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Abstract

Background: Chronic Kidney Disease (CKD) is associated with reduced muscular strength resulting in profound
fatigue. The physiopathology of these changes, their prevalence and evolution are still debated. Moreover, we have
little data on elderly CKD patients. The present study protocol aims to 1) quantify the prevalence of low muscle
strength (dynapenia) in a cohort of elderly patients with advanced CKD and to 2) characterize their force
production coupled with electromyographic features and the symptoms of fatigue compared to a matched control
group.

Methods: This is a case-control, prospective, interventional study. Inclusion criteria: age ≥ 60 years; CKD Stage 3b-5;
clinical stability (i.e. no hospitalization and ≤ 25% in creatinine increase in the previous 3 months). Controls with
normal kidney function will be matched in terms of age, gender and diabetes mellitus (requisite: estimated
glomerular filtration rate ≥ 60 ml/min/1.73m2 available in the last 6 months). Exclusion criteria for cases and controls:
neuromuscular disease, life expectancy < 3 months.
The handgrip strength protocol is an intermittent test consisting in 6 series of 9 repetitions of 3-s sub-maximum
contractions at 40% of the maximum voluntary contraction (MVC) and 2 s of resting time between contractions.
Each series is separated by one fast sub-maximum contraction and one MVC. Strength is assessed with a high-
frequency handgrip dynamometer paired with surface electromyography. Symptoms of fatigue are assessed using
MFI-20 and FACIT-F questionnaires. In order to reach a statistical power of 96%, we plan to enroll 110 subjects in
each group.
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Discussion: The novelty of this study resides in the application of an already validated set of tests in a population
in which this combination (dynamometer, electromyography and questionnaires) has not previously been explored.
We expect a high prevalence of dynapenia and a higher fatigability in CKD patients. A positive correlation is
expected between reported fatigue and fatigability.
Better appreciation of the prevalence and the relationship between fatigability and a sensation of fatigue can help
us target interventions in CKD patients to improve quality of life and survival.

Trial registration: The study was approved by Ethical Committee EST III n°20.03.01 and was recorded as a Clinical
Trial (NCT04330807) on April 2, 2020.
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Background
Chronic kidney disease (CKD) is defined as a structural
or functional abnormality of the kidneys that has lasted
at least 3 months and has implications for health [1].
The kidneys have a major role in the maintenance of
homeostasis, ensuring water and electrolyte balance that
directly determines the functioning of vital organs. It is
for this reason that a decline in kidney function induces
a number of systemic metabolic alterations, especially in
the most advanced stages i.e., glomerular filtration rate
(GFR): ≤45ml/min/1.73m2 [2].
Among the symptoms associated with advanced

CKD, fatigue is often reported by patients, with a
prevalence ranging between 50 and 70% [3]. Fatigue
is defined as a subjective sensation of weakness, in-
creasing sense of effort, mismatch between exerted
and actual effort [4]. Fatigue, which has a remarkable
impact on a patient’s everyday activities and quality
of life, can be subjectively evaluated using validated
questionnaires.
The pathogenesis of fatigue is complex. Fatigue can

arise from disease-related issues (e.g., diffuse vascular
disease, anemia, changes in lifestyle habits), psycho-
logical conditions (e.g., stress, depression, sleep disor-
ders) and pathophysiological changes (e.g., decline in
aerobic capacity or muscle strength) [5]. These problems
are common in other chronic diseases, such as the con-
sequences of stroke [6], cancer [7, 8], multiple sclerosis
[9], rheumatoid arthritis [10, 11] and diabetes mellitus
[12–15]. In all of them, observed neuromuscular changes
are associated with fatigue [16].
Neuromuscular fatigability is defined as a reduction in

the patient’s muscular ability to perform a standardized
task [17]. In general, inability to exert the desired force
is not restricted to muscle-mass decline. Several factors
concur to determine muscle function: fiber type (i.e.,
slow or fast twitches), metabolism (i.e., aerobic or anaer-
obic), presence of fat infiltration or fibrosis and interac-
tions at the neuromuscular junction [18]. CKD induces
chronic muscle function changes [19–21]: this is rela-
tively well documented for dialysis patients [22, 23], but

we still have little data about the loss of muscle strength
(dynapenia [24]) in CKD patients.
In the course of chronic dialysis, the loss of

muscle function is worsened by several factors, such
as acidosis, loss of amino acids (up to 12 g per
hemodialysis session or 4 to 6 g per day on periton-
eal dialysis) and/or the presence of anorexia. In this
context, the loss of strength is mainly attributable to
a decrease in muscle-mass, characterized by the loss,
or a decrease in size, of the contractile units [25–
27]. Conversely, changes in the excitation-
contraction coupling system have been little explored
and are poorly understood, especially in patients
with advanced CKD.
The grip isometric analysis (i.e., handgrip) is the

most commonly used test to assess strength in pa-
tients who have advanced CKD [28]. The handgrip
test is simple and rapidly performed; it yields repro-
ducible results and can easily be integrated into rou-
tine clinical practice. In CKD patients, this test
demonstrates a close correlation with survival, nutri-
tional status and quality of life [29–33]. Moreover, an
isometric contraction is less traumatic than a dynamic
contraction [34]. Finally, a handgrip is a simple rou-
tine gesture and does not usually cause pain.
Thus, the aim of the study is to assess the neuro-

muscular features of elderly patients with advanced
CKD and symptoms of fatigue coupled with dynape-
nia. To our knowledge, this is the first study to apply
a complex set of validated tests to a large population
of elderly patients who have advanced CKD but are
not on dialysis, with respect to an age, sex and dia-
betes matched control group. The research will high-
light neuromuscular features associated with
dynapenia in elderly CKD patients. In addition, the
relationship between dynapenia and subjective fatigue
will be analyzed to identify novel therapeutic inter-
ventions. These findings will be rapidly translated into
clinical practice, with a view to adapting physical ac-
tivity programs to improve neuromuscular function in
the management of CKD symptoms.
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Methods
Aims
The primary objective of this trial is to define the preva-
lence of dynapenia in elderly CKD Stage 3b-5 patients.
This will be achieved through the analysis of handgrip
strength.
The secondary objective is to define the characteristics

of dynapenia in elderly patients with advanced CKD dur-
ing a standardized task considering:

a) the evolution of MVC;
b) the evolution of the discharge frequency of motor

units;
c) motor-unit recruitment ability;
d) the evolution of the delay between the nervous

stimulus and contraction;
e) the relationship between dynapenia and subjective

fatigue.

Clinical implications
By shedding light on the specific characteristics of dyna-
penia and its link with a patient’s sense of fatigue and
fatigability [4], the PIONEER study intends to guide the

management of adapted physical activities recommended
by academic associations.

Study design
A case-control, interventional, prospective study.

Setting of study
The study will be carried out in Le Mans hospital
(France), in the outpatient unit for the care of advanced
kidney disease (UIRAV, Unité pour l’Insuffisance Rénale
chronique AVancée). The UIRAV unit follows about 210
patients which are not on dialysis (90% over the age of
60), whose mean age is 74 years; 60% are males and dia-
betes mellitus prevalence is approximately 50%. Of these,
180 patients are followed for CKD Stage 3b-5. As previ-
ously described by Fois et al. [35], UIRAV’s main object-
ive is to offer frequent follow-up and to delay the start
of dialysis. The frequency of controls is based on CKD
stage and overall clinical stability. For example, patients
with stable kidney disease Stage 3b are seen every 8 to
12 weeks, while patients with CKD Stage 5 are seen at
least once a month. Study proceedings is described in
Fig. 1.

Fig. 1 Flowchart of the study. INC: inclusion criteria; EXC: exclusion criteria
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Definition and measures
Dynapenia
Dynapenia is an age-associated loss of muscle strength that
is not caused by neurologic or muscle diseases [24]. In our
study, dynapenia will be diagnosed if the mean of three
MVC after a brief warm up, is lower than the reference
value matched for age and sex. The study by Ramírez-Vélez
et al. [36] will provide reference values for elderly patients.

Fatigability
Fatigability is defined as a reduction in the patient’s
muscle performance on a standardized task [17]. Fatig-
ability, which is an indicator of objective fatigue, is eval-
uated by measuring critical force (Fcrit) during a
standardized task. The Fcrit value corresponds to the
asymptotic value of the last stable part of the MVC evo-
lution curve (Fig. 2) [37]. Fcrit is the maximum exercise
intensity that a subject can produce in a given metabolic
environment, in other words, it identifies the threshold
at which fatigability develops [38].

Fatigue
The perception of fatigue is defined as a subjective sen-
sation of weariness, increasing sense of effort, mismatch

between expended and actual effort [4]. We will use two
questionnaires to assess fatigue: the Functional Assess-
ment of Chronic Illness Therapy-Fatigue (FACIT-F) and
the Multidimensional Fatigue Inventory (MFI-20).
FACIT-F is a brief validated French-language question-

naire [39] consisting in 13 simple pragmatic statements
(e.g., I am too tired to eat) accompanied by the Likert scale
(0: “never or almost never” to 4: “always or almost al-
ways”). The final score ranges from 0 to 52, with an in-
verse relationship between the score and fatigue.
MFI-20 is also a validated French-language version of

a widely-used questionnaire [40], focusing on fatigue. It
is composed of statements covering self-perception, ran-
ging from extremely positive (e.g., physically I feel/I am
in excellent condition) to extremely negative (e.g., phys-
ically I feel/I am able to do very little). In the case of the
MFI-20, there is a direct relationship between the pa-
tient’s score and perceived fatigue while exploring 4
topics: general fatigue, mental fatigue, reduced activity
and motivation.

Anthropometric, clinical, nutritional and biochemical data
Relevant data will be collected from medical records.
They will include age, body mass index, gender, presence

Fig. 2 Fatigability protocol with handgrip and EMG acquisition. a Neuromuscular fatigability protocol: the green box represents the warm-up
period, lasting a maximum of 1.5 min; the orange arrows are FSC; the blue lines are MVC and the purple lines are contractions at 40% of MVC.
The red points represent the maximal forces awaited allowing critical force determination, while the evolution is represented with a red spotted
line. Rest duration is 20 s (*), 2 min (nos. 1 and 2), 5 min (no. 3), 1 min (no. 4), 2 min (no. 5) and 3min (no. 6). b Parallels between the 40% MVC
contractions required and the muscle activation signals recorded. FSC: fast sub-maximum contraction; MVC: maximum voluntary contraction
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of diabetes mellitus (defined as glycemia > 126 mg/dl
while fasting or using oral hypoglycemic medications or
insulin) and kidney disease (i.e., cause and creatinine,
urea and proteinuria values), time of follow-up, Charlson
Comorbidity Index (CCI) [41], Malnutrition Inflamma-
tion Score (MIS) [42], albumin, total cholesterol, high-
density lipoprotein, low-density lipoprotein, triglycerides,
uric acid, calcium, phosphorus, parathyroid-hormone,
vitamin D, bicarbonate, sodium and potassium values.
The most recent available data will be recorded within 3
months for CKD patients and 6months for control
volunteers.

Inclusion criteria
Cases

– Age ≥ 60
– Estimated glomerular filtration rate based on the

Chronic Kidney Disease Epidemiology Collaboration
(CKD-EPI) equation ≤45ml/min/1.73m2 for at least
3 months

– Stable clinical condition: no hospitalization; serum
creatinine increased by a maximum of 25% in the
previous 3 months

Controls

– Age ≥ 60
– Available blood tests within 6 months showing

normal renal function (estimated GFR > 60 ml/min/
1.73m2) and glycated hemoglobin values for diabetic
controls

– Stable clinical condition: no hospitalization in the
previous 6 months

Exclusion criteria

– Inability to give informed consent, if under
guardianship or a minor

– Neuromuscular disease
– Dementia
– History of upper limb surgery or pathologies that

would make it impossible to fit electromyography
(EMG) electrodes and measure handgrip force

– Estimated life expectancy of less than 3 months
– Hospitalization in the 3 months prior to the test
– Participation in another clinical interventional trial
– Acute kidney disease
– Waitlisted for renal replacement therapy or expected

to start dialysis within 3 months
– History or evidence of any other clinically significant

disorder, condition or disease that in the
investigator’s opinion could pose a risk to a

participant’s safety or interfere with the study’s
evaluation, procedures or completion

Inclusion modalities
Participants will be informed about the study with a pos-
ter displayed in hospital or during medical consultations.
Elderly CKD patients will be enrolled via the UIRAV
unit. Control subjects will be enrolled through endocrin-
ology, diabetology and dermatology units or during out-
patient consultations with patients’ escorts.

Materials
The handgrip and EMG evaluations will be synchronized
using Labview v19 software (National Instruments Corp.,
Austin TX, USA) that makes it possible to simultan-
eously display feedback on strength and EMG activity.
The handgrip dynamometer used will be the K-Force
GRIP (K-Invent Inc., Montpellier, France), with 1000 Hz
acquisition frequency and an accuracy of 100 g. The
EMG signal will be recorded using the Trigno Wireless
Biofeedback System (DelSys Inc., Boston MA, USA) with
the Trigno Avanti™ electrodes, which are composed of a
4 silver bar contacts, 10 mm interelectrode, a 1926 Hz
acquisition frequency per channel and with a second-
order band-pass Butterworth filter set at 20–450 Hz and
a second-order low-pass filter set at 100 Hz.

Intervention
The patient being tested will be seated, with his back in
a straight position, and elbow bent at 90° close to his
chest. The patient’s humerus will be vertical and his
forearm will be parallel to a height-adjustable support
(Fig. 3). The patient’s dominant arm will be chosen.
Preparing the arm for placement of the electrodes will

include shaving the skin and cleaning the area hosting
the four recording electrodes [43, 44] with a sponge and
alcoholic disinfectant to reduce impedance. Electrodes
will be placed over the flexor digitorum superficialis
muscle belly along the fiber direction while following
international SENIAM recommendations and the four
electrode positions previously described [43–45].
The exercise, illustrated in Fig. 2, will begin with a

warm-up, to familiarize the person with the instruments
and situation, at a slow and comfortable pace not ex-
ceeding 1 min and 30 sec. The warm-up will consist of
dynamic extensions of the hand and fingers: an exten-
sion at maximum speed, and a slow and constant flexion
of the wrist and fingers. Dynamic stretches have been
shown to prepare the nervous system, increase muscle
temperature and improve the sensitivity of the connect-
ing bridges between actin and myosin [46] compared to
passive stretches, which can be somewhat deleterious in
terms of muscle performance [47].
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According to the recommendations of Maffiuletti et al.
[48], fast sub-maximum contractions (FSC) should be
separated from MVC to limit central inhibition. Thus, to
determine the baseline FSC, five contractions at max-
imum speed will be performed with a twenty-second rest
interval between them. The objective of these contrac-
tions is to determine the rate of force development.
As recommended by De Luca [49], patients will per-

form three MVC interspersed by a two-minute rest and
the mean of the three contractions will be calculated.
Each MVC has to be reached progressively in less than 3
sec and least 5 sec [50]. A five-minute break is scheduled
after the MVC because the subsequent part of the trial
is the beginning of the fatigability protocol.
The fatigability assessment phase begins with nine

contractions at 40% of MVC [51], each lasting 3 sec,
followed by an FSC and an MVC. All the contractions
are exerted at two-second intervals. This cycle of eleven
contractions will be repeated six times. If a patient can-
not maintain the 40% required force, the threshold time
will be recorded without stopping the test. At the end of
these cycles, the patient will rest for 1 min. Then, in
order to assess their recovery capacities, the last part of
the test will be administered, consisting in three series of
one FSC and one MVC, separated by two- and three-
minute intervals, respectively.

Statistical analysis
Sample size calculation was based on the results of the
handgrip strength test of Lin et al. [52], who analyzed a

relatively large cohort of elderly patients suffering from
CKD in 2019, and the handgrip strength reference values
of Ramírez-Vélez et al. [36], who analyzed a larger popu-
lation of elderly patients without CKD, stratified by age
and sex. With an 8% (±16%) difference, accepting a 5%
alpha risk, 96% statistical power will be reached by en-
rolling 110 CKD patients and 110 control subjects. Con-
sidering the number of patients followed in the UIRAV
unit (i.e., approximately 180 older than 60), we should
be able to enroll the participants within 1 year.
Signal filtering and analysis will be performed with

Matlab 2018a v9.4 (The MathWorks Inc., Natick MA,
USA) and statistical analysis will be performed with
SPSS v14 (IBM Corp., Armonk NY, USA). Group com-
parison for normally distributed variables will be
assessed by means of the analysis of variance (ANOVA)
or the unpaired Student T-Test. For non-normally dis-
tributed variables the Kruskal-Wallis or the Mann-
Whitney Test will be used. In addition, the chronological
variables (e.g., evolution of the MVC during the test) will
be analyzed by mixed models with fixed effect or
ANOVA with repeated measures if the test prerequisites
are satisfied (normality, homoscedasticity and
sphericity).
Qualitative data will be compared with the Chi2 or the

McNemar Test.
Correlation analyses will be performed with the Pear-

son Test. Logistic or multiple regressions will be per-
formed to assess the effect of different variables on the
outcomes: age, sex, body mass index, stage of renal

Fig. 3 Set-up of the study and standardized position
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disease, diabetes mellitus, MIS and CCI (either continu-
ous or dichotomized) as well as biochemical data. A p <
0.05 will be considered statistically significant.

Discussion
This study aims to quantify the prevalence of force de-
cline in elderly patients affected by advanced CKD and
to identify alterations at the level of the neuromuscular
junction. The strength of this study is that it will be, to
our knowledge, the first study to assess, in this “pre-dia-
lysis” population, the prevalence of dynapenia coupled
with an EMG recording to objectivate electromyographic
fatigability features. It will also be the first trial combin-
ing an objective (i.e., Fcrit) and a subjective (i.e., FACIT-F
and MFI-20) approach to assess fatigue in this popula-
tion. The link between neuromuscular alterations and
greater fatigue is in fact poorly understood [16], espe-
cially for CKD patients.
A higher prevalence of dynapenia is expected in the

CKD population compared to the control group, with
the highest prevalence in those with diabetes mellitus.
Patients with diabetes appear to have decreased
muscle functions [53, 54], but this result has been
questioned [55]. We expect different neuromuscular
features in CKD patients, specifically for Fcrit. CKD
has been associated with difficulty in performing a
standardized task but the origin of this disturbance
(e.g., difficulty adapting the motor-unit discharge or
difficulty recruiting the motor unit) is far less clear
[48]. Our study will allow us to investigate these is-
sues and clarify the underlying pathophysiological
mechanisms. The temporal difference between the on-
set of the EMG signal and force production, i.e. the
electromechanical delay, will be assessed during the
FSC. We expect an increase in this delay, highlighting
an alteration between the electrochemical process
(i.e., synaptic transmission, propagation of the action
potential, excitation-contraction coupling) and con-
tractile and structural elements. A positive correlation
is expected between subjective fatigue and objective
fatigability.
The frailty of the elderly CKD population demands

careful attention to the methodology employed, explain-
ing the choice of this sub-maximum protocol to reduce
as far as possible causing pain while inducing sufficient
fatigue in this fragile population.
Better comprehension of the neuromuscular features

of dynapenia and a deeper understanding of the relation-
ship between fatigability and fatigue can help us guide
interventions for elderly patients suffering from ad-
vanced CKD, with the final goal of targeting interven-
tions to effectively improve quality of life and reduce
morbidity.
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