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Electronic health records accurately predict
renal replacement therapy in acute kidney
injury
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Abstract

Background: Electronic health records (EHR) detect the onset of acute kidney injury (AKI) in hospitalized patients,
and may identify those at highest risk of mortality and renal replacement therapy (RRT), for earlier targeted
intervention.

Methods: Prospective observational study to derive prediction models for hospital mortality and RRT, in inpatients
aged ≥18 years with AKI detected by EHR over 1 year in a tertiary institution, fulfilling modified KDIGO criterion
based on serial serum creatinine (sCr) measures.

Results: We studied 3333 patients with AKI, of 77,873 unique patient admissions, giving an AKI incidence of 4%.
KDIGO AKI stages at detection were 1(74%), 2(15%), 3(10%); corresponding peak AKI staging in hospital were 61, 20,
19%. 392 patients (12%) died, and 174 (5%) received RRT. Multivariate logistic regression identified AKI onset in ICU,
haematological malignancy, higher delta sCr (sCr rise from AKI detection till peak), higher serum potassium and
baseline eGFR, as independent predictors of both mortality and RRT. Additionally, older age, higher serum urea,
pneumonia and intraabdominal infections, acute cardiac diseases, solid organ malignancy, cerebrovascular disease,
current need for RRT and admission under a medical specialty predicted mortality. The AUROC for RRT prediction
was 0.94, averaging 0.93 after 10-fold cross-validation. Corresponding AUROC for mortality prediction was 0.9 and 0.
9 after validation. Decision tree analysis for RRT prediction achieved a balanced accuracy of 70.4%, and identified
delta-sCr ≥ 148 μmol/L as the key factor that predicted RRT.

Conclusion: Case fatality was high with significant renal deterioration following hospital-wide AKI. EHR clinical model
was highly accurate for both RRT prediction and for mortality; allowing excellent risk-stratification with potential for
real-time deployment.
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Background
Life expectancy has steadily increased worldwide, in part
due to the improvement in healthcare standards. [1]
National census in Singapore showed that 12% of the
population was aged 65 years and above in 2016 [2]. In
this elderly cohort, the hospital admission rate was more
than 200 per 1000 resident-population, [3] and they suf-
fer from complex illnesses. Acute kidney injury (AKI)
can manifest as part of their global clinical deterioration
from a multitude of acute diseases, for which they might
have otherwise not survived previously [4]. Accordingly,
the incidence of AKI has risen in parallel with increasing
case complexity and ageing population despite medical
advances, and is a global public health concern [5, 6].
In that regard, patients with AKI in need of renal re-

placement therapy (RRT) have prolonged hospitalization
and high mortality in excess of 40% [7, 8]. These data,
however, are described in the setting of critical care,
which only represents a snapshot of the AKI burden
hospital-wide, the vast majority of which may evolve
outside of the critical care environment and involve dif-
ferent clinical trajectories. A national chronic disease
registry captures the census of end-stage kidney disease
(ESKD) with an initial 90-day censorship, [9] but the im-
pact of AKI-RRT remains unclear. The advent of EHR
can now provide a wealth of clinical data to be routinely
studied, with linked biochemistry and serial serum cre-
atinine (sCr) measurements that facilitate the translation
of consensus AKI definitions to electronic AKI detection
[10, 11]. Multiple data-points may be used to formulate
an electronic risk assessment tool, to predict AKI pa-
tients at highest risk of RRT or mortality, thereby allow-
ing clinicians a potential 24–48 h window to optimize
management pre-emptively.
In this study, our objective was to analyze EHR data to

formulate risk prediction models for RRT and mortality
in hospital-wide patients with AKI. We aimed to exam-
ine our local in-hospital AKI epidemiology, not confined
to critical care, using EHR to demonstrate the feasibility
of such an analytic approach.
We studied incidences and predictors of RRT and

mortality in these patients. We hypothesized that the
wealth of clinical data made possible by EHR, ranging
from demographics, comorbidities, biochemistry, and
acute illnesses, can be incorporated into accurate predic-
tion tools for adverse AKI outcomes.

Methods
Study design and setting
We performed a prospective observational study in a
tertiary institution with 1200 acute beds, involving pa-
tients aged 18 years or more, hospitalized from Novem-
ber 2015 till October 2016, with AKI detected by
methods using EHR.

Study population
Patients who fulfilled electronic AKI definition had their
details entered into the database. Only the first AKI epi-
sode during the study period for every unique patient
was included. The exclusion criteria included: (i) patients
with advanced chronic kidney disease (CKD) as defined
by baseline estimated glomerular filtration rate (eGFR)
of less than 15mL/min/1.73 m2, using the CKD Epi-
demiology Collaboration (CKD-EPI) equation; [12] (ii)
patients with RRT in previous hospitalizations and failed
to recover kidney function to a current eGFR of more
than 30mL/min/1.73 m2; and (iii) patients with ESKD.

EHR AKI definitions and staging
We followed the KDIGO AKI criteria using serial sCr
measures, [13] but with modification made for the
timing of baseline sCr. We accepted a baseline sCr
within one year prior to the AKI-defining sCr, instead
of the proposed 7-day window for the relative sCr
change criterion. The latter may not be a practical
criterion for patients with community-acquired AKI,
who would not have had such frequent blood-test
surveillance performed as outpatient. Patients’ sCr
measures performed in National University Health
System Singapore’s or National Healthcare Group Sin-
gapore’s primary to tertiary care facilities, were made
available for analysis. Creatinine was measured using
Advia 2400 (Siemens, Munich, Germany) enzymatic
creatinine method traceable to isotope-dilution mass
spectrometry standard. Patients who met either the
relative change criteria of at least 1.5 times increase
in sCr over baseline, or absolute increase in sCr by at
least 26.5 μmol/L (0.3 mg/dL) within a 48-h window,
were detected by EHR as having AKI. The timing of
this AKI-defining sCr, and onset in days from hospital
admission were recorded. Community-acquired AKI
was defined by AKI onset within 48 h from hospital
admission, while hospital-associated AKI was implied
by onset after 48 h, as inferred from recent literature
on AKI epidemiology [14].
Patients who entered the database had their peak sCr

and nadir sCr during the same hospitalization tracked.
The nadir sCr served as a surrogate for baseline sCr, for
patients who entered the database using the absolute
sCr change criteria. We computed the delta sCr, which
was the difference between the peak sCr and the
AKI-defining sCr, as a measure of AKI trajectory. A
chart diagram of this modified AKI criteria is shown in
Fig. 1.
We defined the AKI stages 1, 2 or 3 according to pro-

posed KDIGO criteria [13], at the point of AKI detection
by EHR, and subsequent peak AKI severity during
hospitalization, based on serial sCr change and need for
RRT.
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Electronic clinical data sources
The study subjects’ relevant clinical data that were
pre-selected by the study investigators and data engi-
neers were consolidated into a database. The 32 EHR
variables included were classified into 4 categories,
namely: (i) patient demographics, (ii) comorbidities, (iii)
kidney function indices, and (iv) acute disease categories
(Fig. 3 legend). Our EHR sources included: (i) Comput-
erized Patient Support System 2 (CPSS2), which was de-
veloped locally by Integrated Health Information System
Pte Ltd., and (ii) System Application and Product (SAP
GUI for Windows, copyright SAP 1993–2010). Patients’
acute disease diagnosis codes were based on ICD-9-CM
(International Classification of Diseases, Ninth Revision,
Clinical Modification) up till 2015, and SNOMED-CT
(Systematized Nomenclature of Medicine - Clinical
Terms) after 2015. We classified these diagnoses into 10
categories (see RESULTS and Additional file 1: Table
S1). These acute diseases were not mutually exclusive,
and each patient may have one or more acute illnesses
during the index hospitalization.

Study outcomes
Primary outcome studied was hospital mortality. Sec-
ondary outcomes included: (i) RRT, which was obtained
from billing codes for various modalities ranging from
intermittent hemodialysis and continuous RRT, (ii) de-
terioration to subsequent ICU transfer, and (iii) duration
of hospitalization from time of AKI detection.

Statistical analysis
We described the incidences of hospital mortality and
RRT among these patients with AKI and made univariate
comparisons of the electronic clinical variables between

the deceased versus survivors, and RRT versus non-RRT
patients. Parametric variables and non-parametric vari-
ables were presented in mean (±standard deviation), and
median (interquartile range) and compared using t-test
and Wilcoxon rank-sum test, respectively. Categorical
variables were presented in frequency (percentage) and
compared using Chi-square or Fisher-exact test where
appropriate.
Multivariate logistic regression was used to assess fac-

tors associated with mortality and RRT from the list of
32 EHR variables with temporal restrictions on variable
inclusion (Fig. 3). We included all 32 variables for the
mortality prediction model, but only 23 variables for the
RRT prediction model, excluding all variables under
“acute diagnosis categories”, as these acute diagnoses
may have happened before or after initiation of RRT. A
two-sided p < 0.05 was taken as measure of statistical
significance. The model performance for mortality and
RRT prediction was assessed by the derived area under
receiver operating characteristics (AUROC) curve.
Finally, a decision tree analysis was performed. The trees
were built using a binary recursive partitioning algo-
rithm with rpart package in R. Decision tree model
accuracy was derived for performance assessment if a
binary tree could be constructed. Ten-fold
cross-validation was applied to logistic regression
models for out of sample AUROC, and the balanced ac-
curacy was reported for decision tree model. We also
performed multivariate analysis using the same 32 EHR
variables, to compare factors associated with mortality
between patients with mild AKI (peak KDIGO stage 1)
and patients with more severe AKI (peak KDIGO stages
2 and 3). All analyses were performed with R Statistical
Software version 3.3.1 (Vienna, Austria).

Fig. 1 Chart diagram depicting modified KDIGO criterion used for AKI detection. Relative AKI detected (red) when sCr increases to ≥1.5x that of
patient’s lowest baseline sCr in the past one year. Absolute AKI detected (green) with an increase in sCr of ≥26.5 μmol/L (0.3 mg/dL) within 48 h.
Delta sCr is the rise from in sCr from AKI detection till peak sCr. sCr = serum Creatinine
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Results
Patient profile
We collected data from 3841 unique patients whose sCr
trajectories triggered the diagnosis of AKI. Following
application of the exclusion criteria, there were 3333 pa-
tients diagnosed with AKI (Fig. 2). This occurred in an
estimated 77,873 unique patient admissions over the
study period involving patients of similar age profile,
giving an AKI rate of 4%. The patient profile is shown in
Table 1.

Outcomes
Hospital mortality occurred in 392 of 3333 patients (12%),
and 174 of 3333 patients (5%) received RRT. KDIGO sta-
ging on diagnosis of AKI were 1(74%), 2(15%), and
3(10%); corresponding peak AKI staging in hospital were
61, 20, and 19%. 418 patients (13%) had their AKI onset in
ICU, and a further 872 patients deteriorated and received
ICU care (see Additional file 2: Figure S1).
Patients who died (versus survived) were observed to be

older (70 versus 65 years old, p < 0.0001), with more comor-
bidities such as solid organ malignancy (27% versus 14%, p
< 0.001), cerebrovascular disease (17% versus 12%, p =
0.008), and liver cirrhosis (7% versus 4%, p = 0.01); more
had hospital-associated AKI (44% versus 38%, p = 0.02) and
were from medical (versus surgical) specialties (82% versus
62%, p < 0.001), and more had AKI onset in ICU (31% ver-
sus 10%, p < 0.001). More patients who died also suffered
from pneumonia (22% versus 8%, p < 0.001), acute cardiac

diseases (22% versus 17%, p = 0.02), hepatic decompensa-
tion (6% versus 2%, p < 0.001), and acute ischemic stroke
(6% versus 3%, p = 0.006) (see Table 1).
More patients who received RRT (versus none) were

males, and more had ischemic heart disease (IHD),
baseline eGFR < 60mL/min/1.73m2, and AKI onset in
ICU. More RRT patients also suffered from pneumonia
and acute cardiac diseases. On the other hand, fewer RRT
(versus no RRT) patients had solid organ malignancy (all
p < 0.05). Patients who received RRT had more than
double the median hospitalization duration from AKI on-
set, versus those with no RRT (p < 0.0001, see Table 1).

Multivariate analyses for mortality and RRT
The results of the multivariate logistic regression
models and distribution of odds ratio are shown in
Fig. 3. 15 of 32 clinical variables studied were inde-
pendently associated with hospital mortality (Fig. 3a).
Subgroup analysis was performed to identify which of
these 15 variables remained significant for mortality
prediction in patients with more severe AKI (KDIGO
peak stage 2 or 3), and not in patients with mild
AKI. They included admission under a medical spe-
cialty, higher baseline eGFR, higher serum potassium
level on AKI diagnosis, higher delta-sCr, presence of
intraabdominal infections, acute cardiac diseases, and
hepatic decompensation (all p < 0.05, see Additional
file 3).

Fig. 2 Flow diagram depicting patient recruitment numbers and exclusion criteria. ESKD = End Stage Kidney Disease, AVF = Arteriovenous fistula,
AVG = Arteriovenous graft, RRT = Renal Replacement Therapy
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Ten of 32 clinical variables were independently
associated with RRT (Fig. 3b). They included
hematological malignancy, IHD, onset of AKI in ICU,
prior RRT for AKI, and higher delta-sCr. Others include
surgical (versus medical) specialties, higher serum potas-
sium and sCr at AKI detection, and higher baseline eGFR
(all p < 0.05).

AUROC of prediction models for RRT and mortality
The logistic regression models included all 32 intended
clinical variables. For RRT prediction, the derived AUROC
of the logistic regression model was 0.94, and the average
AUROC after ten-fold out of sample cross validation was
0.93 (Fig. 4a).

The same set of variables was applied for mortality
prediction. The derived AUROC of the logistic regres-
sion model for mortality was 0.9. The average
AUROC after ten-fold out of sample cross validation
was 0.9 (Fig. 4b).
The decision tree model for RRT achieved a

balanced accuracy of 70.4%, with a positive predict-
ive value of 0.97 and negative predictive value of
0.78 (Fig. 5). The factors identified that favored de-
cision for RRT included delta-sCr ≥ 148 μmol/L,
younger age cut-offs, presence of IHD, baseline
eGFR ≤112 ml/min/1.73 m2, sCr and serum urea at
AKI onset < 90 μmol/L and ≥ 7.2 mmol/L respect-
ively, and different timings of AKI onset from
admission. The decision tree model was not able to

Fig. 4 a (AUROC for RRT), Fig. 4b (AUROC for Mortality). Derived Area Under Receiver Operating Characteristic (AUROC) Curve of prediction
models for progression to RRT (Fig. 4a) and mortality (Fig. 4b), using 32 clinical variables. For RRT prediction, the derived AUROC of the logistic
regression model is 0.94, and the average AUROC after 10-fold out of sample cross validation is 0.93. The derived AUROC of the logistic regression
model for mortality is 0.9, and after validation is also 0.9

Fig. 3 a (Predictors of Hospital Mortality), Fig. 3b (Predictors of RRT) Forest plot of multivariate logistic regression showing independent
predictors of hospital mortality (Fig. 3a) and RRT (Fig. 3b). 32 EHR variables studied for mortality, and 23 variables for RRT: Demographics [4]: Age,
Gender, Medical or Surgical specialties, ICU status on initial AKI diagnosis; Co-morbidities [9]: DM, Hypertension, IHD, PVD, CCF, Liver cirrhosis, Cerebrovascular
disease, Solid organ malignancy, Haematological malignancy; Kidney function indices [11]: Baseline eGFR, AKI onset days from admission, Hospital-associated
or community-acquired AKI, Biochemistry on AKI diagnosis including serum sodium, potassium, urea, creatinine levels, KDIGO stage 2 or 3
(vs 1) on AKI diagnosis, Delta-serum creatinine, Prior dialysis, Current need for RRT; Acute disease categories – Excluded in RRT prediction
model [8]: Pneumonia, Intraabdominal infection, MSK infection, UTI, Acute Cardiac Diseases, Hepatic decompensation, Acute ischaemic
stroke, Non-traumatic intra-cranial haemorrhage.
DM = Diabetes Mellitus, IHD = Ischaemic Heart Disease, PVD = Peripheral vascular disease, CCF = Congestive Cardiac Failure
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construct a binary tree with the 32 intended clinical
variables for mortality.

Discussion
In this prospective study involving 3333 hospitalized pa-
tients with AKI, we found a hospital mortality rate of
12% and RRT incidence of 5% following AKI. There
were a significant number of EHR clinical variables that
were associated with mortality in patients with all stages
of AKI (KDIGO stages 1–3); Mortality predictors that
were more specific for patients with more severe AKI,
included admission under a medical specialty, higher
baseline eGFR, higher serum potassium level on AKI
diagnosis, higher delta-sCr, and acute diseases including
intraabdominal infections, acute cardiac diseases, and
hepatic decompensation. In addition, a number of EHR
predictors including biochemical measures and sCr tra-
jectory following AKI predicted RRT. The regression
model for RRT prediction performed with an AUROC of
more than 0.9. The key factors influencing RRT decision
were delta sCr, age, IHD, baseline kidney function, and
serum urea and creatinine levels at AKI detection. The

model for mortality prediction also performed well with
an AUROC of 0.9.
The ease of EHR-AKI detection allowed us to rapidly

consolidate a hospital-wide database and build analytic
models with more than 100,000 data points; as com-
pared with prior AKI outcome prediction in the context
of critical care involving simplified variable-list for ease
of application [15]. The majority of our EHR data were
indexed at AKI detection, with 74% of patients diag-
nosed at stage 1 AKI. This permits a lead-time for early
intervention, as compared with other large prospective
studies that predicted adverse outcomes in patients
already receiving RRT at baseline [16, 17]. Many prior
models were developed to predict AKI outcomes after
cardiac surgery, [18, 19] but these may not be applicable
to a wider hospital cohort. On the other hand, our pre-
diction models were developed in hospital-wide patients.
The models using EHR could be revised regularly with
variable expansion to maintain currency, as validity of
older clinical models are time-limited by the
ever-changing healthcare profile [20]. The EHR predic-
tion model is readily reproducible for customization in
other healthcare systems, which is an important

Delta-sCr
mol/L

No RRT

years
3098/3194

No RRT
9/10

Absence of 
IHD

RRT
23/28

Baseline 

No RRT
7/7

sCr
µmol/L  

RRT
7/8

mmol/L

No RRT
11/11

Onset days from 
Admission <1.1

RRT
15/19

Onset days from 

No RRT
14/19

RRT
6/9

yes

yes

yes

yes

yes

yes

yes

yes

no

no

no

no

no

no

no

no

years

RRT
21/28

yes no

Fig. 5 (Decision Tree Model for RRT). This can be used as a triage tool with probability of RRT calculated at each branch based on key risk factors.
For example, individuals with delta-sCr > 148 μmol/L, younger than 82 years, and had IHD, 23 out of 28 of them required RRT. The factors
identified that favoured decision for RRT included delta-sCr≥ 148 μmol/L, younger age cut-offs, presence of IHD, baseline eGFR < 112ml/min/
1.73 m2, sCr and serum urea at AKI onset < 90 μmol/L and≥ 7.2 mmol/L respectively, and different timings of AKI onset days from admission.
Balanced accuracy of the model is 70.4%. Positive Predictive Value of 0.97, Negative Predictive Value of 0.78. RRT = Renal Replacement Therapy,
IHD = Ischemic Heart Disease
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advantage over manual databases, as clinical models are
unique for different institutions or regions with corre-
sponding unique case-mix, which restricts the external
validity of existing risk-stratification scores [21].
Our excellent RRT prediction model was contrib-

uted by deliberate inclusion of electronic clinical vari-
ables of prognostic interest. The key variables
highlighted in the decision-tree analysis, especially
delta sCr, suggest that an element of AKI trajectory is
necessary in RRT prediction. This reflects the thought
process of clinicians as we are guided by biochemical
trends in addition to the patient’s clinical status when
deciding on RRT. Other AKI trajectory elements ex-
plored in similar clinical models include blood urea
nitrogen and sCr slope over 24 h, and sCr change
from day before, with reported RRT prediction AUR-
OCs of more than 0.8 [22, 23]. Current protein AKI
biomarkers; ranging from urinary or plasma neutro-
phil gelatinase-associated lipocalin, urinary IL-18, to
tissue inhibitor of metalloproteinases-2* insulin-like
growth factor-binding protein 7, were reported in
critical care or cardiac surgery settings to predict
RRT or death, with AUROC of 0.6–0.85. [24–27].
Our superior clinical model for RRT prediction sug-
gests that the composite of relevant clinical variables
is equally important for model inclusion, in addition
to biochemistry [22, 23].
The model performance for mortality also performed

well. Key mortality predictors included common acute
illnesses such as infections and cardiac diseases, as the
precipitating causes of AKI are often the main determin-
ant of mortality [28, 29]. The high mortality rate in can-
cer patients with AKI is well recognized and deserves
intensified research for better diagnostics and preventive
strategies to improve understanding of their mechanisms
and outcomes [30, 31].

Clinical significance and limitations
An early bundle care to aid clinical management upon
electronic AKI detection was associated with reduced
patient mortality and progression of AKI [32]. This bun-
dle included interventions such as volume management,
early control of sepsis, and cessation of nephrotoxins.
An alert system that provides no risk stratification how-
ever, and flags up thousands of AKI patients per year,
might be impractical, counter-productive and unable to
influence ground practice or improve outcomes [33].
Our strong predictive models for RRT and mortality
could potentially be used to develop or enhance an
otherwise generic EHR-AKI alert, for clinicians to identify
the highest-risk AKI patients, and this could allow more
targeted and individualized interventions or prompt early
nephrology consult. The greater adverse event rate of
high-risk patients, also imply more feasible effect size for

intervention trials, such as early versus conventional timing
for RRT initiation. However, it is important to remember
that prediction models simply provide the probability of
outcomes and should be used as an adjunct to clinical
decision making, and not to replace the latter. For instance,
in our decision tree analysis for RRT (Fig. 5), patients aged
> 82 years had lower probability of receiving RRT. This re-
flects the prevailing practice pattern but does not infer the
lack of indication or benefit of RRT. Finally, we previously
reported an aminoglycoside-associated AKI rate of 17% in
the elderly, [34] and this was much higher than the current
4% all-cause AKI incidence in our institution. This
emphasizes the need for intensified efforts to prevent
drug-induced AKI.
Our study was single-centre in nature and consisted

almost entirely of patients of Asian ethnicity. We only
included unique patient AKI episodes to avoid
over-representation by repeated covariates and events in
a same patient but would have under-reported actual
AKI event-rate. We did not have a non-AKI population
for comparison, however our study was aimed at identi-
fying mortality predictors in the AKI cohort. To over-
come this limitation, we have done sub-cohort analysis
for mortality predictors in mild versus severe AKI. We
did not include urinary output criteria as that was not
feasible using EHR outside of the critical care setting,
but oliguria would have otherwise been an important co-
variate to aid RRT prediction. Our AKI trajectory elem-
ent utilized in the prediction models was delta-sCr, and
that is arguably not a definite early risk marker. Substi-
tution of delta-sCr using an appropriate urinary bio-
marker tested at AKI onset could bridge this shortfall in
effective outcome prediction and improve risk classifica-
tion. [35, 36]. Another limitation of our study is the lack
of data on need for outpatient chronic RRT following
AKI during the hospitalization, which is an important
patient outcome. Lastly, our RRT decision tree model
was based on an in-vivo population and there was an
imbalance between the binary outcomes with only 5%
incidence of RRT. In order to overcome this limitation,
we reported the “balanced accuracy” instead of the
“overall accuracy” of the decision tree model, as an over-
all accuracy would lead to an optimistic estimate when
tested on an imbalanced dataset, and reporting the “bal-
anced accuracy” will reduce this bias [37].

Conclusion
Our study presents an overview of in-hospital AKI
epidemiology and highlights important clinical variables
associated with RRT and mortality following AKI, which
are routinely available in current electronic medical re-
cords. By utilizing EHR, AKI epidemiology and adverse
outcomes can now be tracked regularly, with the poten-
tial for its use as a quality measure of inpatient
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management and care process. The EHR clinical models
that we have developed for prediction of adverse out-
comes are highly accurate, especially that for RRT pre-
diction. These clinical tools are easily reproducible for
real-time deployment, and may allow clinicians the abil-
ity to predict and focus on the highest-risk AKI
sub-cohort for earlier, targeted intervention.

Additional files

Additional file 1: Table S1. Table on acute disease categorisation. Patients’
acute disease diagnosis codes were based on ICD-9-CM (International Classifi-
cation of Diseases, Ninth Revision, Clinical Modification) up till 2015, and
SNOMED-CT (Systematized Nomenclature of Medicine - Clinical Terms) after
2015. We classified these diagnoses into 8 categories as shown in the table.
These acute diseases were not mutually exclusive, and each patient may have
one or more acute illnesses during the index hospitalization. (XLSX 11 kb)

Additional file 2: Figure S1. Figure on secondary outcomes. AKI stages
based on modified KDIGO criteria at time of EHR-AKI detection, and peak
AKI severity in stages. Proportion of patients admitted to Intensive Care
Unit (ICU) on detection of AKI, and those who subsequently received ICU
care, are shown. All figures are in percentages. (PPTX 45 kb)

Additional file 3: Multivariate analysis of mortality prediction in mild AKI
and more severe AKI sub cohorts. Mortality predictors compared
between patients with mild (peak KDGIO stage 1) AKI versus more severe
(peak KDIGO stage 2 or 3) AKI described. (XLSX 12 kb)
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