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Abstract

Background: HIV-positive persons bear an excess burden of chronic kidney disease (CKD); however, conventional
methods to assess kidney health are insensitive and non-specific for detecting early kidney injury. Urinary biomarkers
can detect early kidney injury, and may help mitigate the risk of overt CKD.

Methods: Cross-sectional study of HIV-positive persons in the Multicenter AIDS Cohort Study and the Women’s
Interagency HIV Study. We measured levels of 14 biomarkers, capturing multiple dimensions of kidney injury.
We then evaluated associations of known CKD risk factors with urine biomarkers using separate multivariable
adjusted models for each biomarker.

Results: Of the 198 participants, one third were on HAART and virally suppressed. The vast majority (95%)
had preserved kidney function as assessed by serum creatinine, with a median eGFR of 103 ml/min/1.73 m2

(interquartile range (IQR): 88, 116). In our multivariable analyses, the associations of each CKD risk factor with
urinary biomarker levels varied in magnitude. For example, HIV viral load was predominantly associated with
elevations in interleukin(IL)-18, and albuminuria, while higher CD4 levels were associated with lower monocyte
chemoattractant protein-1 (MCP-1) and β2-microglobulin. In contrast, older age was significantly associated
with elevations in α1-microglobulin, kidney injury marker-1, clusterin, MCP-1, and chitinase-3-like protein-1 levels, as
well as lower epidermal growth factor, and uromodulin levels.

Conclusions: Among HIV-positive persons, CKD risk factors are associated with unique and heterogeneous patterns of
changes in urine biomarkers levels. Additional work is needed to develop parsimonious algorithms that integrate
multiple biomarkers and clinical data to discern the risk of overt CKD and its progression.

Keywords: Urine biomarkers, Kidney injury, HIV infection, Multicenter AIDS cohort study (MACS), Women’s interagency
HIV study (WIHS)

Background
The improved life expectancy among treated HIV-posi-
tive patients has been tempered by the excess burden of
age-related non-infectious co-morbidities, including
chronic kidney disease (CKD) [1–3]. In this population,
CKD results not only from traditional risk factors, such

as diabetes and hypertension, but also from human im-
munodeficiency virus (HIV)-related risk factors [4, 5],
including uncontrolled viremia [6], chronic co-infection
with hepatitis C virus (HCV) [7], and exposure to poten-
tially nephrotoxic antiretroviral (ART) medications [8,
9]. These risk factors culminate in excess risk of CKD
among HIV-positive persons compared to the general
population [3, 5]. Importantly, CKD significantly con-
tributes to excess morbidity and mortality experienced
by HIV-positive individuals [10–12]. Earlier detection of
kidney damage could potentially help mitigate the risk of

* Correspondence: Anthony.muiru@ucsf.edu
1Kidney Health Research Collaborative, Department of Medicine, San
Francisco Veterans Affairs Medical Center and University of California, 533
Parnassus Avenue, U404, Box 0532, San Francisco, CA 94143, USA
Full list of author information is available at the end of the article

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Muiru et al. BMC Nephrology            (2019) 20:4 
https://doi.org/10.1186/s12882-018-1192-y

http://crossmark.crossref.org/dialog/?doi=10.1186/s12882-018-1192-y&domain=pdf
http://orcid.org/0000-0003-2622-9658
mailto:Anthony.muiru@ucsf.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


overt CKD and its consequences. Unfortunately, conven-
tional indicators of kidney disease, including serum cre-
atinine and proteinuria, are relatively insensitive and
non-specific for detecting early kidney injury [11, 13].
These indicators of kidney disease become abnormal only
when significant damage or dysfunction has occurred, and
they do not localize the specific site of injury within the
nephron [14, 15].
In contrast, novel urinary biomarkers are emerging as

valid markers of early kidney injury [16]. These bio-
markers have been demonstrated to predict longitudinal
kidney function as well as other adverse outcomes in
specific clinical scenarios, such as following major car-
diac surgery [17], among kidney transplant recipients
[18, 19], and among HIV-positive and negative ambula-
tory populations [20–26]. However, CKD pathogenesis
often involves multiple risk factors that may cause injury
at diverse parts of the nephron and contribute to pro-
gressive loss of kidney function. Therefore, a set of com-
plementary urinary biomarkers, rather than a single
biomarker, is likely needed to capture these multiple di-
mensions of kidney injury and to distinguish the
site-specific risk factors within the nephron. Ideally,
levels of these biomarkers would also prognosticate
CKD risk, and thus inform clinical decision-making in a
variety of clinical settings encountered in the care of
HIV-positive persons [16, 27].
To evaluate whether each CKD risk factor has a dis-

tinct pattern of kidney injury, we examined their associa-
tions with a panel of urine biomarkers of kidney injury
among HIV-positive individuals who were not on teno-
fovir disoproxil fumarate (TDF) in the Multicenter AIDS
Cohort Study (MACS) and the Women’s Interagency
HIV Study (WIHS). We hypothesized that each CKD
risk factor would be associated with levels of a unique
set of urinary biomarkers, indicating a distinct profile of
kidney injury and dysfunction.

Methods
Study population and study design
The MACS and WIHS are ongoing, longitudinal prospect-
ive observational studies of men and women, respectively,
who are either infected with HIV or considered at
high-risk for acquiring HIV. The MACS and WIHS co-
horts share similar research goals, which include charac-
terizing the long-term benefits and adverse effects of
ART. Both cohorts have been previously detailed else-
where [28–30]. Briefly, the MACS enrolled 7355 men who
have sex with men between 1984 and 2017 from four
study sites: Baltimore, MD/ Washington, D.C.; Chicago,
IL; Los Angeles, CA; and Pittsburgh, PA/Columbus, Ohio.
The WIHS initially enrolled a total of 4909 women in
1994–1995 and 2001–2002 from six study sites: Bronx
and Brooklyn, NY; Chicago, IL; Los Angeles and San

Francisco, CA; and Washington, D.C. The WIHS subse-
quently enrolled an additional 1216 women between 2011
and 2015 from the initial set of sites, with the addition of
participants from Atlanta, GA, Birmingham, AL, Jackson,
MS, Chapel Hill, NC, and Miami, FL. In both cohorts,
standardized questionnaires to obtain sociodemographic
and clinical information are administered during semi-an-
nual study visits. In addition, physical examinations and
collection of biological specimens are performed during
these visits. At certain visits, urine specimens were also
collected and stored in each cohort. The current cross-
sectional study utilized data from an observational study
evaluating the association of TDF-based ART with
changes in urinary biomarkers levels. Because we were in-
terested in the effect of traditional CKD risk factors on
urinary biomarkers, we evaluated participants just prior to
initiation of TDF—a known nephrotoxin [31].

Measurement of urine biomarkers of kidney injury
Clean catch urine specimens were collected prospect-
ively, refrigerated immediately after collection, and sub-
sequently centrifuged. Supernatants were then stored in
1-mL aliquots at − 80 °C until biomarker measurement
was undertaken, without prior freeze-thaw. We mea-
sured levels of 14 urine biomarkers, each hypothesized
to indicate a distinct dimension of kidney injury and
dysfunction. Although the precise pathogenic mecha-
nisms of these biomarkers are incompletely understood,
we conceptualized them as follows based on prior studies:
1) glomerular/ endothelial injury: albumin-to-creatinine
ratio (ACR) and osteopontin (OPN); 2) proximal tubular
dysfunction: cystatin C (CysC), α1-microglobulin (α1m),
and β2-microglobulin (β2m); 3) tubular injury: kidney in-
jury molecule-1 (KIM-1), trefoil factor 3 (TFF3); clusterin,
neutrophil gelatinase-associated lipocalin (NGAL) and
interleukin (IL)-18; 4) loop of Henle dysfunction: uro-
modulin (UMOD); and 5) tubulointerstitial injury and
fibrosis: monocyte chemoattractant protein-1 (MCP-1),
epidermal growth factor (EGF), and [32–34]. All urine
biomarkers were measured using multiplex immunoassays
from Meso Scale Discovery (MSD, Rockville, MD), except
urine creatinine which was measured using the Roche en-
zymatic creatinine assay (Roche Diagnostics, Indianapolis,
IN) and α1m, which was measured using a commercial
assay (Siemens BN II Nephelometer, Munich, Germany).
Intra-assay coefficients of variation were < 15% for all bio-
markers (Additional file 1: Table S1).

Definitions of risk factors for CKD
We evaluated the following CKD risk factors: 1) age, 2)
self-reported race/ethnicity, 3) self-reported cigarette use,
4) diabetes mellitus, 5) hypertension, 6) HCV co-infection,
7) plasma HIV-1 RNA (viral load), and 8) CD4+ count.
Consistent with national guideline definitions and with
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prior MACS and WIHS analyses, diabetes mellitus was
defined as: hemoglobin A1c ≥6.5%, fasting plasma glucose
≥126mg/dL (7mmol/L) or self-reported history of dia-
betes with self-reported use of anti-diabetic medications
[35]. Hypertension was defined as: two consecutive mea-
surements of systolic blood pressure (SBP) ≥140mmHg,
or diastolic blood pressure (DBP) ≥90mmHg, or self-re-
ported history of hypertension with self-reported use of an
antihypertensive medication [36]. HCV infection was de-
termined by detectable HCV RNA following a positive
HCV antibody result. Detectable HIV viral load was
defined as plasma HIV-1 RNA ≥ 80 copies/mL. In the
MACS, plasma HIV RNA concentrations were measured
using the Roche COBAS Ultrasensitive Amplicor HIV-1
monitor assay (lower level of detection (LLD) of 50 copies
/mL), or the Roche Taqman HIV-1 Test (LLD of 20 cop-
ies/mL). In the WIHS, plasma HIV RNA was measured
using the Roche COBAS AmpliPrep/COBAS TaqMan
HIV-1 Test (LLD of 20 or 48 copies HIV RNA/mL).
Serum creatinine-based estimated glomerular filtration
rate (eGFR) was calculated using the CKD-EPI equa-
tion [37].

Statistical analysis
Demographic and clinical characteristics were summa-
rized overall, and stratified by cohort. We evaluated as-
sociations of risk factors with biomarker levels in a
series of models: 1) separate unadjusted linear regression
models; 2) multivariable simultaneous linear equations;
and 3) multivariable sparse group least absolute shrink-
age and selection operator (MSG-LASSO). In all models,
biomarker concentrations were log-transformed to
normalize their distributions, and results were back-
transformed to produce estimated percentage differences
in biomarker levels attributable to each risk factor. We
controlled for urine creatinine in all analyses to account
for urine tonicity. Additional co-variates included other
race, Hispanic race, past smoking, and history of ART use.
We used separate linear regression models for each

biomarker to evaluate unadjusted risk factor associations
with robust Huber-Weight standard errors. We then
used multivariable simultaneous linear equations (con-
structed with three-stage least squares) to account for
correlations between urine biomarkers. This method is
more appropriate than individual regression models
given the relatedness of the biomarker measurements. In
a final step, rather than using traditional multiple com-
parison adjustments to control the type I error rate, we
modeled biomarkers in combination using MSG-LASSO
method for variable selection [38]. To obtain corre-
sponding 95% confidence intervals and p-values for the
LASSO-selected variables, we then modeled biomarkers
in combination using multivariable linear regression
analysis with an L1 penalty.

The LASSO analysis was implemented using the R
package MSGLasso. All other analyses were performed
using the SAS system, version 9.4 (SAS Institute, Inc.,
Cary, NC).

Results
Of 198 HIV-positive participants, the majority (64%)
were black, over half (56%) were women, and the me-
dian age was 48 years (interquartile range [IQR]: 41, 54)
(Table 1). Median CD4+ count was 483 cells/mm3

([IQR]: 338, 682), 29% of persons had undetectable HIV
viral load (HIV RNA < 80 copies/mL), 33% were on
ART, 48% were hypertensive, 17% had diabetes, and 17%
were co-infected with HCV. Majority (95%) of the par-
ticipants had preserved kidney function as assessed by
serum creatinine with a median eGFR of 103 ml/min/
1.73 m2 (IQR: 88, 116). In addition, participants had
minimal albuminuria, with only 8% having an ACR > 30
mg/g. Characteristics within each cohort are presented
in Table 1.
As displayed in Table 2, we observed distinct patterns

of risk factors associated with each biomarker in un-
adjusted analyses. For example, black race, current
smoking, diabetes, HCV-seropositivity, and higher HIV
viral load were individually associated with higher levels
of IL-18, whereas higher CD4+ count was associated
with lower IL-18 levels. Conversely, when evaluated
from the perspective of each CKD risk factor, the associ-
ated biomarkers had heterogeneous patterns and were
varied in magnitude. For example, current smoking had
the strongest association with elevations in α1m, and the
magnitude of the point estimate was 3-fold the elevation
observed per 10-year increase in age (106% greater a1m
for current smoking versus 36% for age).
Among CKD risk factors, older age showed statistically

significant associations with nearly all dimensions of kid-
ney injury. In unadjusted analyses, older age was signifi-
cantly associated with: 1) higher urinary marker levels of
proximal tubular dysfunction (α1m); 2) higher urinary
marker levels of tubular injury (KIM-1, clusterin, and
NGAL); 3) lower UMOD levels, indicative of loop of
Henle dysfunction; 4) greater albuminuria, indicative of
glomerular injury; and 5) higher YKL-40, higher MCP-1,
and 6) lower EGF concentrations, indicative of tubuloin-
terstitial fibrosis. In contrast, HIV viral load was pre-
dominantly associated with increased levels of IL-18,
β2-m and CysC. Higher CD4+ levels were associated
with lower levels of α1m, β2-m, IL-18, MCP-1 and CysC.
Blacks compared to non-blacks had higher NGAL, β2m,
IL-18, TFF3, and YKL-40 levels, they also had lower
levels of EGF in unadjusted analyses.
As shown in Figs 1 and 2 although attenuated, many

of the risk factor and biomarker level associations per-
sisted after multivariable adjustment in simultaneous
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linear equations (Fig. 1) and after MSG-LASSO selection
(Fig. 2). For instance, older age remained significantly as-
sociated with markers of proximal tubular dysfunction
and injury, loop of Henle dysfunction and tubulointersti-
tial fibrosis, even after controlling for all other risk fac-
tors in the model. However, while age was significantly
associated with greater YKL40 levels in the multivariable
model (+ 0.14, p = 0.04), this association weakened after

LASSO selection (+ 0.09, p = 0.1). In addition, age was
no longer significantly associated with ACR in the multi-
variable model (+ 0.07, p = 0.4) or LASSO selection
(0.00, p = 0.9). HIV viral load remained predominantly
associated with IL-18 and ACR levels, while higher CD4
+ counts remained associated with lower MCP-1 levels.
Of note, higher CD4+ counts were associated with lower
α1m levels (− 0.16, p = 0.02) in the initial multivariable
model but not in the final MSG-LASSO (− 0.11, p = 0.08),
and lower β2m levels in the MSG-Lasso (− 0.14, p = 0.04)
but not in the multivariable model (− 0.14, p = 0.08).

Discussion
In this cross-sectional analysis of well-characterized
HIV-positive men and women, we observed that each
traditional and HIV-specific CKD risk factor was associ-
ated with levels of a unique set of complementary urin-
ary biomarkers, which varied in magnitude. Of note, this
study population had preserved kidney function as
assessed by serum creatinine, yet CKD risk factors were
associated with alterations in levels of urinary bio-
markers, highlighting that conventional methods of
assessing kidney health may not adequately capture early
kidney injury [14, 15]. Most of these biomarkers have
been linked to longitudinal declines in kidney func-
tion, which suggests that the biomarker panel is
reflecting incipient kidney disease risk at an earlier
stage than can be clinically detected with current
methods [16, 21–23, 25, 27].
The pathophysiology of CKD is complex, particularly

among HIV-positive persons, and involves multiple risk
factors. These risk factors may simultaneously contribute
to injury at various segments of the nephron, eventually
leading to progressive loss of kidney function. The asso-
ciation between a particular CKD risk factor and a spe-
cific pattern of change in levels of urinary biomarkers
can help to discriminate the contribution of each risk
factor towards kidney injury in a variety of clinical set-
tings encountered in HIV care. For instance, current
cigarette smoking was predominantly associated with el-
evations in α1m in our final models, while HIV viral load
was predominantly associated with elevation of IL-18
and ACR. Higher concentrations of urine α1m in a cur-
rently smoking, HIV-positive patient may distinguish
smoking as the primary kidney insult, while elevation in
IL-18 along with ACR in the same patient may suggest
HIV viremia as the predominant culprit. Distinguish-
ing the extent and nature of the contribution of each
risk factor towards kidney injury can inform clinical
decision-making, such as intensification of renal-pro-
tective therapy, aggressive treatment of modifiable risk
factors, and identification and removal of potential
nephrotoxins.

Table 1 Sociodemographic and clinical characteristics of HIV-
positive individuals, by cohort

Parameter Overall
(n = 198)

WIHS
(n = 111)

MACS
(n = 87)

Age,y 48 (41, 54) 46 (40, 53) 49 (44, 56)

Race/ethnicity

Black 126 (64) 87 (78) 39 (45)

White 59 (30) 15 (14) 44 (50)

Other 13 (6) 9 (8) 4 (5)

Hispanic 29 (15) 20 (18) 9 (10)

Smoking

Current 73 (37) 46 (41) 27 (31)

Past 62 (31) 25 (23) 37 (43)

Never 62 (31) 40 (36) 22 (26)

Diabetes mellitus 32 (17) 20 (18) 12 (17)

Systolic BP, mmHg 126 (114, 137) 121 (110, 134) 129 (117, 137)

Diastolic BP, mmHg 77 (71, 86) 74 (69, 85) 80 (72, 87)

Hypertension 93 (48) 56 (50) 37 (44)

Antihypertensive use 70 (35) 45 (41) 25 (29)

Statin use 31 (16) 17 (15) 14 (17)

History of CVD 13 (7) 4 (4) 9 (10)

BMI, kg/m2 27 (23, 32) 29 (24, 34) 25 (23, 28)

Waist Circumference,
cm

94 (83, 104) 96 (82, 106) 92 (84, 102)

Current HAART 66 (33) 31 (28) 35 (40)

Current NRTI 67 (34) 31 (28) 36 (41)

Current NNRTI 34 (17) 13 (12) 21 (24)

Current PI 30 (15) 14 (13) 16 (18)

Current CD4+
count, cells/mm3

483 (338, 682) 485 (314, 667) 465 (387, 716)

History of AIDS 26 (13) 23 (21) 3 (3)

Current HIV RNA,
< 80 copies/mL

56 (29) 24 (22) 32 (37)

Hepatitis C virus
seropositive

33 (17) 20 (18) 13 (15)

Estimated GFR 103 (88, 116) 103 (85, 117) 104 (92, 116)

ACR,mg/g 3.2 (1.9, 7.1) 3.5 (2.0, 12.0) 3.0 (1.8, 5.7)

Data are presented as Median (IQR) or numbers (percent). WIHS Women’s
Interagency HIV Study, MACS Multicenter AIDS Cohort Study, BP Blood pressure,
CVD Cardiovascular disease, BMI Body Mass Index, HAART Highly active
antiretroviral therapy, NRTI Nucleoside Reverse Transcriptase Inhibitors, NNRTI
Non-Nucleoside Reverse Transcriptase Inhibitors, PI Protease inhibitors, GFR
Glomerular filtration rate, ACR albumin to creatinine ratio
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In addition, assessment of urinary biomarker levels
can help localize the site of injury within the nephron.
For instance, hypertension was associated with higher
ACR levels. Hypertension is known to cause glomerular
endothelial damage, as reflected by albuminuria [39].
Older age was associated with changes in urinary bio-
markers indicative of injury spanning the entire neph-
ron, including proximal tubule dysfunction (α1m),
tubular injury (KIM-1, clusterin and NGAL), loop of
Henle dysfunction (UMOD), and tubulointerstitial injury
and fibrosis (YKL-40). We also noted that older age was
associated with lower EGF levels, a protein considered a
surrogate marker for regenerative tubular reserve that
may facilitate the kidney’s ability to recover from injury
and slow progression of CKD [40]. However, dysregula-
tion of this repair pathway, reflected by high urinary
EGF excretion, may promote fibrosis, inflammation and
progression of CKD [41]. Our observed association be-
tween older age and this extensive panel of kidney injury
markers that indicate injury across all the regions of the
nephron are consistent with well-described structural
and functional changes seen in the aging kidney includ-
ing decreased number of functional glomeruli [42],
proximal tubule shrinkage [43], tubular atrophy and

interstitial fibrosis [44]. Since this cohort was middle-
aged, similar studies should be conducted among HIV-
negative persons to determine whether the effects of age
on the kidney are accelerated by HIV infection.
We have previously reported the association of HIV

viremia with increased urinary IL-18 and ACR levels
[45], and we confirmed these findings in this analysis
that included both men and women. Although we dem-
onstrated consistent associations between HIV viral load
and urinary biomarker levels, we did not find that black
race was associated with either ACR or IL-18 levels, as
previously reported [45]. Similarly, we did not observe
an association between diabetes and ACR levels in our
study. There are several potential explanations for this
observation. First, only 32 of studied participants in
current analysis were diabetic so we may have lacked
sufficient power to detect differences in urinary bio-
marker levels between participants with and without dia-
betes. Second, participants in our study had diabetes for
a short period of time, with a median duration of dia-
betes of 6.5 years (IQR 2.3–9.3). Furthermore, in WIHS
the median hemoglobin A1c was 6.7 (IQR 5.9–7.8), indi-
cating excellent glycemic control and at least 40% of
diabetic patients were treated with renin angiotensin

Fig. 1 Adjusted associations of CKD risk factors with urinary biomarker concentrations by multivariable simultaneous linear equations. Models
were adjusted for urine creatinine, Hispanic ethnicity, other race, past smoking, and history of ART use in addition to the CKD risk factors listed
above. Statistically significant estimates are shown in bold. Red shaded cells indicate factors associated with higher urine biomarker levels, green
shaded cells indicate factors associated with lower urine biomarker levels. α1m: α1-microglobulin; β2m: β2-microglobulin; IL-18: interleukin 18;
KIM-1: kidney injury marker-1; TFF3: trefoil factor 3; NGAL: neutrophil gelatinase-associated lipocalin; MCP-1: monocyte chemoattractant protein-1;
EGF: epidermal growth factor; UMOD: uromodulin; ACR: albumin-to-creatinine ratio; CysC: cystatin C; OPN: osteopontin; YKL-40: chitinase-3-like
protein-1; Curr Smoke; current smoking DM; Diabetes, HTN; hypertension, HCV: Hepatitis C virus, VL: HIV viral load in copies/mL
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aldosterone system inhibitors. All these factors have
been associated with lower ACR and improved renal
outcomes in clinical trials [46].
Our results should be interpreted in the context of our

study’s limitations. First, this is a cross-sectional study so
causative associations between CKD risk factors and
urinary biomarker levels cannot be assumed. Second,
participants included in this study were individuals
who were not on TDF, and our results may not be
generalizable to patients on such ARTs. Third, we
lacked kidney biopsy results to confirm the presence
of kidney injury histologically; however, urinary bio-
markers selected for inclusion in this analysis have all
been shown to be associated with acute kidney injury,
longitudinal kidney function decline and mortality
[17, 20–25]. Finally, our sample size may have been insuf-
ficient to detect findings with moderate effect sizes, espe-
cially when using the very conservative LASSO approach.

Conclusions
We have shown that each known CKD risk factor is
associated with a distinct pattern of changes in urine
biomarkers levels. While our findings highlight the

potential clinical utility of routine measurement of mul-
tiple biomarker levels, our findings require validation in
larger, more diverse patient populations. Evaluation of
the predictive performance of biomarker measurement
in the patient populations described herein address a ne-
cessary step in the ascertainment of the potential value
of urinary biomarker level measurement for use in
broader clinical settings [47]. Ultimately, parsimonious
algorithms that integrate multiple biomarker levels re-
sults along with clinical data will be critical for trans-
lating these novel diagnostic strategies into standard
clinical practice.

Additional file

Additional file 1: Table S1. Urine biomarker Assay information. Table
showing each biomarker assay information including intra-assay coefficients
of variation for all biomarkers used in this analysis. (DOCX 16 kb)
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