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Abstract

Background: Acute kidney injury (AKI) is a serious clinical problem with high rate of mortality and morbidity.
Currently used prophylactic and therapeutic strategies to address AKI are limited and warrant further studies. In
the present study an attempt was made to investigate the effect of quinacrine, a phospholipase A2 inhibitor

against glycerol induced AKI in rats.

Methods: Adult female Wistar rats were divided in to five groups. After 24 h of water deprivation rats in groups
3,4 and 5 received an intraperitoneal injection of quinacrine (3 mg/kg, 10 mg/kg and 30 mg/kg of body weight
respectively). Thirty minutes after the first injection of quinacrine animals in groups 3, 4 and 5 received an intramuscular
injection of 25% glycerol (10 ml/kg of body weight). The animals in group 2 received 25% glycerol (10 ml/kg of
body weight) only whereas rats in group 1 served as control . The quinacrine administration was continued once
daily for three days, on the fourth day animals were sacrificed, blood and kidney were collected for various

biochemical and histopathological studies.

Results: Glycerol treatment produced significant renal structural abnormalities and functional impairment (increased
urea and creatinine). Increase in myeloperoxidase (MPO) and malondialdehyde (MDA) clearly suggested the
involvement of oxidative stress and neutrophilic activity following glycerol administration. Quinacrine dose
dependently attenuated glycerol induced structural and functional changes in kidney.

Conclusion: The reversal of glycerol induced AKI by quinacrine points towards a role of phospholipase A2
(PLA2) in the pathogenesis of renal injury. The result of this study suggests that quinacrine may offer an

alternative mode of treatment for AKI.
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Background

Acute kidney injury, previously termed acute renal fail-
ure, is associated with increased mortality, prolonged
hospital stay, and accelerated chronic kidney disease.
Over the past few decades, dramatic rises in the inci-
dences of AKI have been reported. Despite the revers-
ibility of AKI in the patients who survive, mortality from
AKI remains high (over 50%) [1]. In the recent years, the
search for effective therapy to accelerate recovery and at-
tempts to prevent AKI have attracted much attention.
One of the most commonly used experimental models
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for studying AKI is the rat receiving a single intramuscu-
lar injection of glycerol, which induces rhabdomyolysis
[2, 3]. Rhabdomyolysis-induced myoglobinuric renal
failure accounts for about 10-40% of all cases of AKI
[4]. Moreover during the time of war [5] and natural
disaster [6] rhabdomyolysis induced myoglobinuric
injury reached an epidemic state. Glycerol-induced AKI
in rodents is mediated by renal ischemia and myoglobin
nephrotoxicity [7, 8]. In glycerol-induced AKI, redox
cycle, the myoglobin heme induces oxidative stress and
lipid peroxidation of the proximal tubular cell, triggers
the release of a series of mediators, including cytokines
and chemokines, leading to leukocyte activation, resulting
in tubular necrosis in the cortical area [9-12]. However
the precise molecular mechanism of glycerol induced

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to

the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.


http://crossmark.crossref.org/dialog/?doi=10.1186/s12882-017-0450-8&domain=pdf
mailto:adbulrahman.alasmari@gmail.com
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Al Asmari et al. BMIC Nephrology (2017) 18:41

nephrotoxicity is still unclear. Some recent studies
suggested that glycerol induced ischemic insult to the
renal tissue may result in derangement of cellar
phospholipid membranes, which may trigger a se-
quence of biochemical events leading to irreversible
cell injury, presumably due to enhanced generation of
oxygen derived free radicals and activation of tissue
phospholipases [13, 14].

There is ample evidence which suggest that the critical
events determining the course of AKI develop from
damage to plasma and subcellular membranes [15].
Phospholipids besides providing the major structural
framework for cell membranes [16] participate in the
regulation of membrane enzyme activity, permeability
and hormone activation [17-20]. Ischemic injury has
been associated with depletion of major phospholipids
and accumulation of phospholipid by-products in liver,
heart and renal cortex [21-23]. The activation of mem-
brane phospholipases, especially phospholipase PLA2
has been shown to play a pivotal role in the critical
early events in the pathogenesis of ischemic cell injury
[24]. Moreover increased PLA, activity also leads to the
release of arachidonic acid (AA) from membrane phos-
pholipids [25] which is the precursor for the biosyn-
thesis of vasoactive prostaglandins and leukotrienes
[26]. A blockade of PLA, could result in the suppres-
sion of these important classes of vasoactive lipid medi-
ators and may offer an attractive tool to understand the
pathophysiology of cytotoxic chemicals and to design
novel agents that could attenuate or prevent tissue
injury. Hence, the present investigation is an attempt to
study effect of quinacrine, a potent inhibitor of PLA,
[27] on glycerol induced deleterious effects on renal
structure and function in rats.

Methods

Animals

Animals were received from the Animal Facility Unit of
Research Centre, Prince Sultan Military Medical City,
Riyadh, Saudi Arabia. Forty adult female Wistar rats
weighing 200+ 10 g were housed in a 12 h dark/light
cycle animals facility with controlled temperature and
humidity. Food and water were given ad libitum
throughout the study.

Drugs

Quinacrine obtained from ICN Biochemical Inc, USA.
Glycerol 99%, Pentobarbital sodium and other chemical
used for biochemical assays were purchased from Sigma
Chemical Co., St. Louis., MO., USA.

Experimental design
The protocol suggested by Midhun et al. [28] was
followed to study the effect of quinacrine on glycerol
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induced acute renal injury. The detail of groups, treat-
ments and sacrificing protocol were tabulated in
Table 1. The rats were randomized and divided into five
groups of eight animals each. The number of animals in
each group were calculated according to the method
described by Charan and Kanthria et al. [29] which is
based on the value “Effect size (difference between
mean of the groups) standard deviation taken from our
earlier studies along with a power level 80% and signifi-
cance level of 5%”.

After being water deprived for 24 h, animals from
group 1 and 2 received intraperitoneal injection of
normal saline (2 ml/kg of body weight), whereas group
3,4 and 5 received intraperitoneal injection of quina-
crine at the dose of 3 mg/kg, 10 mg/kg and 30 mg/kg
of body weight. After 30 min of first injection of
quinacrine, rats in group 2,3,4 and 5 received a single
intramuscular injection of 25% glycerol (10 ml/kg
body weight). Quinacrine injection (prepared freshly)
was continued once daily for three days. Body weight,
food and fluid intake were recorded daily at specific
time. Twenty four hours after last injection of quina-
crine all the rats were sacrificed under general
anesthesia using intraperitoneal injection of pentobar-
bital sodium (150 mg/kg ), blood was collected
through heart puncture. The left side kidney was ex-
cised immediately, weighed, divided into four parts
and stored in -70 °C for biochemical analysis. The
right kidney was fixed in 10% neutral buffered forma-
lin for histological studies.

Serum biochemical analysis

All blood samples were allowed to clot at ambient
temperature and centrifuged (3000 rpm for 10 min) to
harvest the serum. Serum biochemical parameters of
blood urea nitrogen (BUN), creatinine (Scr) calcium
(Ca2+), magnesium, sodium, potassium and phosphorus
levels were measured spectrophotometrically (APEL PD-
303S Japan) using the commercially available kits BUN
(REF-020), Scr (REF-033 K), calcium (REF-022), magne-
sium (REF-050), sodium (REF-054 K), potassium (REF-
051), phosphorus (REF-046) from United Diagnostics
Industry, Riyadh, Saudi Arabia.

Table 1 Drug treatment protocol

Groups Day-0  Day-1 Day-2 Day-3 Day-4

Control WD saline saline  saline  Sacrificed
GLY 25% (GLY) WD GLY saline  saline  Sacrificed
QRN 3 mg/kg +GLY WD QRN +GLY QRN QRN  Sacrificed
QRN 10 mg/kg+GLY WD QRN +GLY QRN QRN  Sacrificed
QRN 30 mg/kg+GLY WD QORN+GLY QRN QRN  Sacrificed

Abbreviations: WD water deprived, QRN quinacrine, GLY glycerol 25%
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Determination of myeloperoxidase

The level of neutrophil derive enzyme MPO activity in
kidney was measured according to the methods of
Barone et al. [30]. The kidney tissue was homogenized
(1:20 wt/vol) in 5 mM potassium phosphate buffer
(pH 6.0). The homogenate was centrifuged at 17000 g
for 15 min. at 4 °C. After discarding the supernatant
the pellet was extracted with 0.5% hexadecyltrimethy-
lammonium bromide in 50 mM potassium phosphate
buffer (pH 6.0). The sample was subjected to three
freeze-thaw cycles, with sonication (10 s, 25 °C) be-
tween cycles. After sonication, the samples were incu-
bated at 4 °C for 2 min and again centrifuged at
12500 g (15 min, 4 °C). MPO activity in the supernatant
was assayed by mixing 0.1 ml of supernatant with
2.9 ml of 50 mM potassium phosphate buffer (pH 6.0)
containing 0.167 mg/mL o-dianasidinedihydrochloride
and 0.0005% hydrogen peroxide. The change in absorb-
ance at 460 nm was measured for 3 min with an UV
spectrophotometer (Shimadzu, UV-160A, Japan).

Determination lipidperoxidation

The level of thiobarbituricacid reactive substances
(TBARS) as a method of lipid peroxidation in kidney tis-
sue was measured according to the method described by
Ohkawa et al. [31]. Approximately 0.5 g of kidney tissue
was homogenized in 1.15% cold KCl. After centrifuga-
tion at 3000 g for 5 min, an aliquot of supernatant was
mixed with 2 ml of reaction mixture (containing 15%
trichloroacetic acid and 0.375% thiobarbituric acid solu-
tion in 0.25 N HCIl) and heated for 5 min in a boiling
water bath. The tubes were cooled at room temperature
and centrifuged at 1000 g for 10 min. The absorbance of
supernatant was read at 535 nm against a blank that
contained all reagents except homogenate. Tissue lipid
peroxide levels were calculated as nanomoles of MDA,
tetramethoxy propane was used as standard.

Histopathological evaluation

After recording the kidney weight and morphological
examination, the kidney was fixed immediately in 10%
formalin, embedded in paraffin, sectioned at 3 pm thick-
ness and were stained with haematoxylin and eosin. The
extent of tubular injury, dilatation, vacuolation and necro-
sis were evaluated semi-quantitatively. Briefly, the extent
of tissue damages was graded from 0 to 4 according to the
severity of, tubular dilatation, tubular vacuolation and
tubular cell necrosis. The scoring system was as follows:
0 =no change in the tubules; 1 =< 25% of tubular injury
(mild); 2 = 25% to 50% of tubular involvement (moderate);
3=50% to 75% of tubules showing characteristic change
(severe) and 4 = more than 75% of tubular damage (very
severe). Fifty fields were counted from each slide. All the
assessments were done in a blinded fashion.
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Kidney weight-to-body weight ratio

At the time of sacrifice the body weights and the kidney
weights of rats were recorded. The kidney weight to
body weight (KW/BW) ratio was calculated by simple
arithmetic calculation of the kidney weight divided by
body weight and then converted to percent.

Statistical analysis

All results are presented as Mean + S.E.M. Statistical
significance was determined by one way analysis of
variance (ANOVA) followed by Dunnett’s test. In all
cases P < 0.05 was considered statistical significant.

Results

Effect of glycerol and quinacrine on blood urea nitrogen
and serum creatinine

The BUN and Scr. the two principal clusters of renal
function biomarkers were recorded in this study. There
was a highly significant increase (P<0.001) in serum
BUN (73.17 £ 14.9 mg/dL) in glycerol treated rats as
compared to control group (18.80 + 1.326 mg/dL ). The
level of serum BUN following low (46.1 +10.7 mg/dL,
P <0.05), medium (38.1 + 3.5 mg/dL, P <0.05), and high
(33.0 £ 0.7 mg/dL, P<0.01) dose treatment of quinacrine
showed a significant attenuation of glycerol induced in-
crease in BUN level (Fig. 1a).

Treatment of rats with glycerol also produced a signifi-
cant increase (P<0.01) in Scr. (1.9 £ 0.4 mg/dL) as com-
pared to control group (0.83 + 0.024 mg/dL) in 72 h. The
level of Scr. following low (1.4 +0.12 mg/dL, P <0.05),
medium (1.15+0.12 mg/dL, P<0.05), and high (0.95 +
0.005 mg/dL, P < 0.01) doses of quinacrine showed a dose
dependent and significant attenuation of glycerol induced
increase in Scr. levels (Fig. 1b).

Effect of glycerol and quinacrine on serum electrolytes
and phosphorus

Acute kidney injury is associated with a significant electro-
lyte and acid—base disturbance. Even mild electrolyte dis-
orders may be associated with highly significant morbidity
and mortality. There was a significant (P < 0.01) increase
in serum calcium (9.7 £ 0.16 mg/dL ) in glycerol treated
rats as compared to control group (9.02 +0.123 mg/dL ).
The serum level of calcium following treatment with low
(9.27 £0.164 mg/dL, P<0.05 ), medium (9.12 + 0.104
mg/dL, P<0.001 ), and high (9.00 + 0.004 mg/dL, P <
0.001) doses of quinacrine showed a highly significant
attenuation of glycerol induced increase in serum cal-
cium level (Table 2).

Treatment of rats with glycerol produced a highly
significant (P < 0.001) increase serum magnesium level
(3.23£0.237 mg/dL) as compared to control rats
(1.76 £ 0.111 mg/dL). The serum magnesium levels
following low (2.45 +0.206 mg/dL, P < 0.05), medium
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Fig. 1 Blood urea nitrogen and serum creatinine levels. a. The effect of
quinacrine on glycerol induced changes in BUN. Glycerol produced a
significant (P < 0.001) increase in BUN as compare to control group
(###). Treatment of rats with quinacrine in the doses of 3 mg/kg
(P<0.05), 10 mg/kg (P < 0.05) and 30 mg/kg (P < 0.01) significantly
attenuated glycerol induced rise in BUN (* values compared to
glycerol treated group). b. The effect of quinacrine on glycerol
induced changes in Scr. Glycerol produced a significant (P < 0.01)
increase in Scr. as compare to control group (##). Treatment of rats
with quinacrine in the doses of 3 mg/kg (P < 0.05), 10 mg/kg (P < 0.05)

and 30 mg/kg (P < 0.01) significantly attenuated glycerol induced rise
in Scr. (* values compared to glycerol treated group)

Scr. mg/dL

(2.33 £ 0.155 mg/dL, P<0.01), and high (2.03 £ 0.113 mg/
dL, P <0.001) doses of quinacrine showed a highly signifi-
cant reduction of glycerol induced increase in magnesium
level (Table 2).

There was a decrease (135 + 3.7 mmol/L ) in serum so-
dium level of glycerol treated rats as compared to rats in
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control (140 + 4.4 mmol/L ) group. The glycerol induced
decrease in sodium level was attenuated by low (136 +
4.0 mmol/L ), medium (143 + 6.8 mmol/L), and high (151
+ 5.6 mmol/L P < 0.05) doses of quinacrine (Table 2).

Glycerol treatment significant increased (P < 0.05)
serum potassium level (5.46 + 0.302 mmol/L) as compared
to control rats (3.96 + 0.25 mmol/L). The potassium levels
in the rat treated with low (5.15 + 0.302 mmol/L), medium
(4.2+0.401 mmol/L) and high (3.85+0.241 mmol/L,
P <0.01) doses of quinacrine showed a reversal of glycerol
induced increase in potassium level (Table 2).

Glycerol produced a significant (P < 0.05) increase in
serum phosphorus level (7.53 + 0.588 mg/dL) as compared
to control group (3.96 £ 0.25 mg/dL ). The serum level
of phosphorus in the rat treated with low (6.68 + 0.706
mg/dL), medium (5.86 + 0.676 mg/dL ), and high (4.8 +
0.311 mg/dL, P<0.001) doses of quinacrine showed a
dose dependent attenuation of glycerol induced increase
in serum phosphorus level (Table 2).

Renal myeloperoxidase and malodialdehyde levels

The neutrophil derived enzyme MPO is considered an
important pathophysiogic factor in progression of
renal disease. The tissue MPO activity was significantly
(P <0.05) higher (1118.11 + 106.5 U/min/gm tissue) in
glycerol treated rats as compared to control group
(673.8+77.7 U/min/gm tissue). The MPO activity in
the rat treated with low (523.4 + 60.8 U/min/gm tissue,
P <0.01), medium (571.04 + 60.5 U/min/gm tissue, P <
0.001), and high (623.75 + 30.5 U/min/gm tissue, P <
0.001) doses of quinacrine showed a significant attenu-
ation of glycerol induced increase in MPO activity in
kidney tissues (Fig. 2a).

Ischemia and chemical induced renal injury is associ-
ated with significant increase in MDA level. Treatment
of rats with glycerol produced a significant (P < 0.05)
increase in tissue MDA levels (391.4 + 14.8 pmol) as
compared to control rats (251.5 + 12 pmol). The MDA
level of rat kidney treated with low (237.4 +49.2 umol,
P <0.05), medium (254.7 + 34.4 pmol ) and high (181 +
30.1 pmol, P < 0.001) doses of quinacrine showed a sig-
nificant attenuation of glycerol induced increase in
MDA level in kidney tissues (Fig. 2b).

Table 2 Effect of quinacrine on glycerol-induced AKI; level of serum electrolytes and phosphorus

Groups Calcium mg/dL Magnesium mg/dL Sodium mmol/L Potassium mmol/L Phosphorus mg/dL
Control 921+0.123 176 £0.111 140+ 44 396+0.25 598+0.119

GLY 25% 9.73+0.164 ## 323+ 0.237#i# 135+37 546+ 0.302# 7.53+0.588#

QRN 3 mg/kg + GLY 9.27+0.164 * 245 +0.206* 136 £4.0 5.15+0302 6.68 +£0.706

QRN 10 mg/kg + GLY 9.12 £0.104%** 233+£0.155* 143+ 6.8 4.2+0401 586+ 0676

QRN 30 mg/kg + GLY 9.00 + 0.004*** 203 +0.113*** 151 £5.6% 3.85+0.241* 48+03171%*

Single intramuscular glycerol injection significantly increase the level of serum calcium, magnesium, potassium, phosphorus and lowered the level of sodium,
whereas quinacrine treatment attenuate this alteration in serum electrolytes. Data expressed as mean + SE. # P < 0.05, ## P < 0.01and ### P < 0.001 as compare
with control group. *P < 0.05, **P < 0.01 and *** P<0.001 as compare to glycerol treated group
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Fig. 2 Myeloperoxidase and malondialdehyde in kidney. a The effect
of quinacrine on glycerol induced changes kidney MPO activity.
Glycerol produced a significant (P < 0.01) increase in kidney MPO
activity as compare to control group (#). Treatment of rats with
quinacrine in the doses of 3 mg/kg, 10 mg/kg (P < 0.001) and

30 mg/kg (P < 0.001) significantly attenuated glycerol induced rise
in kidney MPO activity Scr. (* values compared to glycerol treated
group). b The effect of quinacrine on glycerol induced changes
kidney MDA level. Glycerol produced a significant (P < 0.01)
increase in kidney MDA level as compare to control group (#).
Treatment of rats with quinacrine in the doses of 3 mg/kg (P < 0.05),
10 mgrkg and 30 mg/kg (P < 0.001) significantly attenuated glycerol
induced rise in kidney MDA level. (* values compared to glycerol
treated group)
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Kidney weight to body weight ratio

There was a significant (P < 0.05) increase in KW (1.481 +
0.041gm ) in glycerol treated rats as compared to control
rats (0.651 £ 0.020 gm). The KW in the rats treated with
low (1.302 £ 0.067 gm, P<0.05), medium (1.293 + 0.047
gm, P <0.01), and high (1.017 £ 0.059 gm, P < 0.001) doses
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of quinacrine showed a significant attenuation of glycerol
induced increase in KW (Table 3).

Similarly treatment of rats with glycerol produced a
significant (P < 0.05) increase in KW/BW ratio (0.755 +
0.031) as compared to control rats (0.309 + 0.010). The
KW/BW ratio in low (0.694 * 0.036), medium (0.634 +
0.038, P<0.05), and high (0.525 + 0.029, P < 0.001) dose
of quinacrine treated rats showed a significant attenu-
ation of KW/BW ratio (Table 3).

Histological findings
The light microscopic findings of the kidneys of the
treated rats are given in Table 4. The groups injected
with glycerol showed widespread damage both in cortex
and medullar region of the kidney. The microscopic
changes include; the loss of microvilli, tubular dilatation
and vacuolation, tubular necrotic lysis and cellular micro
debris into the tubular lumen. Severe tubular damage
were observed mainly in the distal end of the kidney,
whereas inner medulla showed mainly tubular dilatation
and cell debris.

Concomitant treatment with quinacrine significantly
reversed glycerol induced histopathological changes in
kidney (Fig. 3).

Discussion

The results of this study demonstrated that the treatment
of animals with glycerol produced a significant increase in
serum BUN and Scr (Fig. 1) suggesting the functional
impairment of kidneys. Glycerol treatment also resulted in
development of edema and enlargement of kidney which
was evidence from increase in kidney weight/body weight
ratio confirming a significant toxic insult to the renal
tissue. Our histopathological studies showed significant
structural changes, including tubular dilatation, vacu-
olation, necrosis and cellular debris in the kidneys of
glycerol treated rats. Similar biochemical and histo-
pathological changes have been reported earlier follow-
ing glycerol treatment [32, 33]. The treatment of rats
with quinacrine dose dependently attenuated glycerol
induced renal toxicity (Fig. 1 & Table 4). Our earlier
studies showed highly significant protective effect of

Table 3 Effect of quinacrine on glycerol induced body weight, kidney weight and kidney weight to body weight ratio

Body weight (gm) Kidney weight (gm) KW /BW ratio
Control 2095+234 0651 £0.020 0309+0.010
GLY 25% 196.8+3.28 1481 £0.0414 0.755+0.031#
QRN 3 mg/kg + GLY 1936+3.17 1.302 +0.067* 0.694 +0.036
QRN 10 mg/kg + GLY 1955+ 2.86 1.293 £ 0.047** 0.634 +0.038*
QRN 30 mg/kg + GLY 198.6+3.01 1.017 £0.059*** 0.525 £ 0.029***

Effect of quinacrine on glycerol induced changes in kidney weight and body weight. The body weight was not change in all the treated groups but the kidney
weight and KW/BW ratio significantly increased in glycerol treated groups. Quinacrine treatment showed a significant and dose dependent attenuation of glycerol
induced increase in KW and KW/BW ratio. Data expressed as mean = SE. # P <0.001 as compare with control group and *P < 0.05, ** P < 0.01 and *** P <0.001 as

compared with Glycerol treated group
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Table 4 Effect of Quinacrine on glycerol induced histopathological changes in kidney (higher scores indicate severe injury)

Groups Tubular dilatation Tubular voculation Tubular necrosis
Control 0 0 0

Glycerol25% 337 +£0.18##H# 143 +0.290# 0.875 + 0.182##
QRN 3 mg/kg + GLY 250+025% 1.25+0.163 0.812+0.209
QRN 10 mg/kg + GLY 1.87 £0.27%* 0.81+0.209 0.375+0.125*
QRN 30 mg/kg + GLY 137 £ 1% 0.62 +0.081* 0.125+0.125%*

Effect of quinacrine on glycerol-induced AKI.. Glycerol treated rats developed significant histological changes in kidney tubules. Data expressed in mean =+ SE.
# P<0.05, ## P<0.01 and ### P < 0.001 as compare to control group; *P < 0.05, and ** P <0.001 as compare to glycerol treated group (G.3)

quinacrine against cyclosporine induced renal toxicity [34],
ethanol induced gastric mucosal injury [35] and1-methyl-
4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) induced neur-
onal injury [36]. Quinacrine has also been shown to exert
significant protective effect against ischemia induced
myocardial [37] and cerebral [38, 39] injury.

Alteration of phospholipid metabolism during the
renal ischemic injury is well documented [23, 40]. Glycerol
induced ischemic insult results in derangement of cellular
phospholipid membrane of renal tissue [12, 41]. PLA2
enzymes catalyze the hydrolysis of the 2-acyl bond of 3-n-
phosphoglycerides, resulting in release of fatty acid from
the second carbon group of glycerol. This enzyme specific-
ally recognizes the sn-2 acyl bond of phospholipids and
catalytically hydrolyzes the bond releasing arachidonic acid
(AA) and lysophospholipids [42]. Free AA is the precursor
of the vasoactive eicosanoids including prostaglandins
[43]. Treatment with glycerol is known to significantly dis-
turb the equilibrium between the AA metabolites includ-
ing vasodilator prostacyclin (PGI2) and vasoconstrictor
thromboxane (TxA2) in favor of TxA2 causing impairment
of renal blood flow resulting in ischemic injury [44—46].
Quinacrine, a widely used inhibitor of lipolytic enzyme
PLA2 has been shown to dose-dependently inhibit lipolytic
release of arachidonate and generation of eicosanoids from
kidney medulla [47-49]. Besides being a non-selective
PLA2 inhibitor quinacrine has also been shown to possess
significant cyclooxygenase inhibitory activity [50]. Thus
the attenuation of glycerol induced renal injury by quina-
crine may be attributed to inhibition of PLA2 induced
lipolytic activity and restoration of physiological balance of
the vasoactive eicosanoids in renal tissue resulting in
stabilization of cell membrane.

The mechanism of glycerol induced renal injury is not
entirely clear, a host of inflammatory mediators and cell
mediated immune responses are believed to be involved in
pathophysiology of AKI [12, 51]. We observed a signifi-
cant increase in neutrophil-derived enzyme, MPO in the
kidney of glycerol treated rats (Fig. 2) suggesting a robust
neutrophil activity in the tissue [52]. Bolisetty and Agarwal
[53] showed that neutrophil accumulate in kidney follow-
ing ischemic insult due to their transmigration into the
interstitium. Alteration of epithelial and endothelial cell

integrity by neutrophils leads to kidney injury. Takasaki et
al. [54] suggested that neutrophil cause kidney damage
through the excessive release of oxygen radicals and pro-
teases. In this study we observed a significant attenuation
of MPO activity in the kidney tissue of quinacrine treated
rats (Fig. 2). The exact mechanism by which quinacrine
may reverse neutrophil mediated renal injury is not fully
understood. Daniel et al. [55] reported a significant inhib-
ition of neutrophil mediated superoxide generation and
AA release by quinacrine. Earlier, anti-PLA2 antibodies
have been shown to significantly suppress the neutrophil
activity [56]. Beside affecting innate and adaptive immun-
ity neutrophils are well recognized as one of the major
player during inflammatory damage to the tissues [57].
Korrapati et al. [29] reported a significant increase in kid-
ney NF-kB at 24 to 48 h after glycerol administration in
rats. The available data clearly suggest that NF-kB and the
major tumor suppressor P53 work in tandem in the
pathogenesis of AKI [58, 59]. While NF-kB is a potent in-
flammatory mediator and plays a major role in the synthe-
sis of pro-inflammatory cytokines and chemokines [60],
the anti-inflammatory effect of P53 seems to be universal
[59]. P53 has been shown to mitigate inflammation and
exerts nephroprotective effect by several earlier investiga-
tors [61, 62]. Quinacrine and its derivatives have been
shown to suppress NF-kB and increased P53 protein by
causing chromatin trapping of the FACT (facilitates
chromatin transcription) complex [63, 64]. Moreover
quinacrine has been shown to inhibit histamine methyl-
transferase, a major enzyme responsible for catabolizing
histamine, resulting in increased histamine level in kidney
and other tissues [65]. Histamine participates in regulation
of wide variety of pathophysiological events including
vasomotor actively and inflammatory responses. Hista-
mine infusion directly in renal artery decreases renal
vascular resistance and increased blood flow through its
action on H1 and H2 receptors [66]. Histamine through
H1 receptors augment inflammatory responses [67];
whereas through H2 receptors it suppress inflammation
by reducing inflammatory cytokines and chemokines
[68, 69]. The ability of quinacrine to activate P53 and to
inhibit NF-kB and histamine methyltrasferase may con-
tribute to its nephroprotective activity [70, 71].
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Fig. 3 Histological appearance of kidney in control and treated rat.
Representative renal histopathology using hematoxylin and eosin
staining of sections presented with magnification x200. a Kidney
section of control group, b Kidney section of glycerol treated group,

¢ Kidney section of quinacrine and glycerol treated group. Microscopic

changes include tubular dilatation (D), vacuolation (V) and necrosis (N)
A\ J

The result of this study showed a significant increase
in kidney MDA levels of the rats treated with glycerol
(Fig. 2). Malondialdehyde is a highly reactive molecule
and one of the most reliable marker of oxidative stress.
Glycerol-induced AKI has been shown to increase the
generation of reactive oxygen species (ROS) and/or
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depletion of antioxidant defense system [64]. Kidney is
an organ highly vulnerable to oxidative stress induced
tissue injury, likely due to the abundance of long-chain
polyunsaturated fatty acids in the composition of renal
lipids [72]. Treatment of the rats with quinacrine signifi-
cantly attenuated glycerol induced increase in kidney
MDA levels (Fig. 2). Turnbull et al. [73] showed highly
significant antioxidant activity of quinacrine. Inhibition
of MDA production by quinacrine has been attributed
to its ability to protect unsaturated fatty acids from lipid
peroxidation by binding to membrane phospholipids
[74]. Moreover Fujmoto et al. [75] suggested that lipid
peroxidation is closely associated with prostaglandin
generating system in kidney, especially at the AA (sub-
strate) and cyclic endoperoxide level during the synthesis
of prostaglandins. Quinacrine might decrease the produc-
tion of MDA from endoperoxides by inhibiting the release
of AA which is generated by phospholipid cell membrane
under the influence of phospholipase enzymes. Besides
inhibiting the oxidative stress and PLA2 activity, the
nephroprotective effect of quinacrine may partly be attrib-
uted to the improvement of microcirculation as a result of
its direct vasodilator activity [76, 77].

Treatment of rats with glycerol produced a significant
increase in serum Ca2+ levels, whereas quinacrine dose
dependently attenuated glycerol induced hypercalcemia
(Table 2). Our findings support the earlier investigators
who also observed high serum Ca2+ levels in glycerol
treated rats [78, 79]. A key role of Ca2+ in cell injury
has long been recognized. The lethal cell injury develops
in a tissue due to mitochondrial accumulation and seques-
tration Ca2+. The major mechanisms by which Ca2+ pro-
motes cell injury include activation of phospholipases,
endonucleases, proteases and protein kinases direct and
indirect effects on mitochondrial membrane permeabil
and effects on contractile and cytoskeletal structures and
functions [80]. Although our study is limited due to ab-
sence of tissue Ca2+ levels, a significant increase serum
Ca2+ observed in this study (Table 2.) may be attributed
to hypovolemia, metabolic acidosis [81] and compromised
tubular fluid dynamics resulting in electrolyte imbalance
following glycerol administration [82]. Reversal of toxin
induced alteration in Ca2+ with a variety of agents has
been beneficial in ameliorating the degree of cell injury in
a number of experimental settings [83, 84].

In contrast to hypercalcemia, we observed a decrease in
serum sodium (Na+) in glycerol treated rats. Our findings
are in agreement with earlier investigators who reported a
significant decrease in serum Na+in glycerol induced
rhabdomyolysis in rats [85, 86]. The important role of
Na + in the pathogenesis of glycerol induced renal injury
is evident from the findings of numerous earlier studies.
Infusion of Na + (150 mmol/L) protected animal against
glycerol induced renal injury [87], whereas sodium
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restriction has been shown to aggravate glycerol induced
acute renal failure [88]. Park et al. [72] showed that gly-
cerol induced renal failure in rats was associated with
significant increase in fractional excretion of sodium.
Treatment of rats with quinacrine attenuated glycerol
induced change in Na + and Ca2+ levels (Table 2). Gly-
cerol induced kidney injury is associated with ischemic
insult to renal tissue resulting in activation of PLA2 en-
zymes [89]. Phospholipase A2 and its metabolic products
inducing AA and prostaglandins have been implicated in
regulation of ion trafficking through the cell membranes
[90]. Besides reversing PLA2 induced alteration of ion
channels quinacrine has been shown to directly modulate
ion channels in a selective manner [91, 92]. The result of
this study clearly suggest that restoration of ion homeosta-
sis may help in preventing renal injury.

There are some limitation in this study, we used serum
creatinine and blood urea nitrogen as the biochemical
marker of renal function, which were supported by our
histopathological studies of kidney tissue. However urine
analysis based studies including urine volume, urine
creatinine and creatinine clearance tests could have
strengthen our claims of attenuation of glycerol induced
renal impairment by quinacrine . Moreover our claim that
nephroprotective effect of quinacrine may be attributed to
its universally known PLA2 inhibiting activity could have
been further substantiated by measuring PLA2 activity
and arachidonic acid metabolites in kidney tissue. Further
studies are warranted to gain more insight in the mechan-
ism of nephroprotective action of quinacrine.

Conclusion

In conclusion, the result of this study suggest a significant
role of oxidative stress, proinflammatory myeloperoxidase
and electrolyte imbalance in the pathogenesis of glycerol
induced renal injury. Treatment of rats with quinacrine
produced a highly significant and dose dependent nephro-
protection against glycerol induced renal injury. The
ability of quinacrine to mitigate oxidative stress suppress
inflammatory mediators and to maintain electrolyte
hemostasis makes it potential candidate for therapeutic
exploitation for the treatment of drug/chemical induced
renal injury.
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