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Abstract

Background: Higher incidence of malignancy and infectious diseases in kidney transplant recipients is related to
immunosuppressive treatment after transplantation and the recipient’s native immune system. The complement
system is an essential component of the innate immunity. The aim of the present study was to investigate the
association of effector molecules of the lectin complement pathway with graft and patient survival after kidney
transplantation.

Methods: Two mannan-binding lectin (MBL) associated proteases, MASP-2 and MASP-3 (activators of the lectin
pathway) and two MBL-associated proteins, MAp44 and MAp19 (inhibitors of the lectin pathway) were measured
at the time of transplantation in 382 patients (≥17 years old) transplanted in 2000–2001. The cohort was followed
until December 31, 2014. Data on patient and graft survival were obtained from the Norwegian Renal Registry. Cox
proportional hazard regression models were performed for survival analyses.

Results: Low MAp44 level (1st versus 2–4 quartile) was significantly associated with overall mortality; HR 1.52, 95 % CI
1.08–2.14, p = 0.017. In the sub analyses in groups below and above median age (51.7 years), low MAp44 as a predictor
of overall mortality was statistically significant only in recipients of ≤51.7 years; HR 2.57, 95 % CI 1.42–4.66, p = 0.002.
Furthermore, low MAp44 was associated with mortality due to infectious diseases; HR 2.22, 95 % CI 1.11–4.41, p = 0.023.
There was no association between MASP-2, MASP-3 or MAp19 levels and patient mortality. No association between
any measured biomarkers and death censored graft loss was found.

Conclusions: Low MAp44 level at the time of transplantation was associated with increased overall mortality in kidney
recipients of median age of 51.7 years or below and with mortality due to infectious diseases in the whole patient
cohort after nearly 14-years of follow up after transplantation. No associations between other effector molecules;
MASP-2, MASP-3 or MAp19 and recipient mortality were found, as well as no association of any biomarker with death
censored graft loss.
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Background
Kidney transplantation is the treatment of choice for
end-stage kidney disease, providing patients with a bet-
ter quality of life and reducing overall morbidity. Despite
this, kidney transplant recipients have higher mortality
compared to the general population. The effectiveness of
the adaptive immune system begins to diminish already
with progression of chronic kidney disease. An observed
increased incidence of malignancy [1] and infectious
diseases [2] after transplantation could be related both
to immunosuppressive treatment after transplantation
and to the state of the recipient’s immune system.
The complement system is an essential component of

the innate immune system. It plays an important role in
anti-microbial defense processes such as immunological
response to pathogens, but it is also involved in
inflammatory processes such as ischemia reperfusion
injury, transplant immunity, auto-immune diseases, co-
agulation [3–5] and probably in development of diabetic
angiopathy [6]. The complement system can be activated
through the classical, the lectin and the alternative path-
ways, which are described in details elsewhere [7]. The
lectin pathway of the complement system is activated
when pattern recognition molecules (PRMs), including
the two collectins (mannan-binding lectin (MBL) and
collectin-LK (CL-LK)) and the three ficolins (ficolin-1,
ficolin-2 and ficolin-3) bind to a fitting pattern on
microorganisms or on altered tissues. When this occurs
three MBL-associated proteases (MASP-1, MASP-2 and
MASP-3) provide activation of the complement system
and two MBL-associated proteins (MAp44 and MAp19)
serve as natural endogenous competitive inhibitors [7, 8].
MASP-1, MASP-3 and MAp44 arise from the MASP1
gene by mutually exclusive splicing [9]. In a similar man-
ner MASP-2 and MAp19 arise from the MASP2 gene [7].
Our hypothesis is that the activity of the native

immune system plays an important role in the transplant
population given the reduced activity in the adaptive
immune system due to immunosuppressive treatment.
The aim of this study was to investigate whether the sta-
tus of the lectin pathway at the time of transplantation
may influence long term kidney graft and patient sur-
vival. The lectin pathway was investigated by measuring
levels of activators like MASP-2 and MASP-3 and of the
regulatory molecules MAp44 and MAp19, and by evalu-
ating a possible correlation between levels of MASP-3
and MAp44 or between MASP-2 and MAp19.

Methods
Study population
A cohort of 402 adult kidney graft recipients (≥17 years),
transplanted in 2000 and 2001 at Oslo University
Hospital Rikshospitalet, was included in the original
study previously described in detail [10]. Blood samples

at the time of transplantation were available in 382 of
the patients, who were included in the present study. In
the present study the follow up period was extended
until December 31, 2014. Data on patient survival was
obtained from the Norwegian Renal Registry. Prophylaxis
with trimethoprim-sulfamethoxazole against Pneumocystis
jiroveci was routinely used for 6 months after transplant-
ation. No patients received prophylaxis against cytomegalo-
virus (CMV) but were treated with valganciclovir at first
positive CMV antigen test.

Immunosuppressive treatment
The immunosuppressive regimen was routinely based on
a calcineurin inhibitor, except for five patients with
haemolytic uraemic syndrome who received sirolimus.
At that time the induction therapy was not included in
the standard immunosuppression protocol. Calcineurin
inhibitors were combined with either mycophenolate
mofetil (MMF) or with induction therapy. Altogether
161 patients (42 %) received induction with basiliximab
(Simulect®), and in one patient anti-thymocyte globulin
was used as induction therapy. The remaining 220
patients (58 %) received MMF. Only 13 patients received
quadruple immunosuppression with basiliximab, calcine-
urin inhibitors, MMF and steroids. Azathioprine in
combination with cyclosporine and steroids was given
only to three patients. Except for ten patients who
participated in the ATLAS trial and followed a steroid
free protocol [11], all patients received steroids.

Biochemical assays
MASP-2. The MASP-2 assay was previously described in
detail [12]. Microtiter wells were coated with 0.5 μg
anti-MASP-2 antibody (MAb clone 8B5) in 100 μl PBS
overnight at 4 °C. The wells were blocked and washed
with buffer. The samples were diluted 75-fold in 1 M
NaCl, 10 mM Tris–HCl, 10 mM EDTA, 15 mM NaN3,
0.05 % (v/v) Tween 20, pH 7.4, containing 0.01 % (w/v)
heat aggregated human IgG (Beriglobin, incubated
30 min at 63 °C and centrifuged 10 min at 3000 g to
remove large aggregates). The heat aggregated human
IgG is included to inhibit the influence of possible
rheumatoid factors in sandwich type immuno assays. A
pool of plasma was used as a standard and three differ-
ent plasma samples were used as internal controls and
included on each microtiter plate used. Following
incubation overnight at 4 °C, the wells were washed and
incubated for 1.5 h at room temperature with 0.1 μg
biotinylated anti-MASP-2 antibody (MAb 6G12), in
100 μl of TBS/Tw/CaCl2 (10 mM Tris–HCl, 145 mM
NaCl, 5 mM CaCl2, 15 mM NaN3, 0.05 % (v/v) Tween
20, pH 7.4) containing 0.01 % (w/v) heat aggregated
human IgG and 1 % (v/v) bovine serum. The wells were
washed followed by incubation with 10 ng europium-
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labelled streptavidin (Perkin Elmer) in 100 μl of TBS/
Tw, 25 μM EDTA for 1 h at room temperature. After
wash bound europium was detected by time-resolved
fluorometry after the addition of an enhancement
solution (Perkin Elmer).
MASP-3. The MASP-3 assay we used was described in

details by Degn et al. [9]. Microtiter wells were coated
with 0.2 μg antibody reacting with MASP-3 (MAb 5F5)
in 100 μl PBS overnight at 4 °C. Residual bindings sites
in the wells were blocked with HSA (1 mg/ml TBS), and
the wells next received the samples diluted 100-fold in
Binding buffer (20 mM Tris–HCl, 1 M NaCl, 5 mM
CaCl2, 1 mg HSA/ml, 15 mM NaN3, 0.05 % (v/v) Triton
X-100) containing 0.01 % (w/v) heat aggregated human
IgG. A standard curve was made from a pool of citrate
plasma from donor blood. The plasma pool was diluted
1/10 followed by serial 3-fold dilutions in Binding buffer.
For quality control, each microtiter plate in addition
received the same three citrate plasma samples diluted
100-fold. All samples, standards and controls, were
tested in duplicate. Following incubation overnight at
4 °C, the wells were washed thrice with TBS/Tw/CaCl2
and incubated for 2 h at room temperature with 25 ng bi-
otinylated anti-MASP-3 antibody (MAb 38.12.3) in 100 μl
of TBS/Tw/CaCl2 containing 1 % (v/v) bovine serum. The
wells were subsequently washed thrice and then incubated
for 1 h with europium-labeled streptavidin (Perkin Elmer)
diluted 1000-fold in TBS/Tw, 25 μM EDTA. After wash-
ing with TBS/Tw/CaCl2 and the addition of enhancement
buffer the wells were read by time-resolved fluorometry.
MAp44. Levels of MAp44 were determined as previ-

ously described [13]. Wells of microtiter plates were
coated with 0.5 μg mouse anti-human MAp44 antibody
(MAb 2D5) in 100 μl PBS. Wells were subsequently
blocked with TBS/Tw. Serum samples, the standard and
three quality controls were diluted 40-fold in Binding
buffer containing 100 μg/ml of each of heat-aggregated
humane IgG, bovine IgG, rat IgG and mouse IgG at
pH 7.4. To construct a standard curve, standard citrate
plasma samples with known MAp44 concentrations
were diluted 1/10 and then a further 7 times two-fold.
Samples of 100 μl were added to wells and incubated
overnight at 4 °C. After incubation and washing, the
wells were incubated with a biotinylated antibody react-
ing with MAp44 (MAb 4H2). After washing, 1000-fold
diluted europium-labeled streptavidin was added; then,
after incubation and washing, enhancement buffer was
added. The released europium was measured by time-
resolved fluorometry. Inter-assay reproducibility was
assessed by determining MAp44 in three different
control citrate plasma samples.
MAp19. The assay for MAp19 was previously

described in detail [14]. Wells were coated with 4 μg
anti-MAp19 antibody (MAb 6G12) per ml sodium

acetate buffer (50 mM Na-acetate, 145 mM NaCl,
pH 4.5) o.n. at 4 °C. The wells were then blocked with
HSA, 1 mg/ml TBS, washed thrice with TBS/Tw, and
incubated o.n. at m temperature with serum samples
diluted 20-fold in MAp19 buffer (10 mM Tris–HCl, 1 M
NaCl, 10 mM EDTA, 0.05 % Tween 20) containing
100 μg heat-aggregated hIgG per ml, and 100 μg normal
rat IgG per ml. After washing the wells, biotinylated
antibody reacting with MAp19 (MAb 4D12) was added
at 1 μg per ml TBS/Tw containing 1 mg HSA/ml.
Following another wash, the wells were developed with
europium-streptavidin as described above. A standard
curve was prepared by applying a 2-fold serial dilution
of a standard serum (8 dilutions) and a buffer control.
Along with three internal control sera (high, medium,
low), this was included on every plate. All samples,
standards and controls were in duplicates.

Statistical analyses
The activating and inhibitory molecules of the lectin
pathway (MASP-2, MASP-3, MAp44 and MAp19) were
analyzed as potential predictors for mortality. Because of
the unknown pattern of the association between the
effector molecules and mortality, we divided the effector
molecules into quartiles, and Kaplan-Meier survival plots
were made for each variable. Based on the survival plots for
MAp44, a cut point was made at the 25 percentile for
MAp44, and the variable was dichotomized. Consequently,
we studied the effect of Low MAp44 (≤1716 ng/mL; 1st
quartile) versus High MAp44 (>1716 ng/mL; 2nd–4th
quartile) on kidney graft and patient survival by Cox

Table 1 Baseline characteristics

Variables Total
n = 382

Low Map44
(<1717 ng/ml)
n = 95

High MAp44
(≥1717 ng/ml)
n = 287

p values

Recipient
gender, femalea

139 (36) 28 (30) 111 (39) 0.11

Living Donora 143 (37) 35 (37) 108 (38) 0.89

Preemptive
transplantationa

70 (18) 22 (23) 48 (17) 0.16

Diabetic
nephropathya

55 (14) 17 (18) 38 (13) 0.26

Induction,
basiliximaba

161 (42) 40 (42) 121 (42) 0.99

Coronary
diseasea

72 (19) 22 (23) 50 (17) 0.22

Hypertensive
nephrosclerosisa

75 (20) 16 (17) 59 (21) 0.43

Recipient
age, yearsb

51.5 (17–80) 54 (18–79) 51 (17–80) 0.54

Donor
age, yearsb

45.5 (1–82) 44 (10–75) 46 (1–82) 0.65

aResults presented as number of patients (%)
bResults presented as median (range)
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proportional hazard regression models. A number of rele-
vant variables known to be associated with survival were
tested as predictors and potential confounders in univari-
able COX models: CMV infection during the first 100 days
after transplantation (as time-dependent variable), induc-
tion therapy with basiliximab, recipient age per year, recipi-
ent gender, living donor, donor age per year, preemptive
transplantation (previously not taken in renal replacement
therapy), coronary heart disease, hypertensive nephropathy
and diabetic nephropathy at the time of transplantation.
Explanatory variables with p < 0.2 in the univariable

analyses were included in a multivariable Cox model for
overall mortality. Similar Cox model for overall mortality
was conducted for sub cohort of patients that underwent
dialysis before transplantation, with dialysis vintage as one
of the co-variables. In the multivariable Cox models for
cardiovascular mortality and mortality due to infectious
diseases in total cohort and in multivariable Cox model for
overall mortality in the subsample (median age of 51.7 years
or below), fewer explanatory variables were included to
avoid overfitting, i.e. spurious effects due to too few events

per explanatory variable. Those variables were chosen
based on lowest p-value in univariable analyses.
For each Cox model, the proportional hazard assump-

tion was checked with a test based on Schoenfeld
residuals and found to be adequately met. We tested
potential interactions between age and biomarkers in
COX analyses. First, univariable COX analyses were per-
formed in groups according to recipient’s age quartiles.
Based on these results the cohort was stratified by me-
dian age, and subsequent analyses were done separately
for patients below and above median age.
Pearson bivariate correlation coefficients were esti-

mated to explore the relationship between effector mole-
cules that arise from same gene by mutually exclusive
splicing, e.g. between MASP-3 and MAp44 or between
MASP-2 and MAp19. The Pearson chi-squared test was
used to compare categorical variables, and median
regression was used to compare medians.
The statistical softwares SPSS (SPSS 21) and Stata 14

(StataCorp LP, College Station, TX) were used to
perform the statistical analyses.

Fig. 1 Kaplan-Meier plots for overall mortality. a MASP-2 quartiles. Log rank = 0.04. b MASP-3 quartiles. Log rank = 0.28. c MAP44 quartiles. Log
rank = 0.005. d MAP19 quartiles. Log Rank = 0.58
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Results
General outcomes: The cohort was followed for a median
observation time of 13.3 (range 0.1–15) years. During
this period 157 of 382 (41 %) patients died. Median time
to death was 6.8 (range 0.1–14) years. Causes of death
were cardiovascular events in 68 patients, infections in
34 patients, malignancy in 28 patients, and 27 patients
died of other causes. Baseline characteristics at the time
of transplantation for whole cohort are presented in
Table 1. No differences across the groups in the frequen-
cies of CMV infection during the first 100 days after
transplantation were found: 54 cases (57 %) in the low
MAp44 group, and 172 cases (60 %) in the high MAp44
group, p = 0.55.

Overall mortality
Univariable analyses: Kaplan-Meier graphs for each
tested biomarker are presented in Fig. 1a, b, c and d.
Only for MAp44 the survival curve in quartiles diverged
significantly, Log rank 0.005.
MAp44 levels: Median (IQR) 2057 ng/mL (1716–2398).

Cut off value 1716 ng/mL for low versus high MAp44.
Multivariable Cox analyses: Low MAp44 (≤1716 ng/mL)

was significantly associated with mortality in multivariable
Cox models with HR 1.52, 95 % CI 1.08–2.14, p = 0.017.
Other significant risk factors associated with increased
mortality were recipient age (per year) and diabetic ne-
phropathy (Table 2). We observed an interaction between

MAp44 and age. The patients of median age (51.7 years at
the time of transplantation) or below had a statistically
significant association of low MAp44 with mortality, while
no such association was found for patients above median
age (Fig. 2a and b, respectively). There were 195 patients
below median age, of which 46 (24 %) died. Among the 187
patients above median age, 111 (59 %) died. In multivari-
able Cox model for subsample of patients below median
age, low MAp44 was significantly associated with mortality,
HR 2.57, 95 % CI 1.42–4.66, p = 0.002, after adjustment for
diabetic nephropathy, coronary heart disease, recipient and
donor age (per year) (Table 3). There was no significant
difference in mean MAp44 levels in patients ≤51.7 years as
compared to those >51.7 years at transplantation. To
further examine age dependence we found no difference in
mean MAp44 levels in quartiles based on age in a control
group of 350 blood donors previously described [9].
Furthermore, the association of MAp44 with overall

mortality in a sub cohort of patients that underwent
dialysis before transplantation (n = 303) was investigated.
Median (IQR) dialysis vintage in this sub cohort was 12
(6–21) months and 129 (43 %) of patients died during the
follow up period. MAp44 remained significantly associ-
ated with mortality, HR 1.72, 95 % CI 1.18–2.51, p = 0.005,
adjusted for other significant risk factors (Table 4).
No associations of other effector molecules, MASP-2,

MASP-3 or MAp19 with overall mortality were found.

Mortality due to infectious diseases
Low MAp44 (≤1716 ng/mL) was significantly associated
with mortality due to infectious diseases in multivariable
Cox analysis, HR 2.22, 95 % CI 1.11–4.41, p = 0.023,
when adjusted for recipient age (per year), hypertensive
nephropathy and coronary heart disease at the time of
transplantation (Table 5). We found no interaction
between low MAp44 and age in the analysis of mortality
due to infectious diseases.

Cardiovascular mortality
No association between low MAp44 with increased car-
diovascular mortality was found.

Death censored graft loss
None of effector molecules, MASP-2, MASP-3, MAp44
or MAp19 was associated with increased graft loss.

Correlation between MASP-3 and MAp44 or MASP-2 and
MAp19
We tested if MASP-3 and MAp44 or MASP-2 and
MAp19 were correlated. None of these variables was
highly correlated. The only significant correlation was be-
tween MASP-3 and MAp44 (r = 0.24, n = 382, p < 0.001);
however, the size of the correlation was small. No correl-
ation between MASP-2 and MAp19 was found.

Table 2 Overall mortality in the total study cohort

Variable Univariable analyses Multivariable analysis

HR 95 % CI p HR 95 % CI p
aLow MAp44 1.73 1.24–2.41 0.001 1.52 1.08–2.14 0.017
aCMV infection 1.46 1.05–2.03 0.025 1.17 0.83–1.66 0.38

Recipient age,
per year

1.07 1.05–1.08 <0.001 1.06 1.05–1.08 <0.001

Donor age,
per year

1.02 1.01–1.03 0.001 1.01 1.00–1.02 0.08

aLiving donor 0.57 0.40–0.81 0.002 1.06 0.73–1.54 0.76
aDiabetic
nephropathy

1.38 0.91–2.09 0.13 2.13 1.39–3.42 <0.001

aCoronary
heart disease

2.58 1.84–3.62 <0.001 1.37 0.96–1.95 0.85

aHypertensiv
nephrosclerosis

1.90 1.34–2.69 <0.001 1.11 0.77–1-60 0.59

aRecipient
gender, female

1.15 0.83–1.58 0.40

aPreemptive
transplantation

0.85 0.56–1.29 0.44

aInduction,
basiliximab

1.20 0.88–1.65 0.25

Results of univariable and multivariable Cox regression models
Low MAp44 1st versus 2–4 quartiles
ayes versus no
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Discussion
In the present study the associations of several comple-
ment biomarkers with long-term kidney graft and recipi-
ent survival were investigated. Low MAp44 levels at the
time of transplantation were found to be associated with
increased overall mortality. The association of low MAp44
with increased mortality was statistically significant only
in kidney transplant recipients of median age or younger.
It is largely unknown whether MAp44 level alters with age
or if its regulatory role is simply more important in
younger age. We found no variation in mean MAp44
levels with increasing age neither in the study cohort nor
in a control group of healthy blood donors. However,
blood samples from adolescents younger than 17 years old
were not available in the present study. Further, the

median levels of MAp44 in patients in dialysis versus
those not receiving dialysis before transplantation were
not significantly different and they were comparable with
median (IQR) levels of MAp44 in healthy controls in
another study, 1938 ng/mL (1250–3836), (Trolborg et al.
[15]). Analysis of overall mortality in the sub cohort of
patients that underwent dialysis before transplantation
showed a significant association of low MAp44 with
mortality when adjusted for dialysis vintage in months
and other relevant co-variables. Low MAp44 was in
addition strongly associated with mortality due to infec-
tious disease. This finding is very interesting since in
principle the proteins of the lectin pathway participate in
the microbial defense. Low level of MAp44, the inhibitor
of the lectin pathway, is supposed to lead to increased

Fig. 2 Kaplan-Meier plots for overall mortality in age groups for Low MAp44 versus high MAp44. a Patient age ≤51.7 years. b Patient
age >51.7 years
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activity in the lectin complement pathway and hence
better immunological response on pathogens. Still, the
results may indicate that the excessive activation of the
complement system has potentially detrimental effects.
The level of mRNA encoding MAp44 in human tissues
has the highest relative expression in the heart, followed
by much weaker expression in liver and brain [13]. High

expression of MAp44 in heart musculature has therefore
been supposed to prevent complement-induced heart
damage [16]. However, it may not be the only mechanism
according to the finding in the present study, since low
MAp44 was associated with overall mortality and mortal-
ity due to infectious disease, but not with cardiovascular
mortality. Obviously, both the regulatory mechanism of
MAp44 and potential longitudinal changes in MAp44
levels during progression of chronic kidney failure and
after transplantation remain to be thoroughly investigated.
MASP- 2 is a key molecule that binds to MBL and

ficolins and provides activation of the lectin pathway [7].
Several previous studies have shown that excessive lectin
pathway activation may have an adverse impact and
inhibition of MASP-2 may have a beneficial effect. Mur-
ine model studies by Schwaeble et al. and Asgari et al.
demonstrated a protective role of MASP-2 deficiency in
myocardial, gastrointestinal and renal ischemia reperfu-
sion injury [17, 18]. In addition, the injection of the
murine-specific MASP-2 inhibitor significantly reduced
size of tissue damages [18]. In a reasonably large study
of 605 patients with colorectal cancer and 150 healthy
blood donors as controls, Ytting et al. found a significant
association between high preoperative MASP-2 levels
and increased risk of both cancer recurrence and
mortality [19]. However, we found no association of
pre-transplant levels of other effector molecules; MASP-
2, MASP-3 or MAp19 with long-term survival after
kidney transplantation.
The mutations in the MASP1 gene, encoding the three

splice products MASP-1, MASP-3 and MAp44, were
linked to autosomal-recessive syndrome 3MC, character-
ized by growth and mental retardation, characteristic
facial dysmorphism and skeletal anomalies [4, 20]. Since

Table 3 Overall mortality in the subsample of patients of
median age (51.7 years) or below

Variable Univariable analyses Multivariable analysis

HR 95 % CI p HR 95 % CI p
aLow MAp44 2.91 1.61–5.27 0.001 2.57 1.42–4.66 0.002

Recipient age,
per year

1.05 1.01–1.09 0.012 1.04 1.00–1.08 0.05

Donor age,
per year

1.02 0.99–1.04 0.11 1.02 1.00–1.04 0.09

aDiabetic
nephropathy

2.16 1.14–4.11 0.019 1.93 0.93–3.98 0.08

aCoronary
heart disease

3.56 1.61–6.57 0.001 1.91 0.88–4.18 0.10

aHypertensiv
nephrosclerosis

0.73 0.23–2.34 0.59

aCMV infection 2.42 0.33–17.73 0.38
aLiving donor 0.90 0.51–1.61 0.90
aRecipient
gender, female

1.45 0.81–2.60 0.21

aPreemptive
transplantation

1.08 0.52–2.23 0.84

aInduction,
basiliximab

1.04 0.57–1.87 0.91

Results of univariable and multivariable Cox regression models
Low MAp44 1st versus 2–4 quartiles
ayes versus no

Table 4 Overall mortality in sub cohort of patients who
underwent dialysis before transplantation

Variable Univariable analyses Multivariable analysis

HR 95 % CI p HR 95 % CI p
aLow MAp44 1.81 1.25–2.61 0.002 1.72 1.18–2.51 0.005

Dialysis vintage,
per month

1.02 1.01–1.04 0.002 1.02 1.00–1.03 0.031

Recipient age,
per year

1.07 1.05–1.08 <0.001 1.06 1.05–1.08 <0.001

aCoronary
heart disease

2.73 1.89–3.93 <0.001 1.37 0.92–2.04 0.12

aHypertensive
nephropathy

1.72 1.18–2.50 0.04 0.99 0.67–1.50 0.99

Donor age,
per year

1.02 1.01–1.03 <0.001 1.01 1.00–1.02 0.074

aLiving donor 0.56 0.37–0.83 0.004 1.24 0.79–1.95 0.36
aDiabetic
nephropathy

1.31 0.79–2.18 0.30 2.28 1.31–3.95 0.003

Results of univariable and multivariable Cox regression models
Low MAp44 1st versus 2–4 quartiles
ayes versus no

Table 5 Mortality due to infections in the total study cohort

Variable Univariable analyses Multivariable analysis

HR 95 % CI p HR 95 % CI p
aLow MAp44 2.68 1.36–5.28 0.004 2.22 1.11–4.41 0.023

Recipient age,
per year

1.08 1.05–1.11 <0.001 1.07 1.04–1.11 <0.001

aCoronary
heart disease

2.59 1.26–5.32 0.01 1.38 0.65–2.92 0.40

aHypertensive
nephropathy

1.91 0.91–4.01 0.09 1.02 0.47–2.21 0.96

Donor age,
per year

1.01 0.99–1.03 0.46

aLiving donor 0.54 0.52–1.16 0.11
aCMV infection 1.05 0.53–2.08 0.90
aDiabetic
nephropathy

0.63 0.19–2.06 0.45

Results of univariable and multivariable Cox regression models
Low MAp44 1st versus 2–4 quartiles
ayes versus no
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MASP-1, MASP-3 and MAp44 arise from MASP1 gene
by mutually exclusive splicing [7], we investigated
whether there was any correlation between levels of
these splice products. In the present study a weak but
statistically significant correlation between the MAp44
and MASP-3 levels was found. A previous study of 200
adult Danish blood donors did not reveal such a correl-
ation [9]. In the same manner MASP-2 and MAp19
arise from the MASP2 gene by mutually exclusive spli-
cing. We found no correlation between levels of these
two proteins in our cohort.
The strength of the present study is a near 14 years

follow up of the complete cohort of kidney transplant
recipient, where no patients were lost in follow-up. The
reasonable size of the study cohort gives adequate statis-
tical power. However, it is an observational study and as
such shows association but not causality. It remains to be
elucidated if the effector molecules play a pathogenic role
or are simply markers of adverse outcomes. The present
study doesn’t take into account possible changes in
MAp44 levels that may take place after transplantation,
and this also may represent a limitation of the study. The
changes in the biomarker levels after transplantation
should be a topic of investigation in future studies.

Conclusions
Low MAp44 level at the time of transplantation was
associated with increased overall mortality and mortality
due to infectious diseases in kidney recipients after nearly
14-years of follow up after transplantation. The adverse
impact of low MAp44 was only statistically significant in
younger kidney recipients, in median age of 51.7 years or
below. No associations between other effector molecules;
MASP-2, MASP-3 or MAp19 and recipient mortality
were found, as well as no association of any biomarker
with death censored graft loss. These findings provide
new information about the role of the lectin complement
pathway in kidney transplanted recipients, a field that is
poorly explored and contains the information mostly
collected from animal models. However, the findings of
the present study should be interpreted with caution and
studies of the possible mechanisms of adverse effects on
long-term survival are needed.
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Additional file 1: Biomarkers levels in quartiles. (XLSX 21 kb)
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