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Circulating osteoprotegerin is associated
with chronic kidney disease in hypertensive
patients
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Abstract

Background: Osteoprotegerin (OPG) is a glycoprotein that plays an important regulatory role in the skeletal,
vascular, and immune system. It has been shown that OPG predicts chronic kidney disease (CKD) in diabetic
patients. We hypothesized that OPG could be a risk marker of CKD development also in non-diabetic
hypertensive patients.

Methods: A case-control study was carried out to measure circulating OPG levels in 42 hypertensive patients with
CKD and in 141 hypertensive patients without CKD. A potential relationship between OPG and the presence of CKD
was investigated and a receiver-operating characteristic (ROC) curve was designed thereafter to identify a cut-off
value of OPG that best explained the presence of CKD. Secondly, to evaluate whether OPG increase could affect
the kidney, 18 C57BL/6J mice were randomized to be treated with saline or recombinant OPG every 3 weeks for
12 weeks.

Results: Circulating OPG levels were significantly higher in hypertensive patients with CKD, and there was a significant
inverse association between OPG and renal function, that was independent from other variables. ROC analysis showed
that OPG levels had a high statistically predictive value on CKD in hypertensive patients, which was greater than that of
hypertension. The OPG best cut-off value associated with CKD was 1109.19 ng/L. In the experimental study, OPG
delivery significantly increased the gene expression of pro-inflammatory and pro-fibrotic mediators, as well as the
glomerular nitrosylation of proteins.

Conclusions: This study shows that OPG is associated with CKD in hypertensive patients, where it might have a higher
predictive value than that of hypertension for CKD development. Secondly, we found that OPG delivery significantly
increased the expression of molecular pathways involved in kidney damage. Further longitudinal studies are needed
not only to evaluate whether OPG predicts CKD development but also to clarify whether OPG should be considered a
risk factor for CKD.
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Background
Osteoprotegerin (OPG) is a circulating glycoprotein
that acts as a cytokine decoy receptor and antago-
nizes receptor activator for nuclear factor kB ligand
(RANKL) and TNF-related apoptosis-inducing ligand
(TRAIL) [1]. Initially, due to its ability to block RANKL
and to inhibit bone reabsorption, OPG was considered as
one of the key regulators of bone turnover [2]. Then, it
has become increasingly clear that OPG exerted also other
actions, involving the immune and the cardiovascular
system [3].
Today, OPG is considered a risk marker of cardio-

vascular diseases (CVD) [4]. OPG levels are positively
correlated with markers of vascular damage such as
endothelial dysfunction [5, 6], vascular stiffness [7],
and coronary calcification [8], as well as with the
presence and severity of coronary artery disease [9,
10]. In addition, OPG is associated with the risk of
future coronary artery disease [11, 12], heart failure
[13], and with the incidence of cardiovascular [12, 14]
and all-cause mortality [15, 16], not only in patients
with coronary artery disease [14] but also in the gen-
eral population [17].
Animal studies, which help understand the mecha-

nisms of diseases, are conflicting on the effect of
OPG on the cardiovascular system. Although initially
OPG deficiency resulted in significant medial calcifi-
cation of the aorta and the arteries [18, 19], our
group has shown that the delivery of OPG increased
atherosclerosis extension [20], suggesting that this
molecule could actually promote atherosclerosis. To
date, it remains unclear whether OPG increase should
be considered as a risk factor rather than just a risk
marker of CVD [21].
As for the kidney, it has been show that OPG is in-

creased in patients with non-diabetic [22, 23] and
diabetic chronic kidney disease (CKD) [24–26], where
it predicts deterioration of kidney function, vascular
events, cardiovascular and all-cause mortality [25]. Con-
sistent with it, it has been recently reported that elevated
OPG is associated with increased 5- and 10-year risk of
rapid renal decline, renal disease hospitalization, and/or
deaths in elderly women [27]. Overall, these studies,
mostly carried out in diabetic patients, suggest that OPG
could be a biomarker for CKD progression, as reviewed in
[28, 29]. Nevertheless, it remains unclear whether a simi-
lar association is present also in hypertensive patients.
Moreover, the direct effects of OPG on the kidney remain
largely unknown.
Based on these premises, the aims of this study were

to evaluate the relationship between OPG and CKD in a
group of patients with essential hypertension, and to
evaluate whether OPG increase could damage directly
the kidney in an experimental setting.

Materials and methods
Clinical study
Study protocol
A case-control study was carried out to measure circu-
lating OPG levels in hypertensive patients with CKD and
in hypertensive patients without CKD. For this purpose,
a total of 42 non-diabetic hypertensive patients with
CKD (CKD) and 141 hypertensive patients with no CKD
(CNT), were consecutively enrolled over two years from
the subjects referring to four hospital-based Hyperten-
sion Centres [30]. CKD patients had: (a) diagnosis of
moderate to severe essential hypertension (systolic blood
pressure > 160 mmHg and diastolic blood pres-
sure > 100 mmHg) prior to the development of CKD
(GFR <60 mL/min/1.73 mm2); (b) onset of CKD before
the age of 65 years; (c) low-grade proteinuria (<2 g/
24 h); (d) no history of nephrotoxic exposure, congenital
or intrinsic renal disease, and systemic illness associated
with renal damage; (e) biopsy-proven diagnosis of
nephroangiosclerosis, when available (28%). CNT pa-
tients were required to have a diagnosis of essential
hypertension (systolic blood pressure > 160 mmHg and
diastolic blood pressure > 100 mmHg) without signs of
renal disease (GFR >60 mL/min/1.73 m2, absence of
proteinuria, and normal renal ultrasound morphology).
In both groups, essential hypertension was diagnosed

after having excluded secondary causes by clinical, bio-
chemical, and imaging exams. All patients with diabetes
mellitus, as defined by the American Diabetes Associ-
ation were excluded from the study. After the initial
screening visit at our Clinics, and before blood sampling,
all the subjects selected were asked to sign an informed
consent form for participating in this study, whose
protocol had been previously approved by the Institu-
tional Ethics Committee of the Azienda Provinciale
per Servizi Sanitari ASS1 (87.01/GEN/II.2/C8 issued
on 20/02/2013).

General and biochemical parameters
After having given their informed consent, all the
patients selected underwent a medical examination. Past
medical history, the prevalence of macrovascular compli-
cations (including acute myocardial infarction, periph-
eral artery disease, and stroke), and medication were
recorded. Office blood pressure was measured three
times under antihypertensive therapy. In addition to
that, all the patients underwent blood sampling for bio-
chemical analyses, as well as a 24-h urinary collection.
Samples were collected at 08.00 a.m., after an overnight
fasting, as a part of our regular CKD patient follow-up,
and they were centrifuged and stored at −80°. Creatinine,
urea, uric acid, electrolytes, parathormone (PTH), glucose,
triglycerides, total cholesterol, HDL cholesterol, and C-
reactive protein (CRP) were measured by autoanalyzer.
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LDL cholesterol was calculated by the Friedwald’s formula.
The GFR was calculated with the Cockcroft and Gault for-
mula. Proteinuria was assessed by measurement of 24-h
total urinary protein excretion with the Coomassie dye
binding technique. The urinary albumin excretion rate
(AER) was measured by a nephelometric method, as pre-
viously reported [30]. OPG was measured by ELISA in the
sera (R&D; Cat#DY805).

Experimental study
Study protocol
In order to evaluate whether an OPG increase could
damage the kidney, we studied the gene and protein
expression of pro-oxidative, proinflammatory, and profi-
brotic molecules in mice randomized to be treated with
saline or OPG. Based on the protocol of one of our previ-
ous experimental studies [20], 18 adult (8-wk-old) male
C57BL/6J mice (Harlan Laboratories, Udine, Italy) were
randomized to receive human recombinant full-length
OPG (OPG, n = 9) or saline (CNT, n = 9) every 3 weeks
for 12 weeks. OPG (R&D Systems, Minneapolis) was
delivered intraperitoneally at a dose of 1 μg per mouse
in a total of 200 μl of saline. During the study period,
all the mice were fed with a standard diet. The animals
were kept in a temperature-controlled room (22 +/− 1 °C)
on a 12 h light/ 12 h dark cycle with free access to
food and water and they were fed ad libitum for the
length of the study. After 12 weeks, the animals were
anesthetized with an intraperitoneal injection of pento-
barbital sodium (60 mg/kg body weight), and sacrificed
by exanguination via cardiac puncture. Bloods and
tissues were collected for further analyses. Animals
were housed at the Animal House of the University of
Trieste, and the protocol of this study was approved
by its Animal Ethic Committee (ID 28.0.2008) in com-
pliance with current guidelines on laboratory animal
care and specific laws.

Gene expression analysis
Kidneys were divided and half of each was fixed in
formalin, half in liquid nitrogen. The part that was snap-
frozen in liquid nitrogen was used for gene expression
analyses. Gene expression was measured by real-time
quantitative RT-PCR (reverse transcription-polymerase
chain reaction), as previously described [31]. Briefly,
mRNA was extracted and then treated with the DNase
inactivation reagent (Ambion DNA-free product #AM-
1906), and 3 μg of treated mRNA were subsequently
used to synthesize cDNA with Superscript First Strand
synthesis system for RT-PCR (Gibco BRL). Gene expres-
sion was analysed by real-time quantitative RT-PCR
using the TaqMan system (Life Technologies) for ACE,
ACE2, AT1R, MCP-1, CTGF, and fibronectin, and the
SYBR Green system (Life Technologies) for IL-6, TNF-α,

TGF-β. Fluorescence for each cycle was quantitatively
analysed by an ABI Prism 7900HT Sequence Detection
System (Applied Biosystems). Gene expression of ACE,
ACE2, AT1, MCP-1, CTGF, and fibronectin was normal-
ized to 18S mRNA, while that of IL-6, TNF-α, TGF-β was
normalized to Rps9. Results are reported as fold induction
compared with the level of expression in untreated con-
trols, which were given an arbitrary value of 1.

Immunostainings
The half of the kidney that was fixed in formalin, was
embedded in paraffin, cut in 4-μm thick sections, and
immunostained in order to measure the amount of
glomerular nitrosylated protein. Kidney sections were
incubated with rabbit anti-nitrotyrosine (Upstate, Lake
Placid, NY; dilution 1:100) and biotinylated immuno-
globulins (Vector laboratories, Burlingame, CA, dilution
1:500) which were then applied as secondary antibodies.
Quantification of nitrotyrosine was performed by calcu-
lating the proportion of area occupied by the specific
brown staining within the whole area of the glomerulus.
For this analysis we used an image analysis system
(Image-Pro Plus vers.6.3 Software, Media-Cybernetics;
Silver Spring, MD, USA) associated with a high-
resolution video-camera (Q-Imaging Fast 1394), and a
computer.

Statistical analysis
Data are presented as means ± SD. Significance was set
at p < 0.05. The Kolmogorov-Smirnov test was applied
to continuous variables to check for distribution normal-
ity. Cases and controls were compared using either the
t-test for independent samples or the Mann-Whitney U
test, where appropriate. The Pearson coefficient, for
normally distributed variables, and the Spearman rank
correlation coefficient, when at least one variable was
not assumed to be normally distributed, were calculated
to evaluate the correlation between OPG and age, sex,
BMI, SBP, DBP, GFR, calcium, phosphate, PTH, and
CRP once at a time. To evaluate the association of high
circulating levels of OPG with CKD controlled for
variables initially associated with CKD in the bivariate
analyses, we tested a combination of multiple logistic re-
gression models. Then, a receiver-operating characteris-
tic (ROC) curve was designed to identify a cut-off value
of OPG that best predicted the presence of CKD. Speci-
ficity and sensitivity were also calculated (95% confi-
dence interval, CI). The best possible cut-off point was
defined as the highest Youden Index [(specificity +
sensibility) - 1], as previously reported [32]. Statistical
analysis was performed with SAS 9.3 (SAS Institute,
Cary, NC, USA). For the animal studies, results are
expressed as means ± SD of the mean. Differences in the
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mean among groups were analysed using the t-test.
Significance was set at p < 0.05.

Results
Patient characteristics
Baseline characteristics and laboratory data of CNT and
CKD patients are reported in Table 1. As expected,
hypertensive patients with CKD had lower BMI, higher
SBP, and a higher prevalence of macrovascular events, as
compared to controls. In addition, hypertensive patients
with CKD had lower GFR, higher urea nitrogen, higher
acid uric, and higher PTH, and they had proteinuria.

OPG and renal function
OPG was significantly increased in CKD patients as
compared to controls, being 2789.54 ± 2432.25 pg/mL

in the CKD and 1216.18 ± 443.93 pg/mL in the CNT
group (Satterthwaite t-test of means for unequal vari-
ances = 4.61, d.f. = 47.169; p < 0.001), for further details
see the Additional file 1. Patients with CKD were further
stratified into 3 groups according to National Kidney
Foundation criteria for CKD: GFR 30–59 mL/min per
1.73 m2 (CKD3, n = 14), GFR 15–29 mL/min per
1.73 m2 (CKD4, n = 13), and GFR < 15 mL/min per
1.73 m2 (CKD5, n = 15) (Table 2). We found a continu-
ous (and significant) increase of SBP, phosphate, PTH,
CRP and OPG concentrations across the various CKD
stages (Table 2). Interestingly, OPG and PTH were the
only two parameters to increase significantly in patients
with stage 3 CKD, whereas SBP, phosphate and CRP
increased in patients with stage 4 CKD.

OPG is inversely associated with renal function
impairment
The univariate analysis showed that there was a signifi-
cant inverse correlation between OPG and renal func-
tion (Fig. 1). Moreover, OPG was directly correlated
with SBP (p < 0.0001), hypertension duration
(p = 0.0018), PTH (p < 0.0001), phosphate (p < 0.0001),
CRP (p < 0.0001), and macrovascular events
(p < 0.0001). The multivariate analysis showed that OPG
was significantly associated with CKD independently
from age, sex, BMI, SBP, phosphate, PTH, and CRP
(Table 3).

OPG and CKD according to the area under the ROC curve
To evaluate the operating characteristics of OPG as a
prognostic tool for the development of CKD in hyper-
tensive patients, we performed a ROCanalysis for
OPG with respect to CKD (Fig. 2). OPG was com-
pared to BMI, phosphate, PTH, and SBP. Interest-
ingly, OPG and PTH showed the highest predictive
value for CKD development in hypertensive patients,
as they obtained the highest areas under the curve
(AUC), followed by phosphate and SBP. In particular,
OPG had an AUC of 0.7661 and its cut-off value best
predicting CKD was 1109.19 pg/mL (sensitiv-
ity = 85.8%; specificity = 59.5%), according to the
maximum of the Youden Index.

OPG delivery and kidney injury in vivo
As it remains unclear whether OPG should be considered
not only a risk marker but also a risk factor for CKD de-
velopment, we evaluated the renal effects of repeated
OPG injections in C57Bl/6J mice. In particular, based on
the current understanding of the mechanisms/mediators
underlying kidney disease [33], we studied the renal
expression of TGF-β, which is considered the “master
regulator” of glomerular and tubulointerstitial fibrosis
[34]. In addition, among the ever-growing panel of

Table 1 Patient characteristics

Parameter CNT (n = 141) CKD (n = 42) p-value

Age (years) 59.5 ± 7.7 60.1 ± 8.5 0.6467

Sex (% male) 68.1 5.7 0.0253

BMI (Kg/m2) 28.0 ± 4.6 25.4 ± 3.4 0.0002

SBP (mmHg) 155.2 ± 18.3 167.7 ± 21.6 0.0003

DBP (mmHg) 92.3 ± 9.2 94.9 ± 15.3 0.2987

Hypertension duration (months) 193 ± 94 212 ± 104 0.4558

Creatinine (mg/dL) 1.0 ± 0.1 3.4 ± 1.6 0.0001

GFR (mL/min) 69.0 ± 12.9 24.0 ± 13.1 <.0001

Urea nitrogen (mg/dL) 36.6 ± 9.3 94.9 ± 64.0 <.0001

Uric acid (mg/dL) 5.4 ± 1.4 7.1 ± 1.8 <.0001

Proteinuria (g/24 h) - 1.3 ± 1.1

AER (μg/min) 22.3 ± 45.0 -

Glucose (mg/dL) 98.9 ± 1.7 93.4 ± 2.9 0.1188

Sodium (mEq/L) 140.6 ± 2.4 141.1 ± 2.8 0.2772

Potassium (mEq/L) 4.2 ± 0.3 4.6 ± 0.5 <.0001

Calcium (mg/dL) 5.2 ± 0.5 5.2 ± 0.8 0.9838

Phosphate (mg/dL) 2.8 ± 0.6 3.6 ± 1.5 0.0019

PTH (pg/mL) 33.7 ± 16.8 114.2 ± 110.6 <.0001

Total cholesterol (mg/dL) 235.3 ± 44.0 219.9 ± 50.8 0.0563

HDL cholesterol (mg/dL) 51.9 ± 15.0 44.2 ± 13.2 0.0032

Triglycerides (mg/dL) 148.1 ± 90.6 177.6 ± 69.1 0.2840

LDL cholesterol (mg/dL) 153.7 ± 40.2 140.1 ± 46.0 0.0892

CRP (mg/L) 3.9 ± 7.8 9.3 ± 11.31 0.0044

ACEi or/ARB (%) 52.5 35.7 0.0563

Macrovascular events (%) 12.8 54.8 <.0001

ACEi is for ACE inhibitors, AER is for albumin excretion rate, ARB is for
AngiotensinII receptor blockers, BMI is for body mass index, CKD is for chronic
kidney disease, CNT is for control, CRP is for C-reactive protein, DBP is for
diastolic blood pressure, GFR is for glomerular filtration rate, HDL is for high
density lipoprotein, LDL is for low density lipoprotein, PTH is for parathormone,
SBP is for systolic blood pressure. Macrovascular events include acute myocardial
infarction, peripheral artery disease, and stroke.
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molecules that are known to elicit fibrosis-promoting ef-
fects and effects on the pathway of TGF-β [33], we studied
the renal expression of members of the renin-angiotensin-
aldosterone system (ACE, ACE2, AT1R), other growth
factors (CTGF, TNF-α), cytokines (IL-6), chemokines
(MCP-1), matrix molecules (fibronectin), as well as the
renal nitrosylation of proteins, which is a marker of oxida-
tive stress, and renal damage. We found that OPG delivery
was associated with a significant increase in the gene ex-
pression of IL-6 and TGF-β and with a significant increase
in protein nitrosylation (Fig. 3), for further details see
the Additional file 1.

Discussion
This study shows that circulating OPG is significantly
associated with the presence of CKD in hypertensive
non-diabetic patients, independently from other vari-
ables. This is consistent with the report that plasma

OPG concentration predicts the deterioration of kidney
function in type 1 diabetic patients [25], and suggests
that OPG could be used as a risk marker for CKD not
only in type 1 diabetes, but also in patients with hyper-
tension, as it was shown in elderly women [27] and renal
transplant recipients [35]. In this study, although systolic
blood pressure was significantly different between the
groups and was conceivably the underlying cause of
CKD, we found that the association between OPG and
CKD was independent from blood pressure, and that,
quite interestingly, OPG increased at an earlier stage of
CKD as compared to hypertension.
In the ROC analysis, OPG displayed a high AUC for

CKD, and the cut-off value best predicting CKD was in
line with the values reported by Bjerre [36]. Interestingly,
OPG turned out to be associated with a larger AUC than
that of hypertension, but similar to that of PTH. Classic-
ally, OPG and PTH are both related to bone metabolism

Table 2 Clinical and laboratory data stratified according to GFR in CKD stages

Parameter CNT Patients with CKD

CKD3 (n = 14) CKD4 (n = 13) CKD5 (n = 15)

SBP (mmHg) 155.25 ± 18.28 161.79 ± 20.15 168.46 ± 17.25 172.67 ± 25.97*

DBP (mmHg) 92.26 ± 9.20 93.21 ± 13.95 96.92 ± 18.09 94.67 ± 14.94

Calcium (mg/dL) 10.20 ± 0.54 10.09 ± 0.76 10.21 ± 0.71 10.30 ± 0.89

Phosphate (mg/dL) 2.76 ± 0.58 2.71 ± 0.92 3.55 ± 0.97* 4.41 ± 1.86*

PTH (pg/mL) 33.70 ± 16.7 57.00 ± 22.61* 126.37 ± 70.32* 160.89 ± 161.23*

CRP (mg/L) 4.03 ± 8.51 5.92 ± 4.83 6.83 ± 4.58* 15.9 ± 17.89*

OPG (pg/mL) 1216.18 ± 443.93 1619.11 ± 736.13* 1909.28 ± 1560.04* 4413.64 ± 3208.59*

CKD is for chronic kidney disease, CNT is for control, CRP is for C-reactive protein, DBP is for diastolic blood pressure, OPG is for osteoprotegerin, PTH is for
parathormone, SBP is for systolic blood pressure. *p < 0.05

Fig. 1 Inverse correlation between log OPG and GFR. Correlation between Log OPG (lopg) and GFR (Spearman coefficient = −0.40808 and p < 0.0001)
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[37, 38]. Nevertheless, the fact that OPG and PTH were
both increased in CKD and that they had a similar pre-
dictive value on CKD status should not be due to a dir-
ect stimulatory effect of PTH on OPG. It has in fact
been demonstrated that PTH downregulates OPG ex-
pression in bone cells [39–41], and that, on the other
hand, OPG does not change PTH levels [42]. Moreover,
in this study, the association between OPG and CKD
was independent from PTH. It is actually possible that
the similar behaviour of OPG and PTH relies on a

shared trigger, such as the renin-angiotensin-aldosterone
system (RAAS) activation, for example [43, 44]. It has
been demonstrated that RAAS activation might increase
OPG levels, which is supported by the experimental ob-
servation that AngII increased OPG expression in aortic
smooth muscle cells in vitro [45, 46].
Other mechanisms underlying OPG increase in CKD

might include low-grade inflammation, FGF-23 elevation,
and kidney function itself. Inflammation might contribute
to elevate OPG levels as several proinflammatory
cytokines, such as TNF-α, regulate OPG production in
vascular smooth muscle cells [47]. With respect to this
point, we found a significant association between OPG
and CRP, not only in the hypertensive patients selected for
this study, but also in patients with metabolic syn-
drome that we selected for a previous study [48]. Sec-
ondly, elevated FGF-23 levels which are found in CKD
patients, might also stimulate OPG expression [49].
Thirdly, given that kidney excretion is supposed to regu-
late the clearance of OPG, the retention of OPG due to
renal impairment might provide another part of the an-
swer to the mechanisms whereby OPG concentrations are
increased in CKD [26].
Beside the mechanisms causing OPG elevation, it

remains to be answered what are OPG effects on the
kidney. Several works have demonstrated that OPG is
not just a marker but also a risk factor of disease
[20], as its delivery induced proinflammatory and pro-
fibrotic tissue changes at different levels [20, 45, 48,
50]. As for inflammation, it has been demonstrated
that OPG stimulated endothelial cell expression of ad-
hesion molecules [51], and that it increased leukocyte
adhesion to endothelial cells [52]. As for fibrosis, we
have recently shown that OPG was able to initiate
TGF-β1-dependent changes in vascular smooth
muscle cells [45], whereby it stimulated proliferation,
inflammation, and fibrosis. Moreover, also OPG expression

Table 3 Association of OPG with renal impairment from a mutually adjusted multiple logistic regression modela

Dependent variable: Renal impairment (yes/no)

Predictive variables DF β estimate Standard Error Wald Chi-square p-value

Log OPG 1 −2.1005 0.8004 6.8873 0.0087

BMI 1 0.2151 0.0880 5.9682 0.0146

SBP 1 −0.0178 0.0146 1.4779 0.2241

Col LDL 1 0.00910 0.00725 1.5737 0.2097

PTH 1 −0.0634 0.0155 16.6892 <0.0001

Phosphate 1 −0.6598 0.4620 2.0396 0.1532

CRP 1 0.000250 0.0254 0.0001 0.9921

Model R-square = 0.4306

BMI is for body mass index, CRP is for C-reactive protein, Col LDL is for low density lipoprotein cholesterol, OPG is for osteoprotegerin, PTH is for parathormone,
SBP is for systolic blood pressure
aAlso adjusted for age and sex.

Fig. 2 Predictive variables of CKD shown as ROC curves. Multivariate
model of CKD as the dependent variable and Log OPG (blue line),
SBP (red line), PTH (green line), phosphate (brown line), age, and sex
as the explanatory variables
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increased in response to TGF-β1, which could lead to
a vicious cycle that results in the auto-induction of
both OPG and TGF-β1.
Consistent with these experimental observations, here

we found that OPG delivery significantly increased the
gene expression of IL-6 and TGF-β, as well as the
amount of protein nitrosylation in the kidney, which are
all involved in kidney damage development and progres-
sion. Animal studies have established that most renal
diseases (including hypertensive CKD) progress to renal
failure as a consequence of functional adaptations which
ultimately lead to fibrosis [53]. In this process, not only
TGF-β, but also several cytokines, growth factors, and
vasoactive substances promote the abnormal accumula-
tion of extracellular matrix collagen, fibronectin, and
other components that are responsible for renal scarring
[33]. Therefore, our data suggests that OPG has the
potential to directly induce kidney damage, as it signifi-
cantly upregulated TGF-β, which is considered the
primary factor that drives fibrosis in most forms of CKD
[34]. In addition, also OPG-induced IL-6 upregulation
and oxidative stress show that OPG can directly damage
the kidney, as it has been shown that IL-6 expression in-
creases in diabetic nephropathy [54], and that oxidative
stress induces fibrogenesis in CKD [55]. Unexpectedly,
we did not find any change in the gene expression of
RAAS components. This might have been due to our
treatment protocol. Further studies with different

treatment schedules will help characterize more in detail
OPG effects on the kidney.

Conclusions
This study shows that circulating OPG was significantly
associated with the presence of CKD in hypertensive
non-diabetic patients, independently from other vari-
ables. This suggests that OPG could be a risk marker for
hypertension-induced CKD. In addition, in the experi-
mental study, OPG delivery caused molecular changes
associated with kidney damage, which sheds light on
OPG potential to be not only a risk marker but also a
risk factor for CKD.
There are a few limitations in the clinical study.

Our findings refer to a Caucasian population. In the
group of patients with CKD there were more
women, however, this should not have affected our
final data because it has been demonstrated that
serum OPG levels are not different in post-
menopausal women compared to men [56], and our
multivariate analyses were adjusted for age and sex.
The sample size is relatively small. The case-control
design does not allow determining whether OPG,
which was significantly associated with CKD
development, can actually predict CKD development.
This requires further prospective studies, such as the
Tromsø study [15]. With respect to our experimental

a

b

Fig. 3 Effect of OPG delivery on renal injury. a Renal mRNA expression is reported as relative gene units; data is expressed as mean ± SD.
*p < 0.05; ACE is for angiotensin-converting enzyme; ACE2 is for angiotensin-converting enzyme 2; AT1R is for angiotensinII type 1 receptor; IL-6
is for interleukin-6; MCP-1 is for monocyte chemoattractant protein-1; TNF-α is for tumor necrosis factor-α; CTGF is for connective tissue growth
factor; TGF-β is for transforming growth factor-β (b) Semi-quantitative analysis of protein nitrosylation in the glomeruli, expressed as percentage
stained area and representative sections of glomeruli stained for nitrotyrosine (original magnification 20X). Data is expressed as mean ± SD. *p < 0.05
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data, it is possible that OPG-treated mice did not
show any change in the RAAS expression because of
our experimental protocol.
Therefore, further studies are needed not only to

evaluate whether OPG predicts CKD development, but
also to support the notion that OPG is a risk factor for
kidney disease.

Additional file

Additional file 1: 1. Patient OPG and GFR values. Raw data of patient
circulating OPG values (pg/mL) as assessed by ELISA matched with GFR
values (ml/min). 2. Gene expression analysis. Raw data of kidney mRNA
expression of ACE, ACE2, AT1R, MCP-1, CTGF, and fibronectin, IL-6, TNF-α,
TGF-β. 3. Glomerular nitrotyrosine staining. Raw data of semi-quantitative
analysis of protein nitrosylation in the glomeruli, expressed as percentage
stained area (brown)/area glomerulus. (DOCX 64 kb)
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