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Injurious mechanical ventilation causes kidney
apoptosis and dysfunction during sepsis but
not after intra-tracheal acid instillation:
an experimental study
Jan Willem Kuiper1,2*, AB Johan Groeneveld3, Jack J Haitsma2, Lonneke Smeding4, Mark PV Begieneman5,
Serge Jothy6, Rosanna Vaschetto2,7,8 and Frans B Plötz9
Abstract

Background: Intratracheal aspiration and sepsis are leading causes of acute lung injury that frequently necessitate
mechanical ventilation (MV), which may aggravate lung injury thereby potentially increasing the risk of acute kidney
injury (AKI). We compared the effects of ventilation strategies and underlying conditions on the development of
AKI.

Methods: Spraque Dawley rats were challenged by intratracheal acid instillation or 24 h of abdominal sepsis,
followed by MV with a low tidal volume (LVT) and 5 cm H2O positive end-expiratory pressure (PEEP) or a high tidal
volume (HVT) and no PEEP, which is known to cause more lung injury after acid instillation than in sepsis. Rats were
ventilated for 4 hrs and kidney function and plasma mediator levels were measured. Kidney injury was assessed by
microscopy; apoptosis was quantified by TUNEL staining.

Results: During sepsis, but not after acid instillation, MV with HVT caused more renal apoptosis than MV with LVT.
Increased plasma active plasminogen activator inhibitor-1 correlated to kidney apoptosis in the cortex and medulla.
Increased apoptosis after HVT ventilation during sepsis was associated with a 40% decrease in creatinine clearance.

Conclusions: AKI is more likely to develop after MV induced lung injury during an indirect (as in sepsis) than after a
direct (as after intra-tracheal instillation) insult to the lungs, since it induces kidney apoptosis during sepsis but not
after acid instillation, opposite to the lung injury it caused. Our findings thus suggest using protective ventilatory
strategies in human sepsis, even in the absence of overt lung injury, to protect the kidney.
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Background
Both acute lung injury (either direct or indirect) and
mechanical ventilation (MV) are important contributing
factors for the development of acute kidney injury (AKI)
in patients, but how they interact is unclear [1-9]. This is
important since AKI is a common problem in critically
ill patients and carries significant morbidity and mortality,
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so that identification of mechanisms or modifiable risk
factors may help to understand and manage AKI for the
benefit of patients [9,10].
The effect of injurious high tidal volume (HVT) versus

non-injurious low tidal volume (LVT) MV may depend
on the underlying condition, such as aspiration pneumo-
nia or sepsis [11], and this may similarly translate into dif-
ferences in susceptibility to AKI [12]. In humans, HVT vs
LVT MV did not increase the incidence of AKI in patients
without lung injury [13], but AKI was more common after
HVT than LVT MV in patients with acute respiratory dis-
tress syndrome [14]. Animal models of intra-tracheal acid
and lipopolysaccharide (LPS) instillation demonstrate that
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HVT MV is associated with increased kidney interleukin-
6, vascular endothelial growth factor levels, apoptosis and
necrosis compared to LVT MV [15-18]. However, these
observations have not been confirmed by others. For ex-
ample, Hoag et al. did not find an effect of acid instillation
followed by HVT MV on kidney apoptosis or kidney func-
tion [12]. In a sepsis model, O’Mahoney et al. showed in-
creased pulmonary cytokines and pulmonary permeability
and increased plasma creatinine levels and protein accu-
mulation in collecting tubules after LVT MV following
intraperitoneal LPS injection, but not after MV or LPS
alone [19]. Currently, known effects of MV on AKI during
acute lung injury remain inconclusive and, to date, no
study compared the effects of MV after either direct or in-
direct lung injury on the development of AKI. Otherwise,
a growing body of evidence suggests that apoptosis plays
a key role, particularly in inflammatory conditions, in the
pathogenesis of AKI, and induction highly depends on
underlying conditions [6,20-22].
Therefore, in the current study we set out to investi-

gate whether the effects of HVT MV on kidney apoptosis
and function are differentially affected by the underlying
acute lung injury; i.e. following either direct or indirect
lung injury. We hypothesized that increased ventilator-
induced lung injury after intra-tracheal acid instillation
(direct lung injury) results in increased kidney apoptosis
and decreased kidney function, as compared to less se-
vere lung injury after cecal ligation and puncture (CLP)-
induced sepsis (indirect lung injury). The present study
uses the animals from our previous study and expands
on this study by investigating the effect of different MV
strategies on the development of kidney injury, apoptosis
and dysfunction [11].

Methods
Animal preparation
Ethical approval was obtained from the Institutional
Animal Care Committee of St Michael’s Hospital and
animals were treated according to the Canadian national
guidelines. A completed Animal Research: Reporting In
Vivo Experiments checklist has been submitted. Animals
were housed in the animal care facility of St Michael’s
Hospital with unlimited access to food and water. The ani-
mals used in the present study were those studied previ-
ously [11]. We will report new data on kidney histology,
apoptosis and kidney function. Adult, male Sprague
Dawley rats (Charles Rivers, St Constan, QC, Canada)
weighing 290 - 320 g were anesthetized with xylazine
(Bayer, Toronto, ON, Canada) 10 mg/kg and ketamine
(Bimeda-MTC, Cambridge, ON, Canada) 100 mg/kg
given intraperitoneally. Anaesthesia was maintained by
intravenous xylazine 1 mg/kg/h, ketamine 20 mg/kg/h;
muscle relaxation was achieved by intravenous pancuro-
nium bromide (Sabex Inc, QC, Canada) 0.6 mg/kg/h.
During surgical procedures and ventilation, rats were
supine on a heating pad and body temperature was main-
tained at 37°C. For blood sampling, fluid infusion and
arterial blood pressure measurements, catheters were
inserted into the right carotid artery and tail vein be-
fore stabilization. The arterial catheter was connected to
a pressure transducer for continuous measurement of ar-
terial blood pressure. During MV all animals received a
continuous infusion of normal saline to maintain mean
arterial blood pressure >60 mmHg, and for patency of
intravenous lines. Additionally, in these animals the blad-
der was catheterized using a transabdominal approach for
collection of urine.
Intratracheal acid instillation, as a model for aspiration

of gastric content, primarily targets the pulmonary epi-
thelium. This model followed by MV is used to repro-
duce clinically relevant scenarios [23]. A pilot study was
undertaken to establish the acid instillation protocol.
Briefly, after anaesthesia and tracheotomy, a 14G canula
was inserted into the trachea and connected to a ventila-
tor (Servo 300, Siemens, Munich, Germany); set to deliver
a tidal volume (VT) of 6 mL/kg and a positive end-
expiratory pressure (PEEP) of 5 cm H2O. One animal was
ventilated per ventilator per experiment. Arterial and
venous catheters were inserted and hydrochloric acid
(HCl, pH 2.0), 1 ml/kg, was rapidly instilled intratra-
cheally at baseline using an aerosolizer (PennCentury
Inc, Philadelphia, PA, USA). Instillation was followed by a
recruitment manoeuvre (increase in PEEP to 25 cm H2O
for 5 breaths). Rats were subsequently stabilized for 10 mi-
nutes and then randomized. Control rats received acid in-
stillation alone after which they were sacrificed after the
recruitment manoeuvre. Rats did not survive acid instilla-
tion without subsequent MV due to technical and ethical
limitations; inclusion of time-matched controls was there-
fore impossible. The mortality rate of acid instillation was
13% before randomisation.
CLP-induced polymicrobial sepsis is one of the best

and widely used animal models for the study of sepsis
and organ damage, including lung and kidney damage.
[23] With the animal spontaneously breathing 40% oxy-
gen, a laparotomy through a midline incision using an
aseptic technique was performed. The coecum was li-
gated just below the ileocecal valve with 3–0 silk liga-
ture, so that intestinal continuity was maintained. Using
a 14-Gauge needle, the coecum was perforated in two
locations, 1 cm apart, on the antimesenteric surface of
the coecum, and the coecum was gently compressed
until faeces were extruded. The bowel was then returned
to the abdomen and the incision was closed using 4–0
silk ligature for both the muscle layer and skin. Subse-
quently, rats received 30 mL/kg 0.9% saline in the scruff
of the neck and buprenorphine 30 μg/kg subcutaneously
(Schering-Plough, Hertfordshire, UK). The rats breathed
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40% oxygen until recovery from anaesthesia, and then
were placed back in a cage with free access to food and
water. Eight hours after surgery, rats received a 30 mL/kg
0.9% saline bolus i.p. Mortality rate of the model prior to
randomisation was 6%. Twenty-four hrs after the induc-
tion of sepsis, rats were anaesthetized and tracheotomy
was performed, with a canula (14 gauge) inserted into the
trachea. Rats were connected to a ventilator; arterial and
venous catheters were inserted followed by a 10-minute
stabilization period with ventilation using VT 6 mL/kg and
PEEP 5 cm H2O.

Experimental protocol
After stabilization, rats were randomly allocated to one
of 4 groups: MV with either a low VT (6 mL/kg) and
PEEP 5 cm H2O (n = 10 per group) (LVT acid and LVT

sepsis) or a high VT (15 mL/kg), no PEEP (n = 10 per
group) (HVT acid and HVT sepsis). These strategies are
widely used and advocated as safe or mildly lung-injurious
in rats [17,24-26]. Additionally, a VT of more than 15 ml/kg
is necessary to injure the lungs during sepsis in rats, as
shown before [26]. Eight rats were immediately sacrificed
after acid instillation (acid). Ten septic rats served as non-
ventilated septic controls (sepsis) and were sacrificed 28 hr
after induction of sepsis. Six healthy rats served as healthy
controls (control) (Figure 1). Inspiratory/expiratory ratio
was 1:2. Normocapnia was maintained by adjusting re-
spiratory rate. The fraction of inspired oxygen was set at
0.4 and increased when necessary in ventilated groups. At
the end of the experiment a blood sample was taken and
animals were sacrificed with an overdose of ketamine/
xylazine.
Rats were ventilated in the laboratory for 4 hrs during

which blood pressure and heart rate were measured con-
tinuously. Arterial blood samples were taken 30 min after
randomization and every hour for blood gas analysis (Ciba
Corning Model 248 blood gas analyser, Corning Medical,
Medfield, MA, USA). For each blood sample a volume of
T =-24hrs, induction 
of sepsis, n=30

T=-16 hrs, fluid 
bolus 30 ml/kg

T=-10 min, acid 
instillation, n=28

T=0 random

Figure 1 Timeline of the experiment. Septic rats and rats after acid instil
drawn, the rats were sacrificed and the organs harvested. See text for furth
end-expiratory pressure.
maximum 100 μl was necessary. An equal amount of nor-
mal saline was administered intra-venously to compensate
for the fluid loss. After 3 hrs of mechanical ventilation,
bladders were emptied and urine samples were collected
during the last hour of the experimental protocol. At the
end of the experiment a blood sample was taken and ani-
mals were sacrificed with an overdose of intravenous an-
aesthesia. Non ventilated controls were sacrificed 28 hrs
after induction of sepsis. Lungs and kidneys were har-
vested for histological examination. Creatinine clearance
was calculated using the formula UCrxV/PCr, where UCr

represents the urine creatinine concentration (mg/ml), V
is the urine flow (ml/min) and PCr is the plasma creatinine
concentration. Technically, it was not possible to collect
urine in spontaneously breathing control animals without
subjecting the rats to anaesthesia and subsequent mechan-
ical ventilation. Mediators were measured in plasma as de-
scribed and presented previously [11].

Histology
A pathologist, blinded as to the experimental history of
the specimens, performed a quantitative morphometric
analysis of kidney injury using a scoring system that in-
cluded tubular dilatation, presence of intra-tubular deb-
ris, vacuolization of tubular epithelium cells and loss of
brush border membrane integrity. Lung injury was
assessed as described previously and some data were re-
iterated for the sake of clarity [11]. Briefly, a quantitative
morphometric analysis of alveolar collapse, perivascular
and alveolar haemorrhage, perivascular oedema, vascular
congestion, alveolar polymorphonuclear leukocytes, al-
veolar oedema and macrophages was performed blindly
by a pathologist (scores potentially ranged from 0 to 24).

Apoptosis (TUNEL assay)
Apoptotic cells were detected using a terminal deoxynu-
cleotidyl transferase dUTP nick end labelling (TUNEL)
assay for in-situ end labelling, adapted to an automated
isation HVT sepsis, 15 ml/kg 0 PEEP n=10

LVT sepsis, 6 ml/kg 5 PEEP n=10

Control n=6

Sepsis n=8

Acid, sacrifice at T=0 n=8

LVT acid, 6 ml/kg 5 PEEP n=10

HVT acid, 15 ml/kg 0 PEEP n=10

T=4 sacrifice

lation were mechanically ventilated for 4 hrs after which blood was
er details. HVT: high tidal volume, LVT: low tidal volume, PEEP: positive
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in-situ hybridization instrument (Discovery™ Ventana
Medical Systems, Inc.Tuscon, AZ. USA). As per Discovery
protocol, the instrument used 5 μm thick deparaffi-
nised tissue sections mounted on positive charged glass
slides, with subsequent digestion with Protease I (Ventana
Medical Systems, AZ. USA) digestion for 12 minutes. The
assay uses recombinant terminal deoxynucleotidyl trans-
ferase (Tdt) (Invitrogen Corporation, CA, USA.) for add-
ing homo-polymer tails to the 3’ ends of cleaved DNA,
characteristic in cells undergoing programmed cell death.
Biotin 16-dUTP (Roche Diagnostics, Basel Switzerland)
was the labelled nucleotide used for this reaction. Colori-
metric visualization using avidin-horse radish peroxidase
and 3,3′-diaminobenzidine detection method was per-
formed. Cells were counterstained with haematoxylin to
facilitate cell counting. Twelve randomly chosen fields of
each section (72 fields for each group) were counted in a
blinded fashion. An apoptotic index was calculated [100% ×
TUNEL-positive cells)/(total number of cells)].

Statistical analysis
Data are expressed as mean ± standard error of the mean.
When data were not normally distributed according to a
Kolmogorov-Smirnov test (P > 0.05), data were ranked be-
fore analysis. The effects of MV in each model were tested
using univariate analysis of variance and longitudinal data
were compared using generalized estimating equations de-
signed for the analysis of repeated measurements. Post
hoc testing was performed according to Bonferroni. Using
these tests the effects of the model were analysed for each
parameter and these comparisons are described by acid
instillation or sepsis. Subsequently the effects of MV were
analysed and finally the model-dependent effects of MV
were analysed by determining the interaction between
model and MV for each parameter. Depending on nor-
mality of the data Pearson’s correlation or Spearman’s
Rho were calculated. A value of p < 0.05 was considered
statistically significant, we report exact p-values unless p <
0.001. All analyses were performed using SPSS 21.0 statis-
tical software (SPSS Inc., Chicago, IL, USA).

Results
Lung injury
Lung injury was more severe after MV following acid in-
stillation compared to sepsis as reported [11]. Lung wet/
dry weight ratio after 4 hrs of MV was 8.1 ± 0.3 for HVT

after acid instillation as compared to 5.6 ± 0.1, 5.0 ± 0.1
and 5.5 ± 0.1 for LVT after acid instillation or sepsis and
HVT during sepsis, respectively. Acid instillation increased
the ratio as compared to sepsis (P < 0.001) and HVT in-
creased wet/dry weight ratio after acid instillation but not
after sepsis (P < 0.001) [11]. Histological lung injury score
after 4 hrs of MV was 11.2 ± 0.9 for HVT acid as compared
to 7.4 ± 0.6, 4.3 ± 0.5 and 5.3 ± 0.3 for LVT acid, LVT sepsis
and HVT sepsis, respectively. Acid instillation increased
lung injury score compared to sepsis (P < 0.001) and HVT

increased lung injury score after acid instillation, but not
after sepsis (P = 0.04) [11].

Kidney histology and apoptosis
No differences in histological injury were observed be-
tween the groups (data not shown). In the kidney cortex
and medulla apoptosis was observed after MV during
sepsis, but not after MV after acid instillation (P < 0.001,
Figure 2). Kidney cortical and medullary apoptosis also
depended on the MV strategy (P < 0.001). As indicated by
a significant interaction between model and MV strategy
(P < 0.001), MV with HVT caused increased apoptosis dur-
ing sepsis but not after acid instillation (Figure 2).

Mediators and apoptosis
We correlated plasma levels of interleukin-6, tumor necro-
sis factor-α, macrophage inflammatory protein-2, active
plasminogen activator inhibitor-1 (aPAI-1) and soluble
intercellular adhesion molecule-1 [11] to apoptosis in kid-
ney medulla and cortex. Only plasma aPAI-1 levels corre-
lated to apoptosis in cortex and medulla (Spearman’s Rho
0.51, P = 0.004 and 0.40, P = 0.03, respectively).

Kidney function
Plasma creatinine levels were higher during MV after
acid instillation (n = 17/20) than during sepsis (n = 20/20,
P = 0.040). No effects of MV strategy on plasma creatinine
levels were observed (P = 0.53). The lack of an interaction
between model and MV strategy indicate that there were
no model dependent effects of MV strategy on plasma cre-
atinine levels (P = 0.39, Figure 3A). Urine production did
not differ between the acid and sepsis model (P = 0.47).
HVT decreased urine production as compared to LVT

(P = 0.009). There were no model dependent effects of
MV with HVT on urine production (P = 0.54, Figure 3B).
Creatinine clearance did not differ between acid instilla-
tion (n = 17/20) and sepsis (n = 20/20, P = 0.74). Also, MV
strategy did not affect creatinine clearance (P = 0.15).
However, as indicated by an interaction (P = 0.016), HVT

decreased creatinine clearance during sepsis but not after
acid instillation (Figure 3C).

Discussion
The most important findings of our study are that the
effects of injurious MV on kidney apoptosis depend on
the underlying type of acute lung injury. However, in
contrast to our hypothesis, minimally lung-injurious
HVT MV during sepsis caused kidney apoptosis, whereas
HVT MV after intratracheal acid instillation was associ-
ated with severe lung injury but less kidney apoptosis.
Second, kidney apoptosis was associated with a greater
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Figure 2 Kidney apoptosis after mechanical ventilation. A and B show apoptotic indexes of renal cortex and medulla. Rats were ventilated
for 4 hrs with different ventilatory strategies during sepsis or after intratracheal acid instillation. Healthy rats, rats subjected to sepsis or acid
instillation alone served as controls. During sepsis apoptosis was increased compared to acid instillation. MV increased apoptosis and as indicated
by an interaction between model and MV, MV with HVT increased apoptosis during sepsis, but not during acid instillation. C and D show
representative photomicrographs of TUNEL stained apoptotic cells in renal cortex and medulla respectively (hematoxylin counterstain,
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than 40% decrease in creatinine clearance after HVT as
compared to LVT ventilation.
We found that HVT during sepsis, as opposed to sepsis

alone, caused kidney apoptosis in the absence of relevant
lung injury. For apoptosis to occur during sepsis alone,
more than one hit may be required [17]. During sep-
sis systemic injury and inflammation occur which may
increase the sensitivity of the kidney to apoptosis induced
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Figure 3 Rats were ventilated for 4 hrs with different ventilatory strategies during sepsis or after intratracheal acid instillation. Plasma
creatinine levels were higher after acid instillation (n = 17) than after MV during sepsis (n = 20) (A). HVT decreased urine production as compared
to LVT (B). Indicated by a significant interaction, HVT decreased creatinine clearance during sepsis (n = 20) but not after acid instillation (n = 17)
(C). LVT: mechanical ventilation with low tidal volume, HVT: mechanical ventilation with high tidal volume. *P = 0.040 as comapred to sepsis,
#P = 0.009 as compared to LVT,

$P = 0.016 as compared to acid HVT.
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by ventilator-induced lung injury, whereas MV after intra-
tracheal acid instillation may only increase local pulmon-
ary injury and inflammation.
The observed MV induced kidney apoptosis may be

explained by several mechanisms proposed previously
[4]. First, MV can induce kidney apoptosis by a direct ef-
fect of the systemic release of pulmonary produced toxic
mediators [4,7]. We observed that only systemic aPAI-1
levels correlated with kidney apoptosis. In a rat model
of pneumonia, MV with high tidal volume causes pro-
coagulant changes and attenuated fibrinolysis in the lungs
with alterations in systemic fibrin turnover [27]. Although
aPAI-1 was increased in the lung, aPAI-1 was not mea-
sured in the systemic circulation [27]. Several effects of
aPAI-1 on the development of kidney injury have been de-
scribed [7]. In-vitro, aPAI-1 can induce apoptosis in endo-
thelial cells [28]. Studies in animal models have shown
that aPAI-1 messenger RNA levels in the kidney were ele-
vated after CLP in a model of sepsis-induced acute kidney
injury [29]. Also in humans, aPAI-1 levels measured on
days 0, 1 and 3 during the ARDS network trial were inde-
pendently associated with AKI as measured by increased
serum creatinine levels compared to baseline [30]. In con-
trast, a recent study found that baseline aPAI-1 levels were
not predictive of the need for renal replacement therapy
but this study did not report on the incidence of AKI
without the need for renal replacement therapy [30].
Although the positive correlation of aPAI-1 and renal
apoptosis may suggest a pivotal role for aPAI-1 in the
development of AKI during sepsis and MV several is-
sues remain unanswered. In contrast to our hypoth-
esis we expected that more severe ventilator-induced
lung injury would be associated with higher systemic levels
of mediators, and consequently more apoptosis. Since this
did not happen it remains questionable if the lungs are in-
deed the source of aPAI-1. In this regard aPAI-1, rather
than being the cause of the increased kidney apoptosis,
could be produced directly by kidney tubular cell in re-
sponse to the ischemic damage caused by dysregulation of
kidney vasoactive mechanism induced by sepsis and wors-
ened theoretically by mechanical ventilation [31,32]. The
production of aPAI-1 by tubular cells is increased in hyp-
oxic condition and aPAI-1 is known to exert direct and in-
direct apoptotic effect [31,32].
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Second, kidney apoptosis can be induced through an
effect on both global and regional renal blood flow. Glo-
bal differences in renal blood flow can be caused by hyp-
oxia and/or hypercapnia. Therefore, we kept PaO2 and
PaCO2 within normal limits in this study to avoid effects
of MV on gas exchange with subsequent effects on renal
blood flow. Also, mean arterial pressure was kept above
60 mmHg and was similar between the groups. However,
the apoptosis we observed was unevenly distributed in
the kidney, the apoptotic index was higher in the medulla
compared to the cortex. The higher apoptotic index in
the medulla suggests, despite similar mean arterial blood
pressures, regional differences in renal blood flow. This in-
dicates that HVT MV during sepsis may affect local perfu-
sion in the kidney and, as mentioned before, as a result in
local production of aPAI-1.
We showed previously that MV with HVT in a rat

model of pneumonia was associated with impaired kidney
endothelium-dependent vasodilatation [24]. Whether these
changes may cause regional differences in perfusion is
unknown. However, the impaired vasodilatation was attenu-
ated after administration of a poly (adenosine diphosphate-
ribose) polymerase (PARP) inhibitor [24]. Two studies by
the same group showed that during sepsis vasodilatation
occurs with an increase in renal blood flow but with de-
creased creatinine clearance [33,34]. These findings may
be explained by effects on kidney afferent and efferent ar-
terioles leading to decreased glomerular capillary pressure
[35]. Damaging effects of cytokines, possibly released fol-
lowing increased and sustained sympathetic nerve activity,
have been suggested [36]. However, the exact mechanisms
of arteriolar dysfunction remain unknown, and possibly,
impaired fibrinolysis by increased aPAI-1 levels leading to
endothelial dysfunction plays a role [30].
There is increasing evidence for a pivotal role of apop-

tosis in AKI and septic AKI in humans [21,35]. Recently, a
post-mortem study in patients with AKI associated septic
shock demonstrated increased kidney tubular apoptosis
[20], but these data have not been confirmed by others [8].
Additionally, genetic polymorphisms in the apoptosis regu-
latory protein BCL-2 gene protected against developing
AKI during septic shock and MV [37]. In a murine model
of septic kidney injury the level of kidney dysfunction dir-
ectly correlated with apoptosis [22]. Although apoptosis
can be reliably detected by TUNEL staining, different tests
to detect apoptosis are usually performed to support the
evidence of apoptosis obtained by TUNEL staining [38].
We confirmed the TUNEL data by various other methods
previously [17]. In our study, MV induced kidney apoptosis
was associated with a more than 40% decrease in creatin-
ine clearance. Although creatinine can be actively excreted
by the Lewis rat kidney, creatinine clearance is commonly
used to evaluate kidney function [24,39]. Moreover en-
dogenous creatinine clearance is strain specific [40]. In
Wistar rats, from which Sprague Dawley rats were devel-
oped, craetinine clearance is similar to inulin clearance
[40]. Plasma creatinine was higher in rats after acid instilla-
tion compared to sepsis. This difference is explained by
one rat with an plasma creatinine level, substantially higher
than the average level of plasma creatinine in rats sub-
jected to MV after acid instillation.
The degree of sepsis in our model was relatively mild

and of short duration prior to MV. This explains the ab-
sence of lung injury after sepsis and HVT. Although
CLP-induced polymicrobial sepsis is one of the best and
most widely used animal models for sepsis and organ in-
jury the bacterial inoculum is unknown and severity may
vary accordingly [23]. CLP-induced sepsis can also cause
lung injury, mainly targeting the pulmonary endothelium
[23]. Campos et al., reported a 24 hr mortality rate of 50%
after sepsis, whereas we observed a 6% mortality rate [41]
indicating a less severe sepsis with likely less endothe-
lial damage in our study. The more severely injured pul-
monary endothelium found by Campos et al., is highlighted
by the increased wet-to-dry lung weight ratio [41]. The
increased endothelial damage may have attracted more
polymorphonuclear granulocyes, including neutrophils with
subsequently more oxidative stress than in our study where
the pulmonary endothelium was not damaged [11,41]. The
additional effect of HVT MV on lung injury in our study
was limited, similar to others where they found that a VT of
more than 15 ml/kg was necessary to injure the lungs dur-
ing sepsis [26].
In contrast to sepsis, MV following acid instillation

in our study did not cause kidney apoptosis. Previous
animal studies of acid instillation induced lung injury
followed by injurious MV reported conflicting findings
on kidney injury and apoptosis [12,15,18]. Imai et al.
showed that after 8 hrs of MV in rabbits following intra-
tracheal acid instillation HVT (15–17 ml/kg) MV in-
creased kidney epithelial cell apoptosis 6-fold compared to
a LVT MV [15]. After 4 hrs, this was not associated with
increased plasma creatinine levels, but after 8 hrs, creatin-
ine was higher after HVT. In contrast, Hoag et al., did not
observe kidney apoptosis after 5 hrs of MV with HVT

(25 ml/kg) following acid instillation or sham treatment
in dogs. Furthermore, in this study, various measure-
ments of kidney function did not differ between the
groups [12]. Hoag et al. suggested that in the study by
Imai et al. the mean arterial pressure was maintained be-
tween 55–60 mmHg. This low mean arterial pressure may
account for some of the alterations observed in plasma
creatinine as a consequence of reduced renal blood flow,
which was not measured [12]. Species differences and se-
verity of lung injury may have affected the differences in
outcome in these studies.
This study has some limitations. Since rat chest wall

and lung mechanics differ from the human situation
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these results cannot be translated to the human situation
directly. We used a VT of 15 ml/kg with no PEEP as a
proof of concept. These settings are not used in humans
since they are associated with increased lung injury and
death in patients with ARDS [14]. However, we observed
increased renal apoptosis after HVT in the absence of
functional and histological lung injury. This suggests
that during sepsis without lung injury MV with settings
that do not directly injure the lung there may be effects
on the kidney, especially since VT’s greater than 6 ml/kg
are still used [42].

Conclusions
We show that MV-induced kidney apoptosis depends on
the underlying condition and primary type of lung in-
jury. During sepsis, MV with HVT did not cause overt
lung injury, but increased kidney apoptosis as compared
to LVT. Moreover, this was associated with decreased
kidney function and increased aPAI-1 levels. Although
intratracheal acid instillation caused more severe ventilator-
induced lung injury, HVT did not increase kidney apop-
tosis. Our findings thus suggest using protective ventilatory
strategies in human sepsis, even in the absence of overt
lung injury, to protect the kidney.
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