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Abstract

Background: Chronic kidney disease (CKD) is a major contributor to mortality in the general population. Understanding
the factors that drive this process will help delay progression of CKD. The study aimed to estimate the risks of kidney
failure and death prior to and after the development of kidney failure among patients with
pre-existing CKD, and to identify potential prognostic factors.

Method: Data were obtained from patients with CKD from Ubon Ratchathani province, Thailand from 1997 to 2011.
The probability of each transition (i.e., CKD➔death (T1), CKD➔kidney failure (T2), and kidney failure➔death (T3)) was
estimated using a competing risk model. A parametric survival model with restricted cubic spline function was applied
to assess prognostic factors. Illness-death models were constructed for the 3 transitions. Among 32,106 patients with
CKD, 5576 (17.4%), 4768 (14.9%), and 3056 (9.5%) respectively moved through T1, T2, and T3.

Results: Diabetics had 22.6%, 13.5%, and 60.7% higher risks of T1, T2, and T3 than non-diabetics respectively
(p < 0.001). Hypertension increased risks of T2 and T3 by 8.7% (p = 0.01) and 27.2% (p < 0.001), whereas cardiovascular
disease increased risk of T1 and T3 by 76% and 42.7%, respectively (p = 0.01). Increasing HDL by 10 units respectively
decreased risk of T1 and T2 by 0.5% (p = 0.002) and 1.4% (p < 0.001). In addition, renin-angiotensin blockade decreased
risk of T2 by 35% (p < 0.001).

Conclusions: Diabetes and cardiovascular disease are associated with increasing mortality among CKD patients both
before and after the development of kidney failure while hypertension is associated with increasing mortality mainly
following kidney failure. Diabetes and hypertension are associated with an elevated risk of kidney failure while elevated
HDL levels and renin-angiotensin blockade appear protective.
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Background
Chronic kidney disease (CKD) is one of the leading non-
communicable diseases contributing to morbidity and
mortality globally. In Thailand, the prevalence of CKD
with estimated Glomerular Filtration Rate (eGFR) cat-
egory 3 (G3) is about as common as diabetes, i.e., 8.6% [1]
and 7.5% [2] respectively.
Prognostic factors for CKD progression have been stud-

ied [3]. Knowing these prognostic factors will potentially
lead to identifying CKD risk properly and instituting treat-
ments to delay CKD progression. Kidney failure and death
are the common clinical endpoints of CKD progression;
death from other causes is a competing risk in such

analyses, but only 20 out of 132 studies (15.1%) appro-
priately accounted for death as a competing risk [3].
The Kaplan-Meier method might can lead to biased es-
timates of the cumulative incidence of kidney failure if
the number of patients with the competing risk is high
and this is not accounted for in the model [4]. A com-
peting risk model handles this situation and might yield
less bias in the estimated cumulative incidence function
(CIF) than the Kaplan-Meier method [5–7]. However a
competing risk model considers only the first occur-
rence of an event, e.g. transition from CKD to kidney
failure or death, but not kidney failure to death. We
therefore applied an illness-death model, which aimed
to estimate the probabilities of three CKD transitions as
follows: transition 1: G1-G4➔death; transition 2: G1-* Correspondence: atiporn.ing@mahidol.ac.th
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G4➔kidney failure; transition 3: kidney failure➔death.
Prognostic factors for each transition were also assessed.

Methods
Participants
We used data from a retrospective cohort of patients with
CKD living in 20 districts of Ubon Ratchathani province,
Thailand. Computerized databases between 1997 and
2011 were retrieved, and death was then verified by link-
ing these databases with the Thailand death registry. Sub-
jects were eligible if they were 18 years or older, had been
diagnosed with CKD, and had at least 1 year of follow-up.
The flow of the cohort study and the data retrieval process
have been published previously [8].

Studied variables and measurements
Demographic data including age, gender, and body mass
index (BMI) were measured at the time of diagnosis of
CKD. Serum creatinine (Scr), which is standardized and
calibrated every 3 months by the Department of Medical
Science, Ministry of Public Health, was measured by each
hospital laboratory unit. Results from the Modified Jaffe
(MJ) method were converted to the Isotope Dilution Mass
Spectrometry (IDMS) equivalent using the equation from
the Thai SEEK study as described previously [1]. An eGFR
was then calculated using the chronic kidney disease epi-
demiology collaboration (CKD-EPI) equation [9]. The
urine analysis (UA) was done using a urine dipstick to test
for proteinuria. The results were reported as negative or
normal, trace (equivalent to micro-albuminuria) or 1+ or
more (equivalent to macro-albuminuria). We used the
Kidney Disease: Improving Global Outcomes (KDIGO)
2012 guideline to classify CKD [10]. GFR categories con-
sisted of G1 (≥90 ml/min/1.73 m2), G2 (60–89 ml/min/

1.73 m2), G3a (45–59 ml/min/1.73 m2), G3b (30–44 ml/
min/1.73 m2), G4 (15–29 ml/min/1.73 m2), and G5
(<15 ml/min/1.73 m2).
Diabetes, hypertension, and cardiovascular disease

(CVD) at the time of diagnosis of CKD were identified
from the databases using ICD10 codes E10-E14 for dia-
betes, I10-I15 for hypertension, and I60-I69 for CVD. Pa-
tients were classified as users of renin angiotensin system
(RAS) blockers if they had been prescribed angiotensin
converting enzyme inhibitors (ACEIs) or angiotensin II re-
ceptor blockers (ARBs).

All-cause mortality
Death certificates were retrieved from the Bureau of
Strategy and Statistics, Ministry of Public Health database
through to December 31, 2011. All deaths were registered
and certified with no missing data.

Statistical analysis
A unidirectional illness-death model was created as
described in Fig. 1. In this model, patients move from
state i to state j over timeTij; kidney failure was treated
as an intermediate state and death was the absorbing
state. Patients were initially entered into state 1 with a
diagnosis of CKD G1-G4. They then moved to state 3
over time T13 (called transition 1), i.e., they died due to
any cause other than kidney failure. Alternatively, some
patients spent time T12 reaching state 2, i.e. diagnosis of
kidney failure (called transition 2). After the diagnosis of
kidney failure, patients were at risk of death, with time
T23 (called transition 3), but some remained alive until
the end of study.

Fig. 1 Illness-death model for CKD patients

Vejakama et al. BMC Nephrology  (2017) 18:205 Page 2 of 8



A competing risk model with subdistribution hazard
functions was used to estimate the CIF of transition 1 and
transition 2 [5–7, 11], where kidney failure was the event
of interest and all-cause mortality was a competing event.
A Cox Proportional Hazards model was used to estimate
probability of death after kidney failure for transition 3.
A flexible parametric survival model was applied to

estimate the transition hazards, denoted as α12, α13, and
α23 in Fig. 1 [12–14]. All three transition models were
simultaneously fitted using restricted cubic spline func-
tions to model the baseline hazard for each transition.
Data were prepared in long format, in which data for each
patient were expanded in 2 to 3 rows depending on the
occurrence of kidney failure and death using the ‘illpred’
command in STATA [14]. Three transition-dummy
variables (i.e., trans1 = 1 if transition =1, 0 otherwise;
trans2 = 1 if transition = 2, 0 otherwise; trans3 = 1 if
transition =3, 0 otherwise) were constructed and fitted
into the cubic-spline model as time-varying covariates,
stratifying by transition.
Prognostic factors for kidney failure and death including

age, gender, BMI, diabetes, hypertension, CVD, lipid pro-
files (i.e., total cholesterol, triglyceride, HDL, and LDL),
and RAS blockade were considered for inclusion in the
parametric survival models. Data for BMI, triglyceride,
LDL, and HDL were missing in 12.5%, 29.3%, 31.2%, and
33.7%, respectively of participants, so these were imputed
using multivariate chain equations assuming data were
missing at random [15, 16]. Linear regression models with
100 imputations were constructed to predict missing data
and their averages were used for further analysis [17].
A univariate analysis was performed by adding each

prognostic factor in the cubic spline regression. The main
effect of each factor was fitted along with time-varying
transitional variables (i.e., trans1, trans2, and trans3). A
likelihood ratio test was applied to assess whether these
main effects were significant or if the trend was signifi-
cant. Variables whose p value was less than 0.10 for this
step were simultaneously included in a multivariate
model. In addition, we assessed whether these main effects
varied across transitions; interactions between prognostic
factors and transitional variables (i.e., trans1, trans2, and
trans3) were fitted. Hazard ratios (HR) along with 95%
confidence interval (CI) were then estimated by exponen-
tiating coefficients. In addition, a Cox proportional Hazard
model stratified by transition was also applied. All analyses
for prognostic factors of CKD progression were performed
using stpm2 and stpm2illd commands in STATA version
13.0. P values less than 0.05 were considered to be statisti-
cally significant.

Results
Approximately 1.3 million people were screened for
CKD between 1997 and 2011, and 32,106 were found to

have the condition. The majority were females (63.7%);
mean age and BMI were respectively 63.5 (SD = 12.8)
years and 22.7 (SD = 4.3) kg/m2. Among all patients
with CKDs, 46.8%, 42.9%, and 13.6% had diabetes,
hypertension, and CVD, respectively (Table 1).
As described in Fig. 1, 32,106 subjects were classified as

CKD stage G1 to G4 at enrollment and thus entered into
state 1. These subjects were at risk for kidney failure (state
2) or for death without kidney failure (state 3); 4768
(14.9%) and 5576 (17.4%) moved through the former and
the latter, respectively. For those 4768 subjects who
reached state 2, 3056 (64.1%) died (state 4) whereas 1712
(35.9%) were still alive at the end of the study.
A CIF for each transition was estimated and is re-

ported in Fig. 2. The 2-, 5-, and 10-year probabilities of
transition 1 were respectively 4.7%, 15.1%, and 32.5%.
The 2-, 5-, and 10-year probabilities of transition 2 were
7.9%, 13.5%, and 23.3%, respectively. The corresponding
probabilities of transition 3 were 39.0%, 66.4%, and
93.1%, respectively.
Each prognostic factor was fitted in a cubic spline

regression assuming constant and varying effects on
each transition. The two models were compared using
a likelihood ratio test, indicating the model with varying
effects was a better fit than that with constant effects
(see Additional file 1: Table S1). The prognostic effects
on each transition are described in Table 2. Every

Table 1 Baseline characteristics of CKD patients

Characteristics CKD
N = 32,106

Follow-up time, years, median (range) 4.4 (0.3, 14.3)

Age, year, mean (SD) 63.5 (12.8)

Male, no (%) 11,707 (36.3)

eGFR, mean (SD) 46.9 (20.9)

Albuminuria category, no (%)

A1 12,037 (49.3)

A2 6852 (28.1)

A3 5518 (22.6)

BMI, kg/m2, mean (SD) 22.7 (4.3)

Smoking, no (%) 1821 (8.5)

Co-morbidity, no (%)

Hypertension 13,801 (42.9)

Diabetes 15,032 (46.8)

CVD 4371 (13.6)

Total cholesterol, mean (SD) 184.7 (53.7)

Triglyceride, median (range) 223.9 (122.6)

LDL, mean (SD) 115.2 (36.6)

HDL, mean (SD) 39.0 (10.1)

RAS blockade usea, no (%) 6949 (21.6)
arenin-angiotensin system
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Fig. 2 Cumulative incidence functions for 3 transitions. Transition 1: CKD➔Death . Transition 2: CKD➔Kidney failure . Transition 3:
Kidney failure➔Death

Table 2 Prognostic factors of kidney failure and death through three transitions: Illness-death model

Transitions Factors Coefficients SE Z P > |t| HR LL UL

CKD➔Death Age 0.0497 0.0013 37.31 <0.001 1.051 1.048 1.054

Male/Female 0.3861 0.0277 13.938 <0.001 1.471 1.393 1.553

BMI -0.0542 0.0038 −14.308 <0.001 0.947 0.940 0.954

HDL -0.0052 0.0017 −3.033 0.002 0.995 0.991 0.998

DM 0.2034 0.0302 6.736 <0.001 1.226 1.155 1.300

HT -0.0902 0.031 −2.909 0.004 0.914 0.860 0.971

CVD 0.5651 0.0333 16.959 <0.001 1.760 1.648 1.878

RAS -0.0734 0.0393 −1.868 0.062 0.929 0.860 1.004

CKD➔Kidney failure Age −0.0007 0.0012 −0.601 0.548 0.999 0.997 1.002

Male/Female −0.0815 0.0317 −2.574 0.01 0.922 0.866 0.981

BMI -0.0608 0.004 −15.355 <0.001 0.941 0.934 0.948

HDL -0.0143 0.0019 −7.422 <0.001 0.986 0.982 0.990

DM 0.1264 0.0318 3.979 <0.001 1.135 1.066 1.208

HT 0.0836 0.0333 2.51 0.012 1.087 1.018 1.161

CVD -0.0998 0.0462 −2.16 0.031 0.905 0.827 0.991

RAS -0.4301 0.0449 −9.582 <0.001 0.650 0.596 0.710

Kidney failure➔death Age 0.0051 0.0017 3.036 0.002 1.005 1.002 1.008

Male/Female 0.2598 0.0391 6.651 <0.001 1.297 1.201 1.400

BMI -0.023 0.0049 −4.647 <0.001 0.977 0.968 0.987

HDL 0.001 0.0019 0.545 0.586 1.001 0.997 1.005

DM 0.4741 0.0404 11.744 <0.001 1.607 1.484 1.739

HT 0.2403 0.0416 5.769 <0.001 1.272 1.172 1.380

CVD 0.3554 0.0558 6.373 <0.001 1.427 1.279 1.592

RAS 0.0974 0.0551 1.769 0.077 1.102 0.990 1.228
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10 year increase in age increased the risks of death be-
fore and after kidney failure by 5.1% (HR = 1.051: 95%
CI: 1.048, 1.054) and 0.5% (HR = 1.005: 95% CI: 1.002,
1.008), respectively. However, age had no effect on kid-
ney failure (HR = 0.999, 95% CI: 0.997, 1.002). Males
were respectively 47.1% (HR = 1.471, 95% CI: 1.393,
1.553) and 29.7% (HR = 1.297, 95% CI: 1.201, 1.400)
more likely to die before and after kidney failure when
compared to females. In contrast, the risk of developing
kidney failure was 7.8% (HR = 0.922, 95% CI: 0.866,
0.981) lower in males than females. BMI was signifi-
cantly associated with all 3 transitions; for every one
unit increase in BMI, the risks of death before kidney
failure, kidney failure, and death after kidney failure de-
creased by 5.3% (HR = 0.947, 95% CI: 0.940, 0.954),
5.9% (HR = 0.941, 95% CI: 0.934, 0.948), and 2.3%
(HR = 0.977, 95% CI: 0.968, 0.987), respectively.
Our models suggest that diabetic subjects are at higher

risk of all 3 transitions when compared to non-diabetic
subjects; the risks were 22.6% (HR = 1.226: 95% CI:
1.155, 1.300), 13.5% (HR = 1.135066 95% CI: 1.066,
1.208), and 60.7% (HR = 1.607: 95% CI: 1.484, 1.739)
higher for death before kidney failure, kidney failure,
and death after kidney failure, respectively. Comparing
the risk of death in diabetes between transition 3 and
transition 1 suggested that the risk of death was 31.1%
(HR = 1.311, 95% CI: 1.187, 1.447) higher in diabetes
with kidney failure than diabetes without kidney failure.
Hypertensive subjects had 8.7% (HR = 1.087, 95% CI:

1.018, 1.161) and 27.2% (HR = 1.272, 95% CI: 1.172,
1.380) higher risk of kidney failure and death after
kidney failure, respectively. Conversely, the risk of death
for hypertensive patients before kidney failure was about
8.6% lower (HR = 0.914, 95% CI: 0.860, 0.971).
CVD significantly increased risks of death either

before or after kidney failure when compared to non-
CVD subjects. The risks of the former and the latter
were about 76.0% (HR = 1.760, 95% CI: 1.648, 1.878)
and 42.7% (HR = 1.427, 95% CI: 1.279, 1.592) higher, re-
spectively. The risk of kidney failure was 9.5% lower in
CVD than non-CVD (HR = 0.905, 95% CI: 0.827, 0.991).
Higher HDL levels carried lower risks of kidney fail-

ure, and for every 10 unit increase in HDL level, the
risks of kidney failure and death before kidney failure
decreased by 13.3% (HR = 0.867, 95% CI: 0.834, 0.900)
and 5.1% (HR = 0.949, 95% CI: 0.917, 0.982), but the risk
of death after kidney failure was not significant
(HR = 1.001, 95% CI: 0.997, 1.005).
RAS blockade decreased the risk of kidney failure sig-

nificantly (HR = 0.650, 95% CI: 0.596, 0.710) and showed
trend in reduce the risk of death before kidney failure
(HR = 0.929, 95% CI: 0.860, 1.004), whereas it increased
risk of death after kidney failure (HR = 1.102, 95% CI:
0.990, 1.228) but this was not significant.

A sensitivity analysis was performed using a Cox Pro-
portional Hazard regression model separately for each
transition. Results were very similar to the cubic spline
regression model, except that CVD in transition 2 was
not significant in the Cox model but it was significant in
the cubic spline model (HR = 0.926; 95% CI: 0.845,
1.013 vs 0.905; 95% CI 0.827, 0.991, see Additional file 1:
Table S2).
In addition, a sensitivity analysis was performed by

excluding CKD category G1/G2 (about 13.3% of pa-
tients) from the parametric survival model because
these patients can revert to having normal eGFR over
time. Results were very similar, except for transition 2
(CKD➔Kidney failure), in which age, sex, diabetes, and
hypertension became non-significant (see Additional
file 1: Table S3).

Discussion
This study was conducted to assess the progression of
CKD to kidney failure and/or death using the illness-death
model approach. The model suggested that the 2-, 5-, and
10-year probabilities of kidney failure were 7.9%, 13.5%,
and 23.3%, respectively. The risks of death increased
sharply after kidney failure compared to death before
kidney failure with the corresponding probabilities of
39.0%, 66.4%, and 93.1% versus 4.7%, 15.1%, and 32.5%,
respectively.
Age, gender, BMI, diabetes, hypertension, CVD,

HDL, and RAS blockade were prognostic factors in
all three transitions. For every 10 year increase in
age, the risk of death before and after kidney failure
increased approximately 64% and 5%, respectively. This
implies that age is a greater determinant of mortality
before CKD than after. Not surprisingly, age was not asso-
ciated with kidney failure, likely due to the fact that age
was already taken into account when estimating eGFR.
Males were more likely to die both before and after kidney
failure, but they tended to develop kidney failure less than
females. Higher BMI significantly decreased the risks of
CKD progression in all respects. This paradoxical inverse
association between BMI and mortality was consistent
with findings obtained from large-scale studies [18, 19];
this may be explained by the fact that BMI is a marker of
better health generally or that underweight is a marker of
end-stage disease. Higher HDL decreased the risks of
kidney failure and death before kidney failure, but had no
effect on death after kidney failure.
Diabetes increased the risks of CKD progression in all

respects. The effect of diabetes on death was more
pronounced after developing kidney failure, i.e., ap-
proximately one third higher after kidney failure than
before kidney failure. Hypertension was associated with
increased risks of kidney failure and death after kidney
failure, i.e., CKD progression was greater in hypertensive
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than non-hypertensive patients, but was associated with
lower risk of death before kidney failure. A possible ex-
planation for this inverse epidemiology might be sur-
vival bias; patients with more severe hypertension
progressed more rapidly to kidney failure, leaving those
with better health and more favorable prognosis at the
pre-kidney failure stage to die of other causes. Alterna-
tively, hypertensive patients without kidney failure also
tend to be screened more for risks of CVD, including
more frequent lipid testing and EKG monitoring, and
thus have a higher chance of receiving effective medica-
tions for CVD prevention, including statins (83% vs
27%), and anti-platelet agents (58% vs 24%).
CVD was a significant predictor of death either be-

fore or after kidney failure, but was associated with
lower risk of kidney failure. Our results also indicated a
reno-protective effect of RAS blockade, i.e., a substan-
tially lower risk of kidney failure by approximately 35%.
However, its effect on death was very small and of bor-
derline significance, i.e., lower risk for death before kid-
ney failure but higher risk after kidney failure when
compared to no RAS blockade. Effect of RAS blockade
on death after kidney failure might be due to inter-
action with other co-morbidities (i.e., people with dia-
betes, CVD, dyslipidemia tend to be prescribed these
agents more), but unfortunately, these interaction ef-
fects could not be detected (data not shown). Our re-
sults could still be affected by residual confounding and
using other methods such as a counterfactual frame-
work approach, inverse probability weighting, aug-
mented inverse probability weighing, or propensity
score matching would be useful [20].
Our findings suggest a rate of kidney failure of ap-

proximately 38/1000 person-years, which is lower than
previous findings (83/1000 person-years [21]) and lower
than renal replacement therapy (RRT) rates (139/1000
person-years [22]). Unlike these studies which estimated
progression of more advanced CKD, our study assessed
the full course of CKD progression starting from the G1
stage to kidney failure.
Although our estimate of death before kidney failure

was similar to previous findings, i.e. 42 vs 59 [21] vs 39/
1000 person-years [22], our death after kidney failure was
nearly 10 times higher (304 vs 32/1000 person-years) [22].
This was probably due to the fact that our patients had
less access to RRT after the diagnosis of kidney failure. In
fact, the universal health coverage scheme for Thailand
has provided RRT under a peritoneal dialysis first-policy
only since 2008. Prior to this period, the access rate to
RRT was less than 1%, and only about 0.05% of patients
received kidney transplants. The RRT rate has increased
sharply since 2008 to 28% in 2011. As a result, the risk of
death was about 55% lower in those who received RRT
than those who did not.

Among all the factors influencing progression from
CKD to kidney failure, RAS blockade seems to be the
most promising for clinical practice. The reno-protective
effects of RAS blockade have been well demonstrated by
a recent systematic review and meta-analysis of random-
ized controlled trials [23]. Unfortunately, only one fifth
of our CKD subjects received RAS blockers and the ma-
jority of these received them at the G3 stage or higher.
Some of our findings were unexpected. For instance,

we found protective effects of BMI (for all transitions),
hypertension (for death before kidney failure), and
CVD (for kidney failure), but adverse effects of RAS
(on death after kidney failure). These findings may be
due to methodological issues: effect modification and
multi-collinearity. Effect modification of these factors
were therefore explored (data not shown). Results sug-
gested that higher BMI was associated with a higher
risk of kidney failure but not of death, before and after
kidney failure in diabetes patients. Hypertension risk
was also modified by diabetes; the risk for kidney fail-
ure and death before kidney failure increased 73% and
31%, respectively. In addition, hypertension was also
modified by CVD; there was an increased risk of kidney
failure of 15% but not for death before and after kidney
failure. Furthermore, these factors may be mediators
themselves or may be mediated by other factors, so
considering them in the same equation may cause in-
consistency in the direction of association [24]. Causal
effects of these factors should be determined using a
mediation analysis to decompose direct and indirect ef-
fects of these factors on death [24, 25]. These variables
were also highly correlated and multi-collinearity might
result in invalid estimations, particularly for the vari-
ance of coefficients. This was explored by including
each variable one by one in the model and seeing how
the variance of each variable already contained in the
model changed (see Additional file 1: Table S4). Results
showed very small changes in variances and therefore
multi-collinearity should be minimal.
It is common in research on chronic diseases to have

more than one outcome of interest. In our example CKD
progression can lead not only to kidney failure, but also to
death before or after kidney failure. We therefore applied
illness-death transition models, using parametric survival
regression to model the baseline hazard [11, 12, 14, 26].
The model allowed us to determine the risk of occurrence
of the three events simultaneously by fitting 3 transitions
as time-varying variables in the model. A conventional
Cox Proportional Hazard regression model was also ap-
plied for each transition separately, which yielded similar
results to the parametric survival model.
Our study has some strengths. We have provided a

picture of CKD progression using a large dataset with a
median follow up time of 4.4 years. An annual CKD
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screen consisting of urine protein dip plus serum cre-
atinine test, should be generalizable in other settings.
The large dataset with long-term follow up allowed us to
estimate the 2-, 5-, and 10-year probabilities of all 3
transitions. The use of appropriate statistical methods
taking into account competing risks and interactions be-
tween prognostic factors and transitions should result in
valid results. However, our study also had some limita-
tions. This study was a retrospective cohort in which the
data were retrieved from databases capturing routine
practice. Data quality was not as good as for a dedicated
prospective cohort and some variables contained missing
data. Information on treatments of co-morbidity and
treatments of CKD itself were lacking. This may result
in biased prognostic effects of the studied co-variables.

Conclusions
Our study has identified prognostic factors affecting
three major transitions of CKD progression. Risk of
death was dramatically increased after developing kidney
failure. Diabetes and CVD increased risks of death be-
fore and after kidney failure. Hypertension increased the
risk of death after kidney failure. Diabetes and hyperten-
sion increased the risk of kidney failure whereas renin-
angiotensin blockade and HDL decreased the risk.

Additional file

Additional file 1: Table S1. Likelihood ratio test of the models assuming
constant versus varied effects of covariable on each of three transitions.
Table S2. Prognostic factors of kidney failure and death through three
transitions: Illness-death model by Cox Proportional Hazard regression
analysis. Table S3. Prognostic factors of kidney failure and death through
three transitions for CKD patients without G1-G2: Illness-death model.
Table S4. Assess multi-colinearity for each transition. (DOCX 39 kb)
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