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Surfactant protein-D (SP-D) gene
polymorphisms and serum level as
predictors of susceptibility and prognosis
of acute kidney injury in the
Chinese population
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Abstract

Background: Injury to the kidney epithelial barrier is a characteristic feature of acute kidney injury (AKI). Serum
surfactant protein-D (SP-D), a known biomarker of damaged alveolar epithelium, is also secreted by renal tubular
epithelial cells. Therefore, the aim of this study was to examine the possible association of SP-D with AKI susceptibility
and prognosis.

Methods: In this study, 159 AKI patients and 120 healthy individuals were included. SP-D polymorphisms Thr11Met
and Thr160Ala, AKI patient serum SP-D levels at days 1, 3 and 7 and urine KIM-1 levels in both AKI patients and controls
were examined. The obtained results were correlated with the AKI stage, duration of renal replacement therapy (RRT)
and prognosis.

Results: Serum SP-D level in AKI patients was higher than controls (p < 0.01). SP-D 11Thr/Thr genotype was more
frequent in AKI patients than in controls (p < 0.01). Furthermore, AKI patients with SP-D 11Thr/Thr genotype had
significantly higher serum SP-D levels (p < 0.05) compared to other genotypes. Serum SP-D levels corrected to the
progression of AKI with a peak at day 3. Furthermore, the SP-D 11Thr/Thr genotype frequency and baseline serum
SP-D level were higher in patients who subsequently died. Baseline serum SP-D levels positively correlated with the
urine KIM-1 levels, AKI stage and RRT duration.

Conclusion: In our study, elevated serum SP-D was associated with worse AKI clinical outcomes and patients with
SP-D 11Thr/Thr genotype were more susceptible to AKI. Collectively, these findings suggest that SP-D may be useful as
a biomarker of AKI susceptibility and prognosis.
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Background
In recent years, the recognition of acute kidney injury
(AKI) has increased dramatically worldwide [1]. The
incidence rates of hospital-acquired and intensive care
unit (ICU)-acquired AKI are approximately 21.6%, and
40%, respectively [2]. The mortality of ICU patients with
AKI is 1.5-2 times higher compared to ICU patients

without AKI, indicating that AKI can act as an
independent risk factor of death in the ICU [2]. At
present, risk of development and severity of AKI cannot
be reliably predicted from common clinical risk factors.
The possible genetic predisposition to AKI or the
influence of a certain genetic background on AKI patient
outcome still remains to be elucidated [3].
Surfactant protein D (SP-D) is a member of the C-type

lectin family and expression and secretion were initially
described in lung alveolar epithelial type II cells [4]. In
addition to its role in surfactant homeostasis, SP-D plays
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an important role in innate immunity and the regulation
of inflammation in the lung [5]. SP-D can activate intra-
cellular phagocytosis and regulate the regeneration of
intracellular reactive oxygen species and cytokines [6]. A
previous study has demonstrated that levels of inflam-
matory cytokines IL-6 and TNF-α in SP-D knockout
mice with radiation-induced lung injury were signifi-
cantly higher than those in wild-type mice [6]. Moreover,
in the same study, exogenous SP-D supplementation
delivered through the airways reduced lung injury. We
have shown in our recent studies that besides expression
in the lung, SP-D is also expressed in several other
organs such as the pancreas [7] and kidney [8]. We also
demonstrated that extra-pulmonary SP-D plays an
important role in the pathogenesis of infectious disease
through its role in the regulation of inflammatory signal-
ing pathways and apoptosis [7, 8]. In addition, we have
also shown that in a CLP-induced sepsis model, SP-D
knockout mice showed a higher degree of severity of
kidney injury than wild-type mice [9].
The human SP-D gene is located in chromosome

10q22.2-q23.1, and contains many single nucleotide
polymorphisms (SNP) [10]. Among these polymor-
phisms, three missense mutation loci in exons of SP-D
gene have been described which result in alterations in
codons corresponding to amino acid residues 11
(Met11Thr), 160 (Ala160Thr) and 270 (Ser270Thr) [10].
It has been reported previously that Met11Thr SNP is
associated with the susceptibility to acute lung injury
(ALI)/acute respiratory distress syndrome (ARDS) [11].
In this study, adult ALI/ARDS patients with SP-D
11Thr/Thr genotype had higher levels of SP-D corre-
lated with an increase risk of mortality in patients with
ALI/ARDS [12].
Given the association between SP-D-Met11Thr SNP

and the susceptibility to ALI, and SP-D expression in
renal tubular epithelial cells [8], we hypothesized that
SP-D polymorphisms may be associated with susceptibil-
ity to AKI. Therefore, in the present prospective control
study, Chinese AKI patients and healthy controls of a
Han background were recruited to explore the associa-
tions SP-D polymorphisms Thr11Met and Thr160Ala
and serum SP-D level with the severity and prognosis
of AKI.

Methods
Subjects
This study included 159 AKI patients (88 female and 71
male) aged 18–60 years, who were admitted in the
Department of Critical Care Medicine of Renmin Hospital
Wuhan University,Wuhan, a central region of China,
located in the Hubei Province, between March 2012 and
June 2013; And 120 age-matched healthy volunteers
(50 female and 70 male) with no acute or chronic

diseases which were recruited as controls in the same
hospital. All participants recruited in this study were Han
Chinese. The diagnosis and stage of AKI were established
in accordance with the criteria of Kidney Disease
Improving Global Outcomes (KDIGO) issued by the
International Society of Nephrology (ISN) in 2012 [13].
AKI was defined as serum creatinine (Scr) elevation
exceeding 0.3 mg/dL (26.5 mol/L) within 48 h, or Scr
elevation exceeding 1.5 fold of the baseline value, or urine
output less than 0.5 mL/kg/h for more than 6 h. AKI was
classified into three stages: Stage 1, Scr elevation exceed-
ing 1.5–1.9 fold of the baseline level, or Scr elevation
exceeding 0.3 mg/dL (26.5 mol/L) or urine output less
than 0.5 ml/kg/h for 6–12 h; Stage 2, Scr elevation exceed-
ing 2.0–2.9 fold of the baseline level, or urine output less
than 0.5 mL/kg/h for more than 12 h; Stage 3, Scr
elevation exceeding 3.0 fold of the baseline level, or Scr
elevation exceeding 4.0 mg/dL (353.6 μmol/L), or need for
renal replacement therapy (RRT). Patients younger than
18 years or older than 70 years of age, pregnant women,
and patients with chronic renal disease and renal contu-
sions were excluded from the study. The study protocol
was approved by the Ethics Committee of our hospital,
and written informed consent was obtained from all
patients and subjects before initiation of the study.

Specimen collection
Peripheral blood (5 mL) samples were collected from
AKI patients and healthy controls, and stored at room
temperature for 1 h, then centrifuged at 5000 rpm/min
for 5 min to separate serum and white blood cells. Urine
(10 mL/per patient) samples were collected in addition.
Clinical data of AKI patients were recorded, including
general demographic data, etiology of AKI, stage of AKI,
Apache II score, and duration of RRT as well as progno-
sis of disease.

Analysis of SP-D Thr11Met and Thr160Ala polymorphisms
For SNP analysis, genomic DNA was extracted from
peripheral white blood cells of patients and healthy con-
trols according to the instructions of the genome DNA
extraction kit (Solarbio, Beijing, China). The final DNA
concentration was between 0.06 and 0.12 μg/μL as de-
tected by UV spectrophotometer. Using genomic DNA
as the template, SP-D polymorphisms SP-D Thr11Met
and Thr160Ala were examined by sequence specific
primer-polymerase chain reaction (PCR-SSP) with
appropriate primers as described previously [14]. This
method provided the reproducible results for all the
SNP loci with the PCR conditions as follows: initial
denaturation 1 min at 94 °C; followed by 5 cycles of 20s
at 94 °C, 45 s at 65 °C, 25 s at 72 °C; 21 cycles of 25 s at
94 °C, 50s at 55 °C, 30s at 72 °C; 4 cycles of 30s at 94 °C,
60s at 50 °C, 120 s at 72 °C; and final extension at 72 °C
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for 3 min. After amplification, PCR products were sepa-
rated and identified using 2%-agarose gel electrophoresis.

Measurement of serum SP-D protein and urine kidney
injury molecule-1 (KIM-1) levels by ELISA
Serum SP-D protein and urine KIM-1 levels in AKI pa-
tients and healthy controls were detected by ELISA
(R&D Inc, Minneapolis, United States) according to the
manufacturer’s instructions.

Statistical analysis
Statistical analysis was performed using SPSS software ver-
sion 13.0 (SPSS Inc., Chicago, IL). Hardy-Weinberg equilib-
rium (HWE) was used to determine whether the genotype
and allele frequencies were consistent with the genetic bal-
ance. Allele and genotype frequencies were compared by
Pearson’s two-tailed chi-squared test or Fisher exact test
(for sample number <5 in a group). Odds ratios with a 95%
confidence interval were calculated using logistic regression
analysis. Quantitative data were expressed as X ± SEM and
compared by ordinary one-way ANOVA test or Student’s t-
test where appropriate. Associations between serum SP-D
levels and urine KIM-1 levels and AKI stage were analyzed
by Pearson correlation analysis. A P value less than 0.05
was considered to be statistically significant.

Results
Clinicopathological characteristics of AKI patients and
healthy controls
Clinicopathological characteristics of AKI patients and
healthy controls included in our study are presented in
Table 1. The average age of AKI patients and healthy con-
trols was 45.09 ± 8.02 and 44.37 ± 7.64 years, respectively.
The average Scr level of AKI patients was significantly
higher than that of healthy controls (2.67 ± 1.02 mg/dL vs.
0.73 ± 0.17 mg/dL, p < 0.05). Among the 159 AKI patients,
57 (35.8%) developed KIDGO AKI stage 1, 64 (40.3%) de-
veloped KIDGO AKI stage 2, and 38 (23.9%) developed
KIDGO AKI stage 3. From all AKI patients in 89 (56%)
AKI was caused by sepsis, in 30 (18.9%) AKI was caused
by trauma, in 25 (15.7%) AKI was caused by cardiovascu-
lar disease, and in 15 (9.4%) AKI was caused by other dis-
eases. The average APACHE II score of the AKI patients
was 20.3 ± 4.58. Out of 159 AKI patients, 60 (37.7%) AKI
patients were treated with RRT, and the average RRT dur-
ation was 10.6 ± 3.38 days. Of the 60 AKI patients treated
with RRT, 35 (58.3%) patients were treated with 25 mL/kg
RRT dose, and 25 (41.7%) patients were treated with
35 mL/kg RRT dose.

Association between SP-D polymorphisms and
susceptibility to AKI
The distribution of SP-D Thr11Met and Thr160Ala
genotypes and alleles obtained in our study were similar

to previous studies in the Chinese population, and were
consistent with HWE (p > 0.05). Compared with healthy
controls, the frequency of 11Thr/Thr genotype was
significantly increased in AKI patients (p = 0.001). In
addition, the frequency of 11Thr allele in AKI patients
was also significantly higher than in healthy controls
(p = 0.001). Moreover, the frequency of the 11Thr/Thr
genotype was significantly higher in the subgroup of
sepsis-induced AKI patients and patients who subse-
quently died when compared to the subgroup of the con-
trols and survivors, respectively (p = 0.001& p = 0.0013),
suggesting that SP-D-Thr11Met polymorphisms may be a
predictor of worse outcomes in AKI patients. No signifi-
cant differences in terms of genotype and allele fre-
quencies at Thr160Ala loci were observed between AKI
patients and healthy controls (p = 0.269) (Tables 2 and 3).

Serum SP-D and urine KIM-1 levels in AKI patients and
healthy controls
In our study SP-D serum level of healthy controls ranged
from 56.21 ng/mL to 130.8 ng/mL (median, 80.36 ng/mL;
25–75th IQR 74.27–88.68 ng/mL). Serum SP-D level at
day 1 (baseline SP-D level) of AKI patients ranged from
110.6 ng/mL to 199.5 ng/mL (median, 142.4 ng/mL;
IQR 128.5 ng/mL-158.5 ng/mL), from 275 ng/mL to
393.2 ng/mL at day 3 (median, 342.2 ng/mL; IQR
323.2 ng/mL-356.1 ng/mL) and from 100.4 ng/mL to

Table 1 Clinicopathological characteristics of AKI patients and
healthy controls

AKI (n = 159) Controls (n = 120)

Age (yr) 45.09 ± 8.02 44.37 ± 7.64

Male/Female 71/88 70/50

Creatinine (mg/dl) 2.67 ± 1.02 0.73 ± 0.17

Apache II score 20.3 ± 4.58 NA

AKI Stage

Stage 1 (n,%) 57 (35.8) NA

Stage 2 (n,%) 64 (40.3) NA

Stage 3 (n,%) 38 (23.9) NA

Mortality 49 (30.8) NA

Cause of AKI

Sepsis (n,%) 89 (56.0) NA

Trauma (n,%) 30 (18.9) NA

Cardiovascular (n,%) 25 (15.7) NA

Other (n,%) 15 (9.4) NA

RRT (n,%) 60 (37.7) NA

RRT (days) 10.6 ± 3.38 NA

RRT Dose

25 ml/kg (n,%) 35 (58.3) NA

35 ml/kg (n,%) 25 (41.7) NA
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159.9 ng/mL at day 7 (median, 134.8 ng/mL; IQR
125.6 ng/mL-146.5 ng/mL). Compared with healthy con-
trols, serum SP-D levels at day 1, 3 and 7 were signifi-
cantly elevated (p < 0.01). Furthermore, SP-D serum levels
at day 3 in AKI patients were significantly higher than that
at day 1 and 7 (p < 0.01) (Table 4).
Urine KIM-1 level in AKI patients was significantly

higher than that in the healthy controls (p < 0.01)
(Table 4) Urine KIM-1 level of healthy controls ranged
from 0.23 ng/mL to 0.64 ng/mL (median, 0.47 ng/mL;
25–75th IQR 0.39–0.53 ng/mL) while the urine KIM-1 level

in AKI patients ranged from 0.89 ng/mL to 1.98 ng/mL
(median, 1.37 ng/mL; IQR 1.14–1.58 ng/mL). The
dynamic change of serum SP-D and urine KIM-1 levels
were associated with the progression of AKI.

Association between SP-D polymorphisms and serum
SP-D level in AKI patients
In our study, AKI patients with the 11Thr/Thr genotype
had significantly higher baseline (day 1) serum SP-D levels
than those with either 11Met/Thr (p = 0.04) or 11Met/
Met genotypes (p = 0.002). No difference however was

Table 2 Surfactant protein D gene polymorphisms in AKI patients and healthy controls

Genotype/
allele

AKI patients,
n(%)

Controls,
n(%)

Odds ratio (95% CI) P value AKI patients Odds ratio (95% CI) P value

Dead, n(%) Alive, n(%)

Met11Thr

Met/Met 42 (26.4) 51 (42.5) 0.486 (0.293–0.805) 0.007** 9 (18.4) 43 (39.1) 0.351 (0.155–0.795) 0.011

Met/Thr 67 (42.1) 54 (45.0) 20 (40.8) 47 (42.7)

Thr/Thr 50 (31.5) 15 (12.5) 3.211 (1.699–6.067) 0.001** 20 (40.8) 20 (18.2) 3.103 (1.468–6.557) 0.005**

Allele

Met 151 (47.5) 156 (65.0) 0.487 (0.345–0.687) 38 (38.8) 133 (60.5) 0.414 (0.254–0.675)

Thr 167 (52.5) 84 (35.0) 2.054 (1.455–2.899) 0.001** 60 (61.2) 87 (39.5) 2.414 (1.482–3.933) 0.0004**

Ala160Thr

Ala/Ala 70 (44.0) 50 (41.7) 1.101 (0.682–1.778) 0.715 7 (14.3) 15 (13.6) 1.056 (0.401–2.779) 0.913

Ala/Thr 70 (44.0) 50 (41.7) 24 (49.0) 50 (45.5)

Thr/Thr 19 (12.0) 20 (16.6) 0.679 (0.344–1.337) 0.297 18 (36.7) 45 (40.9) 0.839 (0.419–1.679) 0.619

Allele

Ala 210 (66.0) 150 (62.5) 1.167 (0.823–1.655) 38 (38.8) 80 (36.4) 1.108 (0.679–1.810)

Thr 108 (34.0) 90 (37.5) 0.857 (0.604–1.216) 0.422 60 (61.2) 140 (63.6) 0.902 (0.552–1.474) 0.707

CI confidence interval
**P values less than 0.01

Table 3 Surfactant protein D gene polymorphisms in sepsis-induced AKI patients and healthy controls

Genotype/allele Sepsis-induced AKI patients, n(%) Controls, n(%) Odds ratio (95% CI) P value

Met11Thr

Met/Met 20 (22.5) 51 (42.5) 0.392 (0.212–0.726) 0.003**

Met/Thr 40 (44.9) 54 (45.0)

Thr/Thr 29 (32.6) 15 (12.5) 3.383 (1.681–6.810) 0.001**

Allele

Met 80 (44.9) 156 (65.0) 0.440 (0.296–0.654)

Thr 98 (55.1) 84 (35.0) 2.275 (1.529–3.384) 0.001**

Ala160Thr

Ala/Ala 35 (39.3) 49 (40.8) 0.952 (0.544–1.666) 0.888

Ala/Thr 43 (48.3) 52 (43.3)

Thr/Thr 11 (12.4) 20 (15.9) 0.712 (0.322–1.574) 0.437

Allele

Ala 113 (63.5) 150 (62.5) 1.043 (0.698–1.559)

Thr 65 (36.5) 90 (37.5) 0.959 (0.642–1.433) 0.919

CI confidence interval
**P values less than 0.01
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observed in serum SP-D levels between AKI patients with
160Thr/Thr genotype and those with 160Ala/Thr and
160Ala/Ala genotypes (p = 0.12) (Table 5).

Relationship between baseline serum SP-D level and urine
KIM-1 level with AKI severity and need and duration of
RRT in AKI patients
In our study, baseline serum SP-D levels (day 1) corre-
lated with urine KIM-1 levels in AKI patients (Pearson
coefficient, r = 0.658), indicating that higher levels of
baseline serum SP-D, related to more severe renal injury
(Fig. 1).
The baseline serum SP-D levels of AKI patients treated

with RRT were also higher than in AKI patients without
RRT (p = 0.012). In addition, baseline serum SP-D level
correlated with the duration of RRT (Pearson co-efficient
r = 0.852). However, there was no difference in the base-
line serum SP-D levels between patients treated with
different RRT doses (20 mL/kg vs. 35 mL/kg) (Table 6).

Discussion
The objective of this study was to explore the possible rela-
tionships between SP-D Thr11Met and Thr160Ala poly-
morphisms and serum SP-D levels as well as susceptibility,
severity and prognosis of AKI in Chinese patients.
Previous studies have also demonstrated that the

SP-D-Met11Thr polymorphism is associated with sus-
ceptibility to several diseases. For example, subjects from
Western countries with 11Thr allele or 11Thr/Thr

genotype were more susceptible to allergic rhinitis [15],
asthma [16], chronic obstructive pulmonary disease
(COPD) [17], and community-acquired pneumonia [18].
Interestingly, recipients of allografts with SP-D 11Met/
Met genotype had significantly lower rates of chronic lung
allograft dysfunction and improved survival compared to
those with the homozygous SP-D 11Thr/Thr genotype
[19]. In our study, individuals with 11Thr/Thr genotype
were more susceptible to AKI compared to those with
other SP-D genotypes. In addition, to avoid potential
problems due to different race, region and living environ-
ments among subjects, all AKI patients and healthy con-
trols in this study were of Chinese Han nationality and
resided in similar geographic locations in the central area
of China. In our study, frequencies of genotypes at
Thr11Met and Thr160Ala loci in healthy controls were
similar to those reported in previous studies conducted in
the Chinese population [20]. However, the distribution of
genotypes in the Chinese population differed from that re-
ported in Western populations [11]. Thus, based on our
findings, we can speculate that the SP-D-Thr11Met poly-
morphism may be used a biomarker to predict patient
susceptibility to AKI of Chinese patients.
Among many SNPs present in the SP-D gene, two

intraexonic polymorphisms, Met11Thr and Ala160Thr,
which result in changes in amino acids residues, have
been described. The Met11Thr polymorphism is located
in codon 11 in the SP-D N-terminal region and it has
been reported previously that this amino acid change
influences the oligomerization of the human SP-D
protein thereby impacting on its function [10]. Further-
more, SP-D protein posttranslational modifications such
as nitrosylation of multimeric SP-D could cause collagen
tail wrapping and affect SP-D binding ability to the cal-
reticulin/CD91 receptor on macrophages. This, in turn,
might lead to higher anti-inflammatory activity as com-
pared with normal trimeric SP-D protein [21]. Moreover,
a previous study demonstrated that multimeric SP-D
protein was a better inhibitor of Gram-positive and
negative bacteria as well as influenza virus A compared
to SP-D, with a lower degree oligomerization [22]. In
our study, we found that AKI subjects with 11Thr/Thr
genotype had higher serum SP-D levels than those with
11Met/Met and 11Thr/Met genotypes, which may also
contribute to individual susceptibility to AKI. These

Table 4 Serum SP-D and Urine KIM-1 levels in AKI patients and healthy controls

Median (IQR) serum SP-D (ng/ml) Median (IQR) Urine KIM-1 (ng/ml)

Time Day 1 Day 3 Day 7 Day 1

AKI patients, n(%) 142.4(128.5–158.5)c 342.2(323.2–356.1)a 134.8(125.6–146.5)b 1.37(1.14–1.58)c

Controls, n(%) 80.36(74.27–88.68) NA NA 0.47(0.23–0.64)
aCompared with Day 1,significant difference was observed. P less than 0.01
bCompared with Day 3, significant difference was observed. P less than 0.01
cCompared with healthy controls, significant difference was observed. P less than 0.01

Table 5 Baseline serum SP-D levels and different genotypes
among patients with AKI

AKI patients genotype Median (25th-75th IQR) baseline
serum SP-D(ng/ml)

P value

Met11Thr

Met/Met 123.8 (120.5–140.1)

Met/Thr 135.4 (128.2–169.3) 0.040*

Thr/Thr 149.0 (144.5–158.8) 0.002**

Ala160Thr

Ala/Ala 144.3 (121.6–169.9)

Ala/Thr 138.3 (131.8–147.6) 0.091

Thr/Thr 144.4 (124.8–147.6) 0.150

IQR interquartile range
*P values less than 0.05; **P values less than 0.01

Liu et al. BMC Nephrology  (2017) 18:67 Page 5 of 8



findings might be explained by the possibility that SP-D
Thr11Met SNP could influence the assembly, expression,
function and concentration of SP-D protein, conse-
quently altering susceptibility to diseases in which SP-D
is implicated.
A previous study by Eisner et al. [23] demonstrated

that higher baseline plasma SP-D levels were associated
with a greater risk of mortality in acute respiratory dis-
tress syndrome patients. Indeed, higher baseline serum
SP-D levels were associated with worse clinical out-
comes, including a higher degree of kidney injury, longer
RRT duration and increased risk of death in our study.
It has been shown previously that alveolar type II epithe-
lial cell hyperplasia can be stimulated by intra-tracheal
administration of KGF-2 to increase SP-D secretion.
SP-D easily disseminates into blood vessels due to its
hydrophilic nature, therefore, serum SP-D level may be
used as a sensitive marker of the permeability of alveolar
epithelial cells [24]. In the present study, serum SP-D
levels in AKI patients were significantly higher than that
in healthy controls, and reached a peak at day three. We
speculate that increased serum SP-D levels in AKI patients
may be attributed to large amounts of SP-D protein
secreted by renal tubular epithelial cells which may accu-
mulate in renal tubular lumen. In addition, SP-D protein
from the tubular lumen may leak into the lumen of blood
vessels when the barrier function of tubular epithelial cells
is damaged. The permeability of tubular epithelial cells is

related with the severity of renal injury, When the kidney
suffers injury, and the more severely the renal epithelial
cell barrier is damaged, the more SP-D protein would leak
into blood from tubular lumen,which may explain the sig-
nificant correlation between higher serum SP-D levels and
higher stage of renal injury in AKI patients.
KIM-1 is a reliable and early predictor for AKI, as dem-

onstrated by preclinical and clinical trials [25]. KIM-1 ex-
pression was most dominantly found in tubular epithelial
cells, especially in S3 segment in ischemia/reperfusion in-
jury (IRI) and toxic injury [25]. KIM-1 soluble fragment
can also be detected in the urine of early AKI patients
[26]. Urine KIM-1 levels have been recognized as a useful
biomarker to occurrence and severity of sepsis-induced
AKI [26]. In the present study, we found that urine KIM-1
levels in AKI stage 3 patients were significantly higher
than that in AKI stage 2 and stage 1 patients. In addition,
the baseline serum SP-D levels were significantly corre-
lated with urine KIM-1 levels, which further suggested
that serum SP-D levels may be a predictor for the severity
and prognosis of AKI. Indeed, SP-D meets the criterion of
a potentially ideal marker for AKI: it is non-invasive, easily
obtainable and detectable early in patient samples.
Moreover, in the present study we observed that

higher baseline SP-D serum levels were related to
greater possibility of RRT and its longer duration. RRT is
an effective way for AKI patients healing, which may be
attributed to effective removal of inflammatory cytokines

Fig. 1 The correlation of baseline serum SP-D level with urine KIM-1 or CRRT duration in AKI patients

Table 6 Baseline serum SP-D levels and patients’ outcome, AKI stage and RRT of AKI patients

AKI patients Outcome AKI stage RRT

Dead Alive Stage 1 Stage 2 Stage 3 With Without

Median(25th – 75th IQR)
serum SP-D(ng/ml)

149.6
(143.8–159.2)

139.5*
(124.1–154.6)

124.3
(120.4–123.4)

137.7*
(131.3–144.0)

156.1##

(148.9–165.1)
142.7
(139.5–159.8)

140.3*
(121.7–155.8)

P value 0.026 1 0.02 0.001 0.012

For the serum SP-D levels and different outcome analysis
*Compared with AKI patients who died, significant difference was observed. P less than 0.05
For the serum SP-D levels and different AKI stage analysis
*Compared with AKI stage 1,significant difference was observed. P less than 0.05
##Compared with AKI stage 3,significant difference was observed. P less than 0.01
For the serum SP-D levels and RRT need
*Compared with AKI patients with RRT, significant difference was observed. P less than 0.05
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from the circulation and local renal tissue [27]. However,
the mortality of AKI patients cannot be improved by
high-dose RRT [28]. In our study no difference in serum
SP-D levels at day three was observed among AKI
patients who were treated with different doses of RRT
(35 mL/kg vs. 25 mL/kg). Based on these findings, it
may be that serum SP-D of AKI patients was not
affected by different doses of RRT in our study.

Conclusion
In conclusion, in our study, carriers of SP-D 11Thr
allele/genotype were more susceptible to AKI compared
to 11Met allele/genotype carriers. Furthermore, higher
baseline serum SP-D levels were associated with adverse
clinical outcomes, including higher mortality, greater
possibility of RRT and longer duration. Therefore, the
SP-D-11Thr allele/genotype and serum SP-D protein
levels might perhaps be useful as biomarkers in predict-
ing AKI susceptibility and prognosis. It was the first time
to analyze the relationship between SP-D protein level
and polymorphisms and susceptibility and outcome of
AKI patients which can provide experimental evidences
to compare the use of biomarkers in routine clinical
practice. However, the sample number was not high
which would be improved in the following study.
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