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Abstract

Background: Monogenic mutations may be a significant cause of steroid-resistant nephrotic syndrome. NUP93 is a
gene previously reported to cause isolated steroid-resistant nephrotic syndrome.

Case presentation: Here we describe a case of recessive, syndromic, steroid-resistant nephrotic syndrome caused
by NUP93 mutation.

Conclusions: NUP93 may convey a phenotype that has not only SRNS, but also other syndromic features.

Keywords: Steroid-resistant nephrotic syndrome, Focal segmental glomerulosclerosis, Whole exome sequencing,
Genetics, Inherited diseases

Background
Steroid therapy is a mainstay of treatment for nephrotic
syndrome. However, in 15–20%, there is no response to
steroid therapy [1], increasing the risk of developing
end-stage renal disease (ESRD) and requiring renal re-
placement therapies during the first two decades of life
[2]. In 11–30% of steroid-resistant nephrotic syndrome
(SRNS), a known gene mutation can be detected [3].
NUP93 is a widely expressed gene that encodes a highly
conserved nuclear pore protein. Knockdown of NUP93
leads to inhibition of podocytes proliferation by impair-
ing SMAD signaling resulting in focal segmental glomer-
ulosclerosis (FSGS). Mutations of NUP93 have been
shown to cause non-syndromic autosomal recessive
FSGS, that can progress to ESRD within ten years [4, 5].
Here we describe a case of novel NUP93 mutations in a
child with a syndromic SRNS phenotype.

Case presentation
A 5-year-old nonconsanguineous girl of African American
and Hispanic origin presented with nephrotic syndrome, in-
cluding nephrotic-range proteinuria (UPC of > 29mg/mg),
edema, and hypoalbuminemia. Her initial serum cre-
atinine was 654 μmol/L. Other pertinent laboratory
evaluation at time of presentation included albumin
of 19 g/L, BUN of 38mmol/L, potassium of 6mmol/L, bi-
carbonate of 12mmol/L, calcium of 1.7 mmol/L, phos-
phorus of 2.5 mmol/L, and parathyroid hormone of 396
ng/L. She was oligoanuric and hemodialysis was initiated.
An ultrasound of her kidneys showed diffuse echogenicity
and loss of corticomedullary differentiation (Fig. 1). Her
history was significant for developmental delay and short
stature. Her proteinuria presented in the setting of a
previous respiratory illness but was not investigated.
She has a normal-looking face and without dys-
morphic features which was confirmed by the hospi-
tal’s geneticist. An ophthalmological examination did
not show cataract or retinal changes. She has normal
looking ears and exhibited normal hearing. She was
normocephalic and did not have an exam consistent
with GAMOS and no uro-genital anomalies were
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identified. She had normal birth history, and her fam-
ily history was not significant for renal, cardiac or
neurological development problems.
In addition to her kidney involvement, she had develop-

mental delays with autistic features; including delays in ex-
pressive language, fine motor, social communication and
repetitive hand movements. She had expressive, receptive,
and pragmatic language difficulties with a low score in the
auditory comprehension subtest of the Preschool Language
Scales. Additionally, while awaiting renal transplant, she had
two episodes of heart failure requiring inotropic support after

having adequate dialysis for more than a month. She had se-
verely elevated B-type natriuretic peptide (BNP) levels (> 70,
000 pg/mL) and her echocardiogram showed systolic and
diastolic dysfunction (ejection fraction as low as 35%) and di-
lated cardiomyopathy features (Fig. 2). After receiving ag-
gressive nutritional support and blood pressure
management, her cardiac function improved with ejection
fractions range in 40–50%. She received a living related
kidney transplant without recurrence of cardiac symp-
toms, and normal cardiac structures on echocardiograms
with ejection fractions > 60%. Given that we know NUP93

Fig. 1 Renal ultrasound at presentation. The patient’s kidneys were notable for small size, diffuse echogenicity and loss of corticomedullary
differentiation. Average kidney size for 5-year-old children is 8 cm, however she was small for age, and for a 90 cm tall child the average kidney
size is 7.1 cm with 95% prediction limits of 5.8 to 8.3 cm. The ultrasound was performed at the time she was anuric, hence the renal pelvis
appears to be collapsed

Fig. 2 Patient echocardiogram. An apical, left two-chamber view shows moderately dilated left ventricle, mild concentric left ventricular
hypertrophy and severely reduced systolic function. Left ventricular end diastolic diameter Z score 5.59 by M-mode and end-diastolic volume by
5/6 area length method is Z score 4.98. left ventricular dp/dt of 1398. There is also a LV diastolic dysfunction with fusion of E and A waves of
inflow doppler pattern. There is moderate to severe mitral valve regurgitation and mild to moderate tricuspid regurgitation. The aortic and
pulmonary valves are trivially regurgitant. There is no pericardial effusion
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Fig. 3 Genotype and conservation of proband’s mutations in NUP93: a. Table with Hg19 position, c, change; ExAC, Exome Aggregation
Consortium; gnomAD, Genome Aggregation Database; p. change, exon number, mean allele frequency, pathogenicity prediction scores, and
segregation for the two mutant alleles in our proband. b. Sanger tracing for proband, mother and father for each allele. c. Conservation through
phylogeny for the two mutated alleles of NUP93
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does localize to cilia in Xenopus during cardiac develop-
ment, we cannot exclude there may have been a contribu-
tion of the patient’s mutations to this phenotype. After her
kidney transplant, she did not have recurrence of her
nephrotic syndrome, but had a brief period of proteinuria
(maximum UPC of 3.6) that was monitored closely and
resolved within one week.
Given her presentation of likely hereditary nephrotic syn-

drome, we sent clinical whole exome sequencing (WES).
WES demonstrated a compound heterozygous mutations
in NUP93; a maternal missense variant (chr16:56855426
A >G) c.A575G, p. Tyr192Cys and a paternal nonsense
variant (chr16:56868107 C >G) c.C1605G, p. Tyr535Ter
(Fig. 3). Both variants are extremely rare, only 6 alleles of
p.Tyr192Cys and 1 allele of p.Tyr535Ter have been re-
ported previously in a large population database (gnomAD)
with over 246,000 chromosomes, with a higher fre-
quency of p.Tyr535Ter in African population (1 in
16,256). These allele frequencies are < 0.1%, which we
have previously used as a cut off for filtering poten-
tially pathogenic alleles [6]. The locations of the two
variants are in the α helical domain of the NUP93
protein, as are some of the previously reported patho-
genic mutations in Braun, et al. [5]. The tyrosine at
position 192 is conserved through phylogeny, and the
missense variant Tyr192Cys had high impact predic-
tion scores for deleteriousness by CADD or SIFT.
The nonsense variant p. Tyr535Ter likely results in
defective protein structure either through truncation
or nonsense-mediated mRNA decay. Additional ana-
lysis of her WES did not identify mutations related to
cardiomyopathy.

Discussion and conclusions
We identified novel compound heterozygous muta-
tions of NUP93 gene using WES in a patient with
nephrotic syndrome progressing to ESRD in the first
decade of life. Fourteen patients were reported to
have NUP93 mutations associated with SRNS [4–6].
Nup93 variants were first reported in 9 families with
isolated SRNS [5]. Rapid progression into ESRD was
also observed in a subsequent case series of genetic
SRNS due to NUP93 mutations [3, 4, 6].
As part of the nuclear pore complex, NUP93 protein

functions in transport between the cytoplasm and nu-
cleus and was shown to have a significant role in the
SMAD signaling pathway in Drosophila [7]. Braun et al.
studied the role of NUP93 in immortalized human
podocytes, and demonstrated a critical role for NUP93
in bone morphogenetic protein 7 (BMP7)-dependent
SMAD signaling, a novel pathway for SRNS [5]. This
interaction supports the role of BMP7 in renal response
to injuries and development of chronic kidney changes.
The defect of SMAD signaling was shown in all NUP93

knock out cells and resulted in reduced podocyte prolif-
eration. In addition, Nup93 is essential for cilia and car-
diac development in Xenopus and may play a role at the
cilium base that is independent of its role in the nuclear
pore [8]. Loss of cilia can cause a cardiomyopathy in
mice suggesting a potential pathogenic mechanism for
the cardiomyopathy in our patient [9]. Another nucleo-
porin mutation, NUP107, was reported in one child with
dilated cardiomyopathy indicating the potential role of
ciliopathies in cardiac dysfunction [10]. Interestingly,
despite the ubiquitous role of nuclear pore proteins, var-
iants of Nup93 appear to give tissue specific phenotypes.
This case demonstrates a novel phenotype of extra-

renal manifestations that were not previously de-
scribed in individuals with NUP93 mutation. Unlike
prior reported cases of NUP93 mutations, our patient
had neurological and cardiac involvement including
significant developmental delay and cardiomyopathy.
Our patient’s genetic testing was negative for genes that

cause Galloway-Mowat syndrome (GAMOS) though the
constellation of glomerulopathy, central nervous system
involvement might suggest this syndrome which was re-
ported in other nucleoporin mutations [10–12].
When compared to idiopathic SRNS, genetic causes of

SRNS usually do not recur after transplant hence these
patients do not require higher immunosuppression as in
idiopathic forms of SRNS [3, 6]. In a case series of four
patients of Czech and Slovak patients with SRNS, one
patient had recurrence of nephrotic syndrome 20
months after transplantation [4].
We describe novel mutations in the NUP93 gene

resulting in a syndromic phenotype with neurologic and
cardiac features. It remains unclear if the NUP93 variant
contributed to her cardiomyopathy, as this gene has also
been described as localizing to cilia as well as the
nucleoporin. WES is the ideal test for patients with
SRNS as a conclusive molecular diagnosis does influence
therapeutic choices.
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