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SLC5A2 mutations, including two novel
mutations, responsible for renal glucosuria
in Chinese families
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Abstract

Background: Familial renal glucosuria (FRG) is characterized by persistent glucosuria without other impairments of
tubular function in the presence of normal serum glucose. SGLT2, which is almost exclusively expressed in the
kidney, accounts for most of the glucose reabsorption. Recently, some studies have confirmed that SLC5A2
mutations are responsible for the pathogenesis of familial renal glucosuria, but FRG cases are still rare. Furthermore,
there are a few reports about splice-site mutations in previous studies, but the effect of these variants at the mRNA
level has hardly been verified.

Methods: Ten patients were recruited in our renal division because of persistent glucosuria, and clinical data of the
patients and their family members were recorded as much as possible. The entire coding region and adjacent
intronic segments of SLC5A2 were sequenced in FRG patients and their relatives. Permanent growing
lymphoblastoid cell lines from FRG patients were established to better preserve genetic information.

Results: A total of nine different mutations were identified: IVS1-16C > A, c.305C > T/p.(A102V), c.395G > A/p.(R132H),
c.736C > T/p.(P246S), c.886(−10_-31)delGCAAGCGGGCAGCTGAACGCCC, c.1152_1163delGGTCATGCTGGC/p.(Val385_
Ala388del), c.1222G > T/p.(D408Y), c.1496G > A/p.(R499H) and c.1540C > T/p.(P514S); two novel mutations in SLC5A2,
c.1222G > T/p.(D408Y) and c.1496G > A/p.(R499H), were identified in the Chinese FRG pedigrees. Ten individuals
with heterozygous or compound heterozygous variants had glucosuria in the range of 3.1 to 37.6 g/d.

Conclusion: We screened ten additional Chinese FRG pedigrees for mutations in the SLC5A2 gene and found nine
mutations, including two novel mutations. Most variants were private, but IVS1-16C > A and c.886(−10_-31) del may
be high frequency splice-site mutations that could be preferentially screened when variants cannot be found in the
SLC5A2 exon. Furthermore, we successfully established a permanent growing lymphoblastoid cell line from patients
with FRG, which could facilitate further studies of the SLC5A2 gene. The current study provides a valuable clue for
further research on the molecular mechanism of SGLT2.
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Background
Familial renal glycosuria (FRG) is characterized by per-
sistent glycosuria with normal blood sugar concentra-
tions and without any other impairment of tubular
function [1]. The main reabsorptive mechanism for D-
glucose in the kidney involves a lower affinity, high cap-
acity Na(+)/glucose cotransporter 2 (SGLT2), which is
located in the S1 segment of the early proximal convo-
luted tubule, and a Na(+) and glucose coupling ratio of
1:1 [2]. The SLC5A2 gene was mapped to 16p11.2 [3].
Recently, some published studies have confirmed that
SLC5A2 mutations are responsible for FRG patients [4–
16]. In some of these studies, FRG was considered an
autosomal recessive disorder [7–11]. In others, it was
considered a codominant trait with variable penetrance
[5, 6]. In our previous studies, the inheritance of renal
glucosuria was best described as codominant with a vari-
able penetrance in relation to the compensatory capacity
of wild-type [12, 14, 15]. In long-term follow-up studies,
the outcome of FRG patients is very good [5, 17]. SGLT2
inhibitors are designed to improve the condition of dia-
betes without increasing the risk of weight gain or
hypoglycemia. SGLT2 has been the subject of particular
attention in the search for potential new drugs for the
treatment of diabetes [18]. Here, we describe ten pa-
tients with glucosuria of variable severity and nine
SLC5A2 mutations. Furthermore, in previous reports,
the effect of splice-site variants was rarely verified. We
established a permanent growing lymphoblastoid cell
line to verify the effect of splice-site variants from previ-
ous studies [12].

Methods
Patients with FRG were diagnosed by persistent glyco-
suria in the presence of a normal serum glucose concen-
tration and no other impairments of tubular function or
any other type of renal disease. Ten unrelated FRG pa-
tients and their families were investigated as much as
possible. The age, sex, serum creatinine, urine protein
excretion, glucosuria excretion and other clinical mani-
festations in all patients were recorded. Fifty-five healthy
Chinese individuals were included as controls in our
study.
Genomic DNA was extracted by a salting out proced-

ure from peripheral white blood cells from whole blood
samples [19]. The products of polymerase chain reaction
(PCR) were sequenced, and the genomic DNA reference
sequence of SLC5A2 (NG_012892.1, Gene ID: 6524) and
protein reference sequence of SGLT2 (NP_003032.1)
were acquired from the Entrez gene and protein data-
bases, respectively. In the analysis of variants, the entire
coding region and adjacent intronic segments of SLC5A2
were sequenced in family members as much as possible,
and the variants were confirmed by bidirectional

sequencing. The set of primers used was previously re-
ported [11]. We established a permanent growing lym-
phoblastoid cell line from patients with FRG as
previously reported [12, 20].
A total of 110 control chromosomes were tested by se-

quencing or polymerase chain reaction-restriction frag-
ment length polymorphism (PCR–RFLP) to rule out
common polymorphisms. Furthermore, three databases,
including the Exome Aggregation Consortium (ExAC,
http://exac.broadinstitute.org/), GnomAD v3 and Gno-
mAD v2.1.1 (http://gnomad.broadinstitute.org), were
used to further eliminate polymorphisms.
Amino acid substitutions were evaluated using the in

silico prediction programs SIFT and PolyPhen-2. In
addition, a comparative analysis of multiple amino acid
sequences of SGLT2 was performed in different species
by multiple sequence alignments of DNAMAN Version
6. The aligned reference sequences of Homo sapiens
(NP_003032.1), Pan troglodytes (XP_009428973.2),
Macaca mulatta (XP_001113206.3), Bos taurus (NP_
976236.1), Rattus norvegicus (NP_072112.2), Mus mus-
culus (NP_573517.1), Danio rerio (NP_998091.1) and
Xenopus tropicalis (XP_002940641.2) were used to
evaluate the evolutionary conservation.

Results
All ten patients met the diagnostic criteria of FRG. These pa-
tients and their families did not have any other tubular dys-
functions or any other type of renal disease. A total of nine
different mutations were identified: IVS1-16C>A, c.305C >
T/p.(A102V), c.395G>A/p.(R132H), c.736C >T/p.(P246S),
c.886(−10_-31) delGCAAGCGGGCAGCTGAACGCCC,
c.1152_1163delGGTCATGCTGGC/p.(Val385_Ala388del),
c.1222G>T/p.(D408Y), c.1496G>A/p.(R499H) and
c.1540C>T/p.(P514S); two novel mutations in SLC5A2,
c.1222G>T/p.(D408Y) and c.1496G>A/p.(R499H), were
identified in the Chinese FRG pedigrees (Fig. 1). By PCR–
RFLP testing or sequencing, these variants were not found in
one hundred and ten chromosomes derived from the fifty-
five healthy unrelated individuals (Table 1). Because allele
frequencies for the observed variants in the Chinese popula-
tion are still unknown, extremely low allele frequencies of
these variants were alternatively obtained in East Asian pa-
tients from the ExAC and gnomAD databases (Table 2).
The identified missense variants are highly conserved

in SGLT2 homologs in multiple species (Fig. 2). By
PolyPhen-2 [21], all of these missense variants were pre-
dicted to be “probably damaging” (Fig. 1, Table 3).
Consistent with PolyPhen-2, five missense variants,
c.305C > T/p.(A102V), c.395G > A/p.(R132H), c.1222G >
T/p.(D408Y), c.1496G > A/p.(R499H) and c.1540C > T/
p.(P514S), were predicted by SIFT to “affect protein
function”, but the c.736C > T/p.(P246S) variant was
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Fig. 1 (See legend on next page.)
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predicted to be “tolerated” by SIFT, which was different
from the PolyPhen-2 prediction (Table 3).
Glucosuria ranged from 3.1 to 37.6 g/d in ten patients

with SLC5A2 heterozygous or compound heterozygous
variants. Some of the family members with heterozygous
variants had increased glucose excretion (Table 1). In
these families, inheritance of FRG shows characteristics
of a codominant trait with variable penetrance. Most
variants were private, but the IVS1-16C > A and
c.886(−10_-31) del variants were reported in several un-
related pedigrees from different ethnic origins in our
and previous studies [12–16, 22, 23].

Discussion
Glucose, mainly from carbohydrates, is the fuel that pro-
vides energy for human activities. The kidneys reabsorb
nearly 180 g of glucose filtered daily to keep blood glu-
cose in the normal range. In previous studies, familial
renal glycosuria was characterized by persistent glyco-
suria, and the SGLT2 protein was found to be mainly re-
sponsible for the reabsorption of urinary glucose in renal
tubules [1, 24, 25]. Therefore, it was speculated that
SLC5A2 gene mutations lead to familial renal glycosuria.
The first report of an SLC5A2 mutation in FRG was pre-
sented in 2000 [26]. Recently, a series of studies have
confirmed that SLC5A2 mutations are indeed respon-
sible for FRG [4–16, 22, 23]. In our previous and current
studies, fourteen novel variants in SLC5A2 were identi-
fied in twenty-two Chinese renal glucosuria families and
confirm previous observations that most variants were
private mutations. With an increasing number of FRG
patients being found, some variants, such as 294C > A,
IVS1-16C > A, c.886(−10_-31) del, and c.1540G > T, did
not occur rarely in our and previous studies [12–16, 22,
23]. However, these variants are difficult to regard as
hotspot mutations because they were found in SLC5A2
with a relatively dispersed distribution. Whereas the
IVS1-16C > A and c.886(−10_-31) del variants are re-
ported in several unrelated pedigrees of different ethnic
origins, these two splice-site variants might be preferen-
tially screened in FRG patients when the other variants
cannot be found in the SLC5A2 exon. Furthermore, spe-
cific novel primers should be developed to check for the
presence of the observed splice site variants in genomic
DNA in future studies.
In the current study, a total of nine different mutations

in SLC5A2 were identified in the Chinese FRG pedigrees.

None of these variants were found in one hundred and
ten chromosomes from healthy unrelated individuals. In
addition, the allele frequencies for these variants were
extremely low in East Asian populations. For the identi-
fied missense variants, five variants, c.305C > T/
p.(A102V), c.395G > A/p.(R132H), c.1222G > T/
p.(D408Y), c.1496G > A/p.(R499H) and c.1540C > T/
p.(P514S), were highly conserved in SGLT2 homologs in
multiple species and were predicted to be “probably
damaging” or to “affect protein function” by PolyPhen-2
and SIFT. Only the variant of c.736C > T/p. (P246S) was
an exception, and was predicted by SIFT to be “toler-
ated”, but this variant was reported in previous studies
[12, 27] and was confirmed by having a significantly
lower glucose transport capacity in cultured cells [12].
Therefore, based on the extremely low allele frequencies
of these mutations, highly conservative predictions from
biological software and previous studies, it can be safety
speculated that these variants are not common polymor-
phisms and are pathogenic mutations.
In previous studies, many heterozygous individuals

presented with mild glucosuria (< 10 g/d), while homozy-
gous or compound heterozygous patients usually present
with severe renal glucosuria over 10 g/d [4, 5]. The het-
erozygosity of SLC5A2 mutations, no matter what kind
of mutation (such as nonsense, splice-site, and missense
mutations), can lead to mild glucosuria. Consistent with
previous research, six individuals were heterozygous for
SLC5A2 variants resulting in mild glucosuria (< 10 g/d),
and one compound heterozygous patient from Family II
had severe renal glucosuria (37.6 g/d) in the current
study. It is very interesting that three heterozygous pa-
tients from Families II, V, and X resulted in severe renal
glucosuria (> 10 g/d), and further studies are needed to
uncover the related regulatory mechanism.
In the current study, an autosomal codominant trait

with variable penetrance inheritance was found in FRG
families. In our previous studies, we found that the in-
heritance of renal glucosuria should be described as co-
dominant with a variable penetrance in relation to the
compensatory capacity of wild-type [14, 15]. Different
modes of penetrance inheritance may be decided by dif-
ferent sites or other special regulatory mechanisms.
Thus, reporting mutations is crucial not only for unrav-
eling critical residues in the protein but also for obtain-
ing useful information to identify potential new targets
for the treatment of diabetes.

(See figure on previous page.)
Fig. 1 Ten familial renal glucosuria pedigrees carry SLC5A2 variants. A total of nine different mutations were identified: IVS1-16C > A, c.305C > T/
p.(A102V), c.395G > A/p.(R132H), c.736C > T/p.(P246S), c.886(−10_-31)delGCAAGCGGGCAGCTGAACGCCC, c.1152_1163delGGTCATGCTGGC/
p.(Val385_Ala388del), c.1222G > T/p.(D408Y), c.1496G > A/p.(R499H) and c.1540C > T/p.(P514S); two novel mutations in SLC5A2, c.1222G > T/
p.(D408Y) and c.1496G > A/p.(R499H), were identified in the Chinese FRG pedigrees. Ten individuals were heterozygous or compound
heterozygous for an SGLT2 mutation, resulting in glucosuria. The missense variants were predicted to be possibly damaging by PolyPhen-2
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Table 1 Mutations and glucose excretion in the patients and their relatives
Family members (agea) Glucose excretionb Allele 1 Allele 2 Confirmationc

Family I

I:1 (62) 9.6 g/24 h IVS1-16C > A WT AciI,Sequencing

I:2 (60) – WT WT AciI,Sequencing

II:1 (36) – IVS1-16C > A WT AciI,Sequencing

II:2(34) – IVS1-16C > A WT AciI,Sequencing

Family II

I:1 (42) – c.305C > T/p.(A102V) WT HaeII

I:2 (39) – WT WT HaeII

II:1 (20) 19.6 g/24 h c.305C > T/p.(A102V) WT HaeII

Family III

I:1 (50) 1+ c.395G > A/p.(R132H) WT HaeII

I:2 (48) – WT WT HaeII

II:1 (23) 7.9 g/24 h c.395G > A/p.(R132H) WT HaeII

Family IV

II:4 (47) 37.6 g/24 h c.736C > T/p. (P246S) c.1496G > A/p.(R499H) BamH I
StyI, Sequencing

Family V

I:1 (63) – c.886(−10_-31)del WT 10% 29:1 PAGE Gel

I:2 (61) – WT WT 10% 29:1 PAGE Gel

II:1 (39) 18.7 g/24 h c.886(−10_-31)del WT 10% 29:1 PAGE Gel

II:2 (38) – WT WT 10% 29:1 PAGE Gel

III:1 (12) – c.886(−10_-31)del WT 10% 29:1 PAGE Gel

Family VI

I:1 (31) 8.3 g/24 h c.886(−10_-31)del WT 10% 29:1 PAGE Gel

Family VII

I:1 (66) 2+ c.1152–63 del/
p.(Val385_Ala388del)

WT Sequencing

I:2 (64) – WT WT Sequencing

II:1 (40) 1+ c.1152–63 del/
p.(Val385_Ala388del)

WT Sequencing

II:2 (38) – WT WT Sequencing

II:3 (36) – WT WT Sequencing

II:4 (32) 3.1 g/24 h c.1152–63 del/
p.(Val385_Ala388del)

WT Sequencing

Family VIII

I:1 (47) 3.6 g/24 h c.1222G > T/p.(D408Y) WT Sty I,Sequencing

I:2 (45) – WT WT Sty I,Sequencing

II:1 (22) 1+ c.1222G > T/p.(D408Y) WT Sty I,Sequencing

Family IX

I:1 (61) – WT WT Sequencing

I:2 (61) 2+ c.1540 C > T/P.(P514S) WT Sequencing

II:1 (37) 7.1 g/24 h c.1540 C > T/P.(P514S) WT Sequencing

Family X

I:1 (50) 11.8 g/24 h c.1540 C > T/p.(P514S) WT Sequencing
aIn years, at time of evaluation
bQuantitative (g/24 h) or qualitative test for glucose in urine. The code “-” means not present in qualitative test
cLoss of a restriction site for the indicated enzyme in the presence of the mutation. The identified mutations were not detected in110 chromosomes
derived from 55 healthy, unrelated individuals, indicating that these mutations do not represent common polymorphisms
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Renal biopsy is not obligatory for FRG patients; there-
fore, SLC5A2 cDNA from the kidney is almost impos-
sible to obtain. Although there are a few reports about
splice-site variants [4, 5, 22, 23], the effect of splice-site
variants is very difficult to verify in cDNA. We searched
through NCBI GEO profiles and found that the SGLT2
protein can be expressed in peripheral white blood cells
and lymphocytes. However, due to the limited expres-
sion and lifespan of these cells, new blood sampling is
necessary via repeatedly drawing blood for reexamina-
tion. This might be difficult or even impossible if pa-
tients were not available for different reasons. In 1986,
a routine method for the establishment of permanent
growing lymphoblastoid cell lines was reported [20]. In
a previous report, the Epstein–Barr virus genome not
only persists as a plasmid with 5–800 copies per cell in
most cell lines but also integrates into the host DNA
and has been described for a few cell lines [18]. How-
ever, there have been no reports on establishing lym-
phoblastoid cell lines from FRG families in previous
studies. We successfully established a permanent grow-
ing lymphoblastoid cell line from patients with FRG
and successfully verified the effects of splice-site muta-
tions at the cDNA level [12]. Although the integration
into the host DNA may affect genetic information, the
integration of the Epstein–Barr virus in lymphoblastoid
cell lines is nonrandom [28]. The viral integration sites

included 1p, 1q, 2q, 3p, 3q, 4q, 5q, 6q, 7p, 7q, 9q, 11p,
14q and 15q. No viral integration occurred in chromo-
somes 16–22 or the sex chromosomes [28–30]. Because
the SLC5A2 gene was mapped to 16p11.2 and there
were no Epstein–Barr virus gene sequences in the
cDNA sequencing results, we confirmed that a perman-
ent growing lymphoblastoid cell line from FRG patients
was successfully established. In the current study, we
found two splice site variants: IVS1-16C > A and
c.1152-63del. However, the effect of these two splice-
site variants has been verified in previous studies [13,
22]. Therefore, we did not retest the effect of splice-site
variants in cDNA in the current study. However, we
still believe that the method for establishing permanent
growing lymphoblastoid cell lines in patients with FRG
is useful to maintain genetic information about SLC5A2
and more easily verify the effect of splice-site variants
in cDNA.
In previous studies, the variant frequency of

c.886(−10_-31) del in the Chinese population was as
high as 32% [22, 23]. Therefore, we rescreened the ob-
served splice site variants in every patient from the
twenty-two Chinese renal glucosuria families that were
found in our previous and current studies. Finally, ex-
cept for splice site mutations that were previously found,
no additional splice site variants were discovered in
these renal glucosuria families.

Table 2 Allele frequencies for the variants in the East Asia population

Allele ExAc
Allele Frequency

GnomAD V3
Allele Frequency

GnomAD V2.1
Allele Frequency

IVS1-16C > A 0.0001172 1/8532 Not found Not found 0.0001634 3/18356

c.305C > T/p.(A102V) 0 0/8622 0 0/3130 0 0/19944

c.395G > A/p.(R132H) 0 0/8638 0 0/3134 0 0/19944

c.736C > T/p. (P246S) 0.0005845 5/8554 0.0003193 1/3132 0.0004015 8/19926

c.886(−10_-31)del Not found Not found Not found Not found 0.0001111 2/18002

c.1152-63del 0 0/8170 0 0/3134 0 0/19432

c.1222G > T/p.(D408Y) Not found Not found Not found Not found Not found Not found

c.1496G > A/p.(R499H) 0 0/8596 Not found Not found 0 0/18370

c.1540 C > T/p.(P514S) 0.001508 13/8620 0.001276 4/3134 0.001254 25/19936

“Not found” means not present in database

Fig. 2 Multiple sequence alignment of the SGLT2 protein from different species. Six conserved amino acids in SGLT2 were identical among
different species and are highlighted
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Conclusions
In conclusion, we screened ten additional Chinese FRG
pedigrees and found nine SLC5A2 mutations, including
two novel mutations. The variants IVS1-16C > A and
c.886(−10_-31) del, which had high frequencies, could
be preferentially screened in FRG patients when the vari-
ants cannot be found in exons. In addition, we estab-
lished a permanent growing lymphoblastoid cell line
from patients with FRG, which could facilitate further
studies of the SLC5A2 gene at the cDNA level. In short,
our study provides valuable clues for further studies of
the SGLT2 molecular mechanism and potential targets
for the further development of anti-diabetes drugs.
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