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Association between pulmonary function
and renal function: findings from China and
Australia
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Abstract

Background: The relationship between obstructive lung function and impaired renal function is unclear. This study
investigated the dose-response relationship between obstructive lung function and impaired renal function.

Methods: Two independent cross-sectional studies with representative sampling were applied. 1454 adults from rural
Victoria, Australia (1298 with normal renal function, 156 with impaired renal function) and 5824 adults from Nanjing, China
(4313 with normal renal function, 1511 with impaired renal function). Pulmonary function measurements included forced
expiratory volume in one second (FEV1) and forced vital capacity (FVC). Estimated glomerular filtration rate (eGFR), and
impaired renal function marked by eGFR <60 mL/min/1.73m2 were used as outcome.

Results: eGFR increased linearly with FEV1 in Chinese participants and with FVC in Australians. A non-linear relationship
with peaked eGFR was found for FEV1 at 2.65 L among Australians and for FVC at 2.78 L among Chinese participants,
respectively. A non-linear relationship with peaked eGFR was found for the predicted percentage value of forced
expiratory volume in 1 s (PFEV1) at 81–82% and for the predicted percentage value of forced vital capacity (PFVC)
at 83–84% among both Chinese and Australian participants, respectively.
The non-linear dose-response relationships between lung capacity measurements (both for FEV1 and FVC)
and risk of impaired renal function were consistently identified in both Chinese and Australian participants.
An increased risk of impaired renal function was found below 3.05 L both for FEV1 and FVC, respectively.
The non-linear relationship between PFEV and PVC and the risk of impaired renal function were consistently
identified in both Chinese and Australian participants. An increased risk of impaired renal function was found
below 76–77% for PFEV1 and 79–80% for PFVC, respectively.

Conclusions: In both Australian and Chinese populations, the risk of impaired renal function increased both with FEV1
and FVC below 3.05 L, with PFEV1 below 76–77% or with PFVC below 79–80%, respectively. Obstructive lung function
was associated with increased risk of reduced renal function. The screen for impaired renal function in patients with
obstructive lung disease might be useful to ensure there was no impaired renal function before the commencement
of potentially nephrotoxic medication where indicated (eg diuretics).
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Background
The kidney works with the heart, liver, lungs and other
organs to maintain whole-body homeostasis [1]. Studies
have established associations between the kidney and
other organs, especially the heart through organ-to-organ
networks, including various humoral factors, and neuronal
network systems [2]. Few studies have investigated the
association between the kidney and the lungs.
The National Health and Nutrition Examination Survey

(NHANES) 2007–2012 investigated obstructive and
restricted lung function measures and chronic kidney
disease among people aged 40 to 79 years and revealed
that estimated glomerular filtration rate (eGFR) < 60 mL/
min/1.73 m2 was associated with higher odds of obstruc-
tive lung function [3]. However so far few studies has
addressed the dose-response relationship between restrict-
ive lung function and kidney function.
In this study, we aimed to explore the quantitative asso-

ciation between lung function measures, forced expiratory
volume in one second (FEV1) and forced vital capacity
(FVC) and kidney function measured by eGFR. Further-
more, our study aimed to evaluate the dose-response rela-
tionship between lung function measures and risk of
restricted renal function in a representative Chinese popu-
lation and then replicate this in an Australian population.

Methods
The Chinese participants were from the Nanjing Commu-
nity Cardiovascular Risk Survey and the Australian partic-
ipants were from the Crossroads study. The sampling
methods and the recruitment of participants of two stud-
ies were described in previous publications [4, 5–8].
Briefly, in both surveys, information on age, gender,

smoking status, comorbidities such as asthma, chronic
pulmonary disease and diagnosed diabetes were obtained
through questionnaires by face-to-face interviews man-
aged by trained research staff. Systolic and diastolic
blood pressure, waist circumference, height and weight
were measured 3 times and the arithmetic mean of the 2
closest measurements was recorded as the final mea-
surement. Lung capacity including both forced expira-
tory volume 1 s and forced vital capacity were measured
in accordance with American Thoracic Society guide-
lines [8] in both surveys. The detailed method of lung
capacity measurement was described in the previous
publication [4]. We also estimated the predicted forced
vital capacity and forced expiratory volume in one
second using the method developed by Carpo [9]. We
used the predicted percentage value of forced expiratory
volume in 1 s (PFEV1) and the predicted percentage
value of forced vital capacity (PFVC) as another two
measurements of lung capacity in this study.
Blood sampling methodology [9], fasting glucose and

lipid profile measurement methodology [4], the definitions
of type 2 diabetes [6], metabolic syndrome (MS) [10], and
hypertension [11, 12] were reported previously. Patients
with both type 2 diabetes and MS were classified ashaving
type 2 diabetes only.
The eGFR was calculated from serum creatinine using

the Chronic Kidney Disease Epidemiology Collaboration
(CKD-EPI) eq. [13]. Reduced renal function was defined
as eGFR <60 ml/min/1.73m2 [3]. Due to non-standardised
creatinine measurement, (Isotope Dilution Mass Spec-
trometry (IDMS) standardised creatinine assay) adjusted
creatinine was applied in the eGFR estimation in the
Crossroads study [14].
We applied Kruskal–Wallis test and chi-squared test

to compare continuous variables and categorical
variables, respectively. The dose-response relationships
between lung capacity measures (FEV1 and FVC) and
eGFR were analysed by multiple linear regression
model. We applied unconditional Logistic regression
model with linear rem of lung capacity measurements,
a natural cubic spline model with four equally spaced
knots determined from the levels of lung capacity mea-
surements, and a quadratic spline model [15, 16] to
investigate the dose-response association between lung
capacity measurements and the odds ratios of decreased
renal function. The minimum Akaike information criter-
ion (AIC) [17] was estimated in each model to detect the
best-fit model, which chose that natural cubic spline
model as the best-fit model.
We applied break-point test by including the piecewise

term into the final model to hunt the potential threshold
within the 5th percentile (P5) to the 95th percentile
(P95) of lung capacity measures [18]. The final threshold
was defined the threshold with a significant break in the
regression coefficients and achieving the minimum AIC
[12]. 1000 bootstrapping was applied to estimate the
95% confidence interval of the final threshold [15].
We applied several sensitivity analyses. First, we

tested final model (natural cubic spline model) for the
overall dataset and examined other potential knots
within the range (minimum to maximum) measure of
lung capacity [12]. We applied the final model in the
data rich range (5th percentile to the 95th percentile)
of lung capacity as the second sensitivity analysis [12].
We also applied the linear test in the final model to in-
vestigate the linearity of the dose-response relationship
[19]. Finally, the dose-response association between
obstructive lung function (FEV1/FVC < 0.70) [20] and
reduced renal function was analysed in the general
population, people with normal glucose metabolism
status, and those with MS or type 2 diabetes,
respectively.
Due to the cluster sampling design, the sampling

weights were adjusted in all analyses of Nanjing data
with allocation of ‘svy’ synax in Stata.
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All analyses were processed by STATA 13 with statis-
tical significance defined by two-tailed P < 0.05.
The Crossroads study was approved by the Goulburn

Valley Health Ethics Committee (GCH-3/99). The Nanjing
Community Cardiovascular Risk Survey was approved by
the Institutional Review Board of Jiangsu Province Hospital
on Integration of Chinese and Western Medicine (11–006).
Signed, informed consent was obtained from all partici-
pants in both surveys.
Results
People with reduced renal function (eGFR <60 ml/min/
1.73m2) were more likely to be older, be a current
smoker and have higher waist circumference, systolic
blood pressure, triglyceride with lower lung capacity
both in Chinese and Australian populations (Table 1).
Figure 1 shows that the median (interquartile range) of

FEV1, FVC, PFEV1, PFVC, and eGFR was 2.99 (2.50 to
3.56), 3.03 (2.67 to 3.49), 88 (78 to 97)%, 102 (90 to 114)%
and 86.04 (71.01 to 97.92)% among Chinese participants
and 2.94 (2.41 to 3.48), 3.66 (3.02 to 4.42), 102 (92 to
110)%, 106 (97 to 114)% and 88.43 (77.41 to 99.55)%
among Australian participants without metabolic
syndrome or type 2 diabetes, respectively.
Figure 1 also shows the median (interquartile range) of

FEV1, FVC, PFEV1, PFVC, eGFR was 2.56 (2.16 to
3.04), 2.72 (2.41 to 3.05), 84 (75 to 93)%, 98 (85 to 110)%
and 74.08 (56.99 to 96.45)% among Chinese participants
and 2.61 (2.04 to 3.22), 3.30 (2.62 to 4.08), 95 (86 to
107)%, 99 (89 to 110)% and 83.98 (71.15 to 97.42)%
among Australian participants with metabolic syndrome
or type 2 diabetes, respectively.
The relationship between lung capacity measures

(FEV1, FVC, PFEV1, and PFVC) and renal function
measure (eGFR) was presented in Fig. 2. eGFR linearly
increased with FEV1 in the Chinese population and with
FVC in the Australian population, respectively. The
relationship between FEV1 and eGFR and between FVC
and eGFR was non-linear among Australian participants
and Chinese participants, respectively (both P < 0.0001
for linearity test). In both Chinese and Australian popu-
lations, the non-linear relationships were found between
PFEV1 and eGFR and between PFVC and eGFR (all
P < 0.0001 for linear test). The highest eGFR was found
at 2.65 (95%CI: 2.42 to 2.88) L of FEV1 for Australian
participants and 2.78 (95CI: 2.45 to 3.11) L of FVC for
Chinese participants, respectively. The highest eGFR
was found at 81.30 (80.21 to 82.40)% and 82.05
(80.67 to 81.36)% for PFEV1 in the Australian and
Chinese participants, respectively. The highest eGFR
was found at 82.56 (81.40 to 83.72)% and 84.32
(83.37 to 85.27)% for PFVC among Australian and
Chinese participants, respectively.
Similar relationships were identified among people with
normal metabolic status (Additional file 1: Figure S1).
Among people with metabolic syndrome or type 2
diabetes, eGFR linearly increased with FEV1 and FVC in
the Chinese population; in the Australian population,
eGFR increased with FEV1 and peaked at 2.65 (2.42 to
2.88) L and declined thereafter; eGFR increased with FVC
and plateaued at 3.05 (2.87 to 3.23) L. The PFEV1 linearly
increased with eGFR both in Australian and Chinese
population with normal metabolic status. The highest
eGFR was found at 78.72 (77.81 to 79.63)% and 80.32
(79.18 to 81.46)% for PFVC among Australian and
Chinese participants with normal metabolic status
(Additional file 1: Figure S1), respectively. Among people
with metabolic syndrome or type 2 diabetes, the highest
eGFR was identified at 76.32 (75.38 to 77.26)% and 77.13
(76.17 to 78.09)% in Australian population and Chinese
population respectively. The highest eGFR was identified
at 82.56 (81.40 to 83.72)% only in Australian population.
The association between PFVC and eGFR was non-linear
with the sharp increase of eGFR at PFC more than 84.32
(83.37 to 85.27)% in Chinese population.
There was a non-linear relationship (Linearity test:

both P < 0.0001) between FEV1 and adjusted odds ratios
for reduced renal function (eGFR <60 ml/min/1.73m2),
with clear evidence of a threshold estimated at 3.05
(95%CI: 2.82 to 3.28 L and 2.76 to 3.34 in both the
Chinese and Australian populations respectively) (Fig. 3).
Similar non-linear relationships (Linearity test: both
P < 0.0001) were observed between FVC and adjusted
odds ratio for reduced renal function and a threshold was
identified at 3.05 (95%CI: 2.72 to 3.38 L and 2.68 to 3.41 L
in both the Chinese and Australian populations respect-
ively) (Fig. 3). A non-linear relationship was also found
between PFEV and adjusted odds ratio for reduce renal
function and between PFVC and adjusted odds ratio for
reduced renal function with thresholds identified at 76.32
(75.38 to 77.26)% and 77.13 (76.17 to 78.09)% for PFEV1;
78.46 (77.55 to 79.37)% and 80.26 (79.00 to 81.52)% for
PFVC, in Australian and Chinese population, respectively.
Among people with normal metabolic status, a non-

linear relationship (Linearity test: P < 0.0001) between
FEV1 and adjusted odds ratios for reduced renal function
was found among Chinese participants with threshold at
3.05 (2.91 to 3.19) L. A linear relationship between FEV1
and adjusted odds ratios for reduced renal function was
found among Australian participants. There was a non-
linear relationship (Linearity test: both P < 0.0001)
between FVC and adjusted odds ratios for reduced renal
function (eGFR <60 ml/min/1.73m2), with clear evidence
of a threshold estimated at 3.05 (95%CI: 2.87 to 3.23 L
and 2.67 to 3.43 L in both the Chinese and Australian
populations respectively) (Additional file 1: Figure S3).
The odds ratios of reduced renal function decreased



Table 1 Characteristics of participants in all and by renal function status

All eGFR ≥ 60 mL/min/1.73 m2 eGFR < 60 mL/min/1.73 m2 P-value

Nanjing survey

Participants, n 5824 4313 1511

Age, years 52.0 (43.0 to 59.0) 51.0 (43.0 to 58.0) 55.0 (48.0 to 62.0) 0.0001

Women, % 56.3% 47.8% 67.5% <0.0001

Current smoking, % 28.0% 18.3% 66.4% <0.0001

Asthma/COPD, % 1.1% 1.1% 1.1% 0.9720

Body mass index, kg/m2 23.6 (21.4 to 26.1) 23.6 (21.4 to 26.1) 23.6 (21.4 to 26.1) 0.5862

Waist circumference, cM 80.0 (73.3 to 87.0) 79.3 (73.0 to 86.2) 82.5 (75.0 to 89.5) 0.0001

Systolic blood pressure, mmHg 128.0 (116.3 to 142.5) 126.5 (115.0 to 141.0) 131.0 (120.0 to 145.5) 0.0001

Diastolic blood pressure, mmHg 80.5 (73.5 to 88.5) 80.0 (72.5 to 88.0) 82.0 (75.0 to 90.5) 0.0001

Fasting glucose, mmol/L 5.4 (4.9 to 5.9) 5.4 (4.9 to 5.9) 5.7 (5.0 to 7.1) 0.0698

Triglyceride, mmol/L 1.2 (0.8 to 1.7) 1.2 (0.8 to 1.7) 1.2 (0.8 to 1.9) 0.0001

Total cholesterol, mmol/L 4.4 (3.9 to 4.9) 4.4 (3.9 to 5.0) 4.4 (3.9 to 4.9) 0.0783

High density lipoprotein cholesterol, mmol/L 1.3 (1.1 to 1.5) 1.3 (1.1 to 1.6) 1.2 (1.1 to1.5) 0.0001

Low density lipoprotein cholesterol, mmol/L 2.4 (2.0 to 2.9) 2.4 (2.0 to 2.8) 2.4 (2.1 to 2.9) 0.3603

Forced expiratory volume in 1 s, L 2.9 (2.6 to 3.4) 3.3 (2.9 to 3.7) 2.8 (2.5 to 3.2) 0.0001

Forced vital capacity, L 2.8 (2.4 to 3.4) 3.3 (2.8 to 3.8) 2.7 (2.3 to 3.2) 0.0001

Creatinine, mg/dl 1.0 (0.9 to 1.1) 0.9 (0.8 to 1.0) 1.2 (1.1 to 1.3) 0.0001

Crossroads

Participants, n 1454 1298 156

Age, years 52.0 (40.0 to 65.0) 50.0 (39.0 to 61.0) 76.0 (70.8 to 79.3) 0.0001

Women, % 56.0% 53.7% 56.3% 0.5660

Current smoking, % 18.9% 6.7% 20.2% <0.0001

Asthma/COPD, % 14.3% 13.4% 14.6% 0.7240

Body mass index, kg/m2 27.0 (24.3 to 30.7) 27.0 (24.3 to 30.6) 27.4 (24.5 to 31.6) 0.3803

Waist circumference, cM 94.5 (84.5 to 104.3) 94.2 (84.3 to 103.9) 97.6 (86.1 to 109.3) 0.0075

Systolic blood pressure, mmHg 130.0 (114.0 to145.0) 128.5 (113.0 to 142.5) 147.0 (130.9 to 162.6) 0.0001

Diastolic blood pressure, mmHg 72.0 (65.0 to 79.0) 71.0 (63.0 to 76.0) 72.3 (65.5 to 80.5) 0.4244

Fasting glucose, mmol/L 5.1 (4.8 to 5.5) 5.0 (4.7 to 5.4) 5.3 (4.9 to 5.9) 0.0001

Triglyceride, mmol/L 1.2 (0.9 to 1.7) 1.2 (0.8 to 1.7) 1.4 (1.1 to 1.9) 0.0001

Total cholesterol, mmol/L 5.2 (4.6 to 5.9) 5.1 (4.4 to 5.9) 5.2 (4.6 to 5.9) 0.3340

High density lipoprotein cholesterol, mmol/L 1.4 (1.1 to 1.6) 1.4 (1.2 to 1.6) 1.3 (1.1 to 1.7) 0.9405

Low density lipoprotein cholesterol, mmol/L 3.1 (2.6 to 3.7) 3.0 (2.3 to 3.7) 3.2 (2.6 to 3.7) 0.1003

Forced expiratory volume in 1 s, L 2.8 (2.3 to 3.4) 2.9 (2.4 to 3.5) 1.9 (1.5 to 2.8) 0.0001

Forced vital capacity, L 3.5 (2.9 to 4.3) 3.6 (3.0 to 4.4) 2.5 (2.1 to 3.3) 0.0001

Creatinine, mg/dl 0.9 (0.8 to 1.0) 0.8 (0.7 to 0.9) 1.2 (1.1 to 1.5) 0.0001
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with the increase of PFEV1 in both Australian and
Chinese populations. A non-linear relationship was
observed between PFVC and adjusted odds ratios of
reduced renal function both in Australian and Chin-
ese population with thresholds at 78.72 (77.81 to
79.63)% and 80.32 (79.18 to 81.46)% for PFVC among
Australian and Chinese participants with normal
metabolic status (Additional file 1: Figure S3).
Among people with metabolic syndrome or type 2
diabetes, there was a non-linear relationship (Linearity
test: both P < 0.0001) between FEV1 and adjusted odds
ratios for reduced renal function, with clear evidence of
a threshold estimated at 3.05 (95%CI: 2.91 to 3.19 L and
2.69 to 3.41 L in both the Chinese and Australian popu-
lations respectively) (Additional file 1: Figure S4). There
was a non-linear relationship (Linearity test: both



Fig. 1 Distribution of forced expiratory volume in 1 s (FEV1), forced
vital capacity (FVC), and estimated glomerular filtration rate (eGFR) by
disease status. The figure shows the 25th, 50th (Median) and 75th
percentile of the distribution of forced expiratory volume in 1 s (FEV1),
forced vital capacity (FVC), and estimated glomerular filtration rate
(eGFR) (vertical lines on each box). ‘Whiskers’ on each box indicate
values at 1.5 times the interquartile range from the median and dots
indicate the more extreme values, including the maximum and
minimum of the distribution. MS, metabolic syndrome; DM, diabetes
mellitus. a Distribution of FEV1 by disease status in Nanjing survey; (b)
Distribution of FEV1 by disease status in Crossroads study; (c)
Distribution of FVC by disease status in Nanjing survey; (d) Distribution
of FVC by disease status in Crossroads study; (e) Distribution of FEV1%
predicted value by disease status in Nanjing survey; (f) Distribution of
FEV1% predicted value by disease status in Crossroads study; (g)
Distribution of FVC% predicted value by disease status in Nanjing
survey; (h) Distribution of FVC% predicted value by disease status in
Crossroads study; (i) Distribution of eGFR by disease status in Nanjing
survey; (j) Distribution of eGFR by disease status in Crossroads study
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P < 0.0001) between FVC and adjusted odds ratios for
reduced renal function, with clear evidence of a threshold
estimated at 3.05 (95%CI: 2.87 to 3.23 L and 2.67 to 3.43 L
in both the Chinese and Australian populations respec-
tively) (Additional file 1: Figure S4). The odds ratios of
reduced renal function decreased with the increase of
PFEV1 in both populations with a clear threshold identi-
fied at 78.46 (77.55 to 79.37)% in the Chinese population.
The non-linear relationship between PFVC and adjusted
odds ratios of reduced renal function was similar in both
populations with thresholds at 78.72 (77.81 to 79.63)%
and 80.32 (79.18 to 81.46)% in Australian and Chinese
populations, respectively.
The adjusted association between obstructive lung

function and reduced renal function was presented in
supplemental table-1. The increased adjusted odds ratio
for reduced renal function was more likely to be found
among people with obstructive lung function in both
Chinese and Australian populations, especially for
Chinese participants (all P < 0.0001). Interaction
between metabolic disorder and obstructive lung func-
tion on the increased adjusted odds ratios for reduced
renal function was both identified in Chinese and
Australian population, especially for Chinese participants
(all P < 0.0001).

Discussion
We focused our investigation on the shape of the relation-
ship between pulmonary function measurements and risk
of reduced renal function in a Chinese sample and repeated
the analyses in an Australian population, assessing the evi-
dence for non-linearity and, in particular, on the existence
of a threshold. In our analyses, we found consistent evi-
dence that the associations between lung capacity measures
and risk of reduced renal function are non-linear. Analyses
demonstrated a threshold for reduced renal function of



Fig. 2 (See legend on next page.)
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(See figure on previous page.)
Fig. 2 Dose-response relationship between adjusted estimated glomerular filtration rate (eGFR) and lung capacity measures. a Dose-response
relationship between FEV1 and adjusted estimated glomerular filtration rate (eGFR) in Nanjing survey; (b) Dose-response relationship between
FEV1 and adjusted estimated glomerular filtration rate (eGFR) in Crossroads study; (c) Dose-response relationship between FVC and adjusted
estimated glomerular filtration rate (eGFR) in Nanjing survey; (d) Dose-response relationship between FVC and adjusted estimated glomerular
filtration rate (eGFR) in Crossroads study. e Dose-response relationship between FEV1% predicted value and adjusted estimated glomerular
filtration rate (eGFR) in Nanjing survey; (f) Dose-response relationship between FEV1% predicted value and adjusted estimated glomerular filtration
rate (eGFR) in Crossroads study; (g) Dose-response relationship between FVC% predicted value and adjusted estimated glomerular filtration rate
(eGFR) in Nanjing survey; (h) Dose-response relationship between FVC% predicted value and adjusted estimated glomerular filtration rate (eGFR)
in Crossroads study; FEV1, forced expiratory volume in 1 s; FVC, forced vital capacity. People with minimum FEV1 or FVC was used as reference
group. Age, gender, smoking status, waist circumference, systolic blood pressure, triglyceride, and high density lipoprotein cholesterol
were adjusted
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3.05 L both for FEV1 and FVC in both the Chinese and
Australian populations. It was also identified that
obstructive lung function, especially interacted with
metabolic disorders was associated with increased risk
of reduced renal function.
Few studies have addressed the association between

FEV1 and FVC as lung function markers and eGFR in
representative populations. The National Health and
Nutrition Examination Survey 2007–2012 investigated
7610 participants aged 40–79 years and revealed that
impaired lung function is common in those with and
without chronic kidney disease, and eGFR <60 ml/min/
1.73 m2 was associated with higher odds of obstructive
lung function [3]. In another small Japanese sample, it
was also found that decreased eGFR is associated with
decreased pulmonary function markers of pulmonary
diffusion capacity [21]. In another cohort study incorp-
orating vascular surgery patients, chronic obstructive
pulmonary disease (COPD) was found to be associated
with restricted renal function and chronic kidney disease
[22]. Consistent with these findings, we have found an
association between restricted pulmonary function and
impaired renal function in both a Chinese population
and reproduced this finding in an Australian population.
However, the underlying association between lung

capacity measurements and risk of impaired renal func-
tion have been assumed to be linear. Few studies have
investigated the possible exposure-response association
between pulmonary function measurements and renal
function measurements, nor the exposure-response asso-
ciation between lung function and risk of impaired renal
function. The potential mechanism might be that the
systemic inflammation might trigger the restricted lung
function and the progression of atherosclerosis which
leading to the reduced renal function [23, 24]. The non-
linear relationship between lung capacity and renal func-
tion might reflect the development process of systemic
inflammation, as irreversible consequence like COPD or
chronic kidney disease could rapidly progressed once
atherosclerosis developed to a certain level [25].
Our study is the first study that has investigated both

the exposure-response association between pulmonary
capacity and renal function and explored the exposure-
response association between pulmonary function and risk
of impaired function within two independent samples
from China and Australia. Previous findings were
extended by our study, as there is a non-linear association
between pulmonary capacities (especially FEV1) and
impaired renal function: The risk of impaired renal func-
tion was increased below 3.05 L FEV1 and FVC. And this
finding was remarkably consistent over the samples from
China and Australia.
We wonder if the information from this study indicates

that patients with obstructive lung disease below the
threshold of 3.05 L should be screened for impaired renal
function. Using an assumption of linearity in the
exposure-response association, there are no potential
thresholds of pulmonary function measurements, and
therefore, it was previously difficult to propose a threshold
for heightened awareness of the risk of significant renal
function impairment. However in this refined exploration
of the exposure-response association and thresholds, a
threshold with relative precision has been generated.
Comparisons of independent samples between countries

provides an opportunity to investigate the similarities and
differences in the association between pulmonary function
and impaired renal function. Both cross-sectional samples
incorporate variation by methodology, ethnicity, and
medical systems, potentially leading to variation in the
clinical measurements and prevalence of disease. There-
fore, instead of merging these datasets, we explored the
associations in one independent sample and replicated the
analyses in the other independent sample.
There might also be underlying differences in the

distribution of pulmonary function and renal function
between two countries and in the delivery and
effectiveness of healthcare, contributing to observed
difference in association between pulmonary function
and renal function measurements, for example, in the
Australian population, the highest eGFR was identi-
fied among those with FEV1 of 2.65 L however it was
observed at 2.78 L in the Chinese population. The
differences observed in this study were expected and
might also be partially explained by the ethnic



Fig. 3 (See legend on next page.)
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(See figure on previous page.)
Fig. 3 Dose-response relationship between adjusted odds ratio for reduced renal function and lung capacity measures. a Dose-response relationship
between FEV1 and adjusted odds ratio for reduced renal function (eGFR < 60 mL/min/1.73 m2) in Nanjing survey; (b) Dose-response relationship
between FEV1 and adjusted odds ratio for reduced renal function (eGFR < 60 mL/min/1.73 m2) in Crossroads study; (c) Dose-response relationship
between FVC and adjusted odds ratio for reduced renal function (eGFR < 60 mL/min/1.73 m2) in Nanjing survey; (d) Dose-response relationship
between FVC and adjusted odds ratio for reduced renal function (eGFR < 60 mL/min/1.73 m2) in Crossroads study. e Dose-response relationship
between FEV1% predicted value and adjusted odds ratio for reduced renal function (eGFR < 60 mL/min/1.73 m2) in Nanjing survey; (f) Dose-response
relationship between FEV1% predicted value and adjusted odds ratio for reduced renal function (eGFR < 60 mL/min/1.73 m2) in Crossroads study; (g)
Dose-response relationship between FVC% predicted value and adjusted odds ratio for reduced renal function (eGFR < 60 mL/min/1.73 m2) in Nanjing
survey; (h) Dose-response relationship between FVC% predicted value and adjusted odds ratio for reduced renal function (eGFR < 60 mL/min/1.73 m2)
in Crossroads study; FEV1, forced expiratory volume in 1 s; FVC, forced vital capacity. People with minimum FEV1 or FVC was used as reference group.
Age, gender, smoking status, waist circumference, systolic blood pressure, triglyceride, and high density lipoprotein cholesterol were adjusted
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differences and the smaller Australian sample size.
The ethnic differences could reflect distinguishing
genetic backgrounds and anthropometry. However it
was feasible to compare associations between coun-
tries by applying a rigorous approach to data analysis.
The approach we have used included a comparison of

participants’ characteristics, levels of lung and renal func-
tion measurements, the association between pulmonary
function measurements and renal function measurements,
and the association between pulmonary function measure-
ments and impaired renal function. This indicates that the
two samples in the two countries were comparable and
this was supported by the consistency in the association
between pulmonary function measurements and renal
function measurements between the two samples.
One possible explanation for the association between

impaired pulmonary function and reduced renal function
observed in this study may be underlying systemic inflam-
mation. A systemic inflammatory response and accumula-
tion of pro-inflammatory cytokines have been postulated
to modulate progression of both glomerular and tubule-
interstitial scarring, leading to reduced renal function [26].
Pro-inflammatory cytokines may also influence the rate of
muscle and protein breakdown, leading to the develop-
ment of impaired pulmonary lung function [27].
The utilisation of cross-sectional data is the main limita-

tion in our study, whereby pulmonary function and
diseases were measured at the same time. Therefore it
would be difficult to deduce the causal association between
pulmonary function and impaired kidney function, espe-
cially if the progression of disease had an impact on the
pulmonary function. Prospective study would be the next
step to investigate these associations. Another limitation is
that the data used in this joint study were not collected
within the same survey: the data from Chinese and Austra-
lian samples are c0mparable though. The temporary differ-
ence in Chinese and Australian data collection might also
have some influence on the research samples.

Conclusion
In summary, our results suggest a non-linear relation-
ship between pulmonary function measurements and
risk of impaired renal function exists in both Chinese
and Australian populations. The thresholds of FEV1 and
FVC for the lowest risk of impaired renal function was
above 3.05 L (95%CI: 2.82 to 3.28 L and 2.76 to 3.34 L
for FEV1 in Chinese and Australian population respec-
tively; 2.72 to 3.38 L and 2.68 to 3.41 L for FVC in
Chinese and Australian population respectively). FEV1
or FVC below 3.05 L, with PFEV1 below 76–77% or with
PFVC below 79–80%, respectively, was associated with a
high risk of impaired renal function. Obstructive lung
function was associated with a high risk of impaired
renal function. Interaction between obstructive lung
function and metabolic disorders was associated with
the highest risk of impaired renal function.
Additional file
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adjusted estimated glomerular filtration rate (eGFR) and lung capacity
measures among people with normal fasting glucose. Figure S2.
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metabolic syndrome or type 2 diabetes. Figure S3. Dose-response
relationship between adjusted odds ratios for reduced renal function
and lung capacity measures among people with normal fasting
glucose. Figure S4. Dose-response relationship between adjusted
odds ratios for reduced renal function and lung capacity measures
among people with metabolic syndrome or type 2 diabetes.
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