
ab16667, abcam, 1:500 dilution, over night at 4°C) and
after washing with PBS with biotinylated anti-rabbit IgG
(Jackson ImmunoResearch, West Grove, PA, USA; 1 h at
room temperature). Kidney slides were labelled with ABC
kit (Vector Laboratories, Inc.), and development was

Page 2 of 6

carried out using diaminobenzidine solution (Sigma
Aldrich). Slides were counterstained with hematoxylin
(Sigma-Aldrich), dehydrated and afterwards mounted
with Histomount (National Diagnostics). Stained slides
were scanned using a Slidescanner (Leica) and analyzed
using the ImageScope software (version 12.0.1.5030,
Aperio).

Laboratory medicine

Heparinized blood was obtained by cardiac puncture.
Plasma was prepared by centrifugation at 3000 rpm for
10 min. Urea was measured in the central laboratory
medicine unit of the University Hospital of Cologne
using the kinetic UV test (Roche Diagnostics). Signifi-
cance was calculated using a two-tailed Student’s ¢ test
for all measurements (urea, body weight of mice).

gPCR

RNA was extracted from whole mouse kidneys using acid
guanidinium thiocyanate-phenol-chloroform extraction
[20]. RT reactions were performed using the Tagman
microRNA Reverse Transcription Kit (ABI). Expression of
mir-192 (assay ID 000491), and miR-200b (assay ID
4426961) was analyzed using Tagman assays (ABI), and
snoRNA135 (assay ID 001230) served as endogenous con-
trol. All qPCR experiments were performed on the ABI
7900HT System. All data points were generated using the
number of biological replicates indicated in the figure.
Data analysis and statistics were performed using the Ex-
pression Suite v1.3 software package applying the com-
parative Ct method and using one standard deviation for
error bar calculation (LifeTechnologies).

TUNEL assay

To analyse apoptosis in the kidneys of Dgcr8 knockout
and littermate control mice we utilized the Promega
DeadEnd Fluorometric Kit according to the manufac-
turers protocol. Pictures were taken with an inverted
microscope (Axiovert200, equipped with an ApoTome
system and an AxioCam MRm camera. Objective used:
Plan Apochromat 20x/0.8 NA. Carl Zeiss) using Axiovi-
sion 4.8 (Carl Zeiss).

Results

To analyze the role of Dgcr8 and thereby miRNAs in the
developing tubular system independent of a Dicer mouse
model, we crossed a Dgcr8 fl/fl mouse line [18] with
KspCre mice [19], resulting in a conditional knockout of
Dgcr8 in the developing urogenital tract and tubulus
system.

Dgcr8 fl/fl; KspCre positive mice (afterwards named
Dgcr8 knockout) showed an obvious delay in growth
(Figure 1A) in comparison to the control littermates and
a significantly reduced body weight (Figure 1B). This
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Figure 1 Kidney-specific knockout of Dgcr8 results in end stage renal disease. A Conditional Dgcr8 fI/fl; KspCre knockout mice are markedly
smaller than their control littermates (7 week old animals) B Dgcr8 knockout mice have a significant lower body weight in comparison to their
control littermates (4 week old animals; * =p < 0.05; error bars represent SEM; knockout: n = 3; control: n =5) C Dgcr8 knockout mice develop end
stage renal disease as displayed by elevated serum urea levels in comparison to control animals (4-7 week old animals; *** = p < 0.001; error bars
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phenotype was most likely caused by the developing
renal failure in these mice, since they showed a marked
elevation in serum urea (Figure 1C). The phenotype be-
came apparent in the first weeks of life, several mice
died during the weaning period leading to a significantly
reduced number of Dgcr8 knockout animals after wean-
ing in comparison to the control genotypes (Additional
file 1: Figure S1A). None of the Dgcr8 knockout mice
analyzed so far survived longer than 8 weeks, most likely
due to development of end stage renal disease. In order
to confirm that loss of Dgcr8 abrogates miRNA biogen-
esis we quantified two miRNAs that had been shown be-
fore to be primarily expressed in renal tubular cells and
to be depleted by KspCre driven loss of Dicer [3,6,21].
Both expression of miR-192 and miR-200b were greatly
reduced in the conditional Dgcr8 knockout mouse line
(Figure 2).

Further examination of the kidneys of the Dgcr8
knockout mice showed the macroscopic picture of se-
vere hydronephrosis with a dilated ureter and kidney
pelvis (Figure 3A). There were no signs for a complete
obstruction of the ureter, since the bladder of the knock-
out animals was filled with urine (data not shown).

Histopathological analyses of the kidneys confirmed the
diagnosis of hydronephrosis and obstructive nephropathy.
In most affected animals nearly the entire medulla was
missing, and the cortex was very thin (Figure 3B). In
addition, some kidneys displayed dilated tubuli and cysts
were observed (Figure 3C). As described for Dicer knock-
out mice before [3] the Dgcr8 knockout kidneys showed a
reduced glomerular density pointing towards a branching
defect (Additional file 1: Figure 1B). To further analyse the
cellular basis to this phenotype we performed TUNEL as-
says and Ki-67 stainings. These revealed a strong induc-
tion of apoptosis and cellular proliferation in tubular cells
of Dgcr8 knockout animals (Figure 4).

Discussion

The loss of Dgcr8 specifically in renal epithelial cells nicely
resembled the phenotype observed earlier when knocking
out Dicer in the same tissue using the same cre mouse
line. Both Dicer and Dgcr8 are involved in a number of
different processes primarily regarding the processing of
nucleic acids [10-13,22,23]. Since the known overlapping
function of these two genes is microRNA processing our
study strongly supports the conclusion that the severe
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Figure 2 KspCre-mediated loss of Dgcr8 induces depletion of tubulus-specific miRNAs. Both expression of miR-192 and miR-200b is strongly reduced

in Dgcr8 knockout kidneys when compared to WT littermates (4-7 week old animals; ** = p < 0.01; error bars represent SEM).
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Figure 3 Hydronephrosis and cystic kidneys of Dgcr8 knockout animals. A Conditional knockout of Dgcr8 in the renal tubulus system leads to
hydronephrosis. B + C Histological analysis confirms hydronephrosis with severe loss of kidney parenchyma especially in the medulla region, a
thinned cortex and kidney cysts (bar = 1000 pm (B) and 200 um (C)).
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Figure 4 Loss of Dgcr8 induces apoptosis and proliferation. A TUNEL staining reveals a dramatic increase in apoptosis in Dgcr8 deficient kidneys
(representative images of renal cortex, bar = 100 um). B Staining for Ki-67 reveals an increase in proliferation in Dgcr8 knockout kidneys (bar= 100 um).
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phenotype in both mouse models including hydronephro-
sis and renal failure is caused by the loss of microRNA
processing. This finding is of great importance and en-
couraging to plan and perform follow-up studies now ad-
dressing the role of specific microRNAs in development
and maintenance of renal architecture.

Interestingly, a small number of microRNAs is either
independent from Dicer or from the Drosha/Dgcr8 com-
plex [24,25]. As an example the so-called mirtrons are
processed by the spliceosome in the nucleus instead of
Drosha/Dgcr8 [26]. As for Dicer miR-451 is not proc-
essed by this enzyme but depends on Ago2 in its matur-
ation [27-29]. Consequently, our study does not only
confirm the crucial role of microRNAs in renal develop-
ment but also narrows down the list by excluding any
small RNAs processed by only one of the two enzymes.

In contrast to our previous study on Dicer knockout
animals with a penetrance of the phenotype of about
66% [3] the Dgcr8 knockout described in this study has
a complete penetrance with no Dgcr8 knockout animal
surviving longer than 8 weeks. Whether this may be due
to a partial rescue of the Dicer knockout animals by an-
other enzyme — e.g. for microRNAs that are generally
processed by Dicer but may be processed by Ago2 as
well — remains elusive and will be subject to future
studies.

In summary, our results underline the relevance of
microRNAs during kidney development and will encour-
age further functional studies examining single microRNAs

and their target mRNA interactions — such as miR-20 and
its targets PKD1 and PKD2 [3,6,30,31] - as regulators of
renal organogenesis. This will be fundamental for gaining a
better understanding of developmental defects in human
kidney formation as observed in CAKUT - the predomin-
ant cause of end-stage renal disease in children.

Conclusions

MiRNAs are key regulators of intracellular signaling and
development. In this study we show that loss of Dgcr8
dependent miRNAs in the kidney epithelium leads to se-
vere hydronephrosis, kidney cysts and rapid kidney fail-
ure. This confirms an essential role for miRNAs in renal
development and disease.

Additional file

<
Additional file 1: Figure S1. A Genotyping after weaning at 3-4 weeks
of age reveals that the knockout mice did not reach weaning at a
Mendelian ratio suggesting death before the timepoint of weaning and
genotyping. In line with this finding several mice of unknown genotype
had died before weaning. B Glomerular density is reduced in Dgcr8
knockout kidneys (n =3 per group; error bars represent SEM; ** =p <0.01
using an unpaired Student's t-test; 5 high power fields of the kidney

cortex were counted per animal) C Table showing the number of mice
revealing either kidney cysts or hydronephrosis at weaning.
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