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Abstract

Background: Hyporesponsiveness to erythropoietin stimulating agent (ESA) is associated with poor outcomes in patients
with chronic kidney disease. Although ESA hyporesponsiveness and sarcopenia have a common pathophysiological
background, clinical evidence linking them is scarce. The purpose of the study was to investigate the relationship between
ESA responsiveness and skeletal muscle mass in hemodialysis patients.

Methods: This cross-sectional study analyzed 70 patients on maintenance hemodialysis who were treated with ESA. ESA
responsiveness was evaluated by erythropoietin resistance index (ERI), calculated as a weekly dose of ESA divided by body
weight and hemoglobin (IU/kg/week/dL), and a weekly dose of ESA/hemoglobin (IU/week/dL). A dose of ESA is equivalated
to epoetin β. Correlations between ESA responsiveness and clinical parameters including skeletal muscle mass were
analyzed.

Results: Among the 70 patients, ERI was positively correlated to age (p < 0.002) and negatively correlated to
height (p < 0.001), body weight (p < 0.001), BMI (p < 0.001), skeletal muscle mass (p < 0.001), transferrin saturation
(TSAT) (p = 0.049), and zinc (p = 0.006). In the multiple linear regression analysis, TSAT, zinc, and skeletal muscle
mass were associated with ERI and weekly ESA dose/hemoglobin.

Conclusions: Skeletal muscle mass was the independent predictor for ESA responsiveness as well as TSAT and
zinc. Sarcopenia is another target for the management of anemia in patients with hemodialysis.
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Background
Anemia is one of the major complications in patients
with chronic kidney disease (CKD) or patients receiving
hemodialysis (HD).It is related to poor outcomes [1, 2].
Erythropoietin stimulating agents (ESAs) have been used
in patients with HD for many years [3, 4]. ESAs helps in
achieving recommended hemoglobin levels. They are the
most established agents for renal anemia [5, 6]. On the

other hand, approximately 15 % of the patients are hypo-
responsive to ESA [7, 8]. ESA hyporesponsiveness is as-
sociated with mortality and cardiovascular events in
patients with CKD [9, 10]. Several conditions such as
iron deficiency and zinc deficiency, which are easily
treated, can cause ESA hyporesponsiveness. Therefore, it
is necessary to look into the relevant cause when the pa-
tients show no or little response to ESA.
Among many factors that are associated with ESA hy-

poresponsiveness, malnutrition is one of the causes [11].
Deficiency of nutrients required for hematopoiesis, such
as iron, zinc, vitamin B12, and copper, leads to ESA
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hyporesponsiveness. Infection and inflammation are the
other causes for the hyporesponsiveness of ESA due to
disturbance in iron utilization. Since each of these condi-
tions requires different treatments, it is important to ap-
propriately identify the relevant cause when the patients
show no or little response to ESA.
Sarcopenia is characterized by loss of skeletal muscle mass

that progresses with aging. It is being recognized as a great
health issue in the elderly population [12, 13]. Growing evi-
dence has revealed that sarcopenia is related to cardiovascu-
lar disease [14], cognitive function [15], physical performance
[16], and mortality [17]. The pathogenesis of sarcopenia in-
volves various conditions such as malnutrition and inflam-
mation. These conditions are associated with erythropoietin
resistance. In addition, recent studies demonstrated the asso-
ciations between muscle mass and erythropoiesis [18, 19].
Although there is potentially an association between sarcope-
nia and ESA hyporesponsiveness, clinical evidence linking
them is lacking. We hypothesized that muscle wasting is as-
sociated with ESA response, by reflecting nutritional and in-
flammation status. In the present study, we aimed to
investigate the relationship between muscle mass and ESA
hyporesponsiveness in hemodialysis patients receiving ESA.

Methods
Study population
This cross-sectional study included patients who had
been on maintenance hemodialysis for at least 3 months
at our hospital between April to June 2018. Patients with
a history of amputation of extremities, with hemorrhagic
lesions, and who did not reach the dry weight during the
investigation were excluded from the study. Patients
who were not treated with ESA were also excluded. All
the patients were receiving hemodialysis/hemodiafiltra-
tion three times/week. Patient’s characteristics including
the cause of end-stage renal disease, duration of
hemodialysis, height, and body weight were collected
from their medical records. Blood samples were col-
lected at the beginning and the end of the dialysis ses-
sion following a 2-day interval. Laboratory results at the
end of each day for more than one month of stable ESA
dose were used for the analysis. Erythropoietin resistance
index (ERI) was calculated as a weekly dose of epoetin β
divided by body weight and hemoglobin level (IU/kg/
week/g/dL). Since the patients were treated with differ-
ent ESAs, a dose conversion ratio of 1:200 for darbepoe-
tin α and 1:225 for CERA were used for epoetin β [20,
21]. Patients with apparent iron deficiency, transferrin
saturation (TSAT) < 20 % or ferritin < 100 ng/dL were
treated with an injection of iron. The normalized protein
catabolic rate (nPCR) and the dialysate dosage, the clear-
ance of urea (K; mL/min) multiplied by the time on dia-
lysis (t; min) divided by the volume of distribution (V;
mL), were calculated as previously described [22]. This

study was approved by the ethical committee of the Tot-
tori University Hospital (approval number: 19A222) and
conducted in accordance with the Declaration of
Helsinki.

Measurement of skeletal muscle
The skeletal muscle mass of each patients was measured
by bioimpedance analysis (BIA) using InBody (InBody
Japan, Tokyo, Japan). The measurement was performed
after a session of hemodialysis to eliminate the influence
of excess body fluid. The dry weight was determined ac-
cording to their physical findings, chest radiograph, and
serum brain natriuretic peptide or human atrial natriuretic
peptide level. Skeletal muscle index (SMI) was calculated
as skeletal muscle mass divided by height (kg/m2).

Statistical analysis
The distribution of the continuous variables was evaluated
using the Kolmogorov–Smirnov test. The variables were
expressed as mean ± SD or median (range). Correlations
between skeletal muscle mass or SMI and the patient’s
characteristics were analyzed by Pearson’s correlation co-
efficient for normally distributed variables and Spearman’s
correlation coefficient for non-normally distributed vari-
ables. Multiple linear regression analysis, in which sex,
age, and laboratory findings were selected with stepwise
forward selection method, was performed to investigate
the influencing factor for skeletal muscle or SMI. A two-
tailed p-value of less than 0.05 was considered statistically
significant. Statistical analyses were performed using Stat-
Flex (ver7.0 for Windows, Artec, Osaka, Japan) or Graph-
Pad Prism (ver7.0 for Windows, GraphPad Software, San
Diego, CA, USA).

Results
Patient characteristics
A total number of 96 patient records were reviewed in
this study. Twenty-six patients were excluded (20 with-
out ESA, 5 did not reach the dry weight, and 1 with am-
putation). Of the patients from the cohort, 70 (45 male
and 25 female) were included in the analysis (Fig. 1).
The characteristics of the study population are summa-
rized in Table 1. The mean age of the participants was
67.2 ± 13.0 years, the mean ERI was 7.2 ± 5.4, and the
mean skeletal muscle mass was 21.8 ± 5.4 kg.

Correlations between ERI and clinical parameters
We first investigated the correlations between ERI and
clinical parameters. ERI positively correlated to age (p <
0.002), and was negatively correlated to height (p < 0.001),
body weight (p < 0.001), BMI (p < 0.001), skeletal muscle
mass (p < 0.001), TSAT (p = 0.049), and zinc (p = 0.006).
There were significant correlations between ERI and body
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size. Therefore, we further investigated the correlations
between weekly ESA dose/hemoglobin and clinical param-
eters. As a result, we observed positive correlations with
age (p = 0.020) and negative correlations with height (p =
0.017), body weight (p = 0.029), skeletal muscle mass (p =
0.011), TSAT (p = 0.009), and zinc (p = 0.013). These cor-
relations are summarized in Table 2.

Correlations between skeletal muscle mass and clinical
parameters
Correlations between skeletal muscle mass and clinical
parameters were also investigated. Skeletal muscle mass
was positively correlated with height (p < 0.001), body
weight (p < 0.001), BMI (p < 0.001), albumin (p = 0.001),
and zinc (p = 0.029), and negatively correlated with age
(p < 0.001), nPCR (p = 0.028), and Kt/V (p < 0.001)
(Table 3).

Determinants of skeletal muscle mass
Multiple linear regression analysis was performed to in-
vestigate the influencing factor for ERI. Age, sex, skeletal
muscle mass, albumin, TSAT, intact PTH, Zinc, CRP,
and Kt/V were selected as explanatory variables with the
stepwise forward selection method. TSAT, zinc, and skel-
etal muscle mass were determined to be independent
predictors for ERI (Table 4). Multiple linear regression
analysis was also performed for weekly ESA dose/
hemoglobin. TSAT, zinc, and skeletal muscle mass
showed an independent association with weekly ESA
dose/hemoglobin (Table 4).

Discussion
In the present study, we observed that ESA responsive-
ness was associated with skeletal muscle mass. TSAT,

Fig. 1 Study design. Seventy patients were included in the analysis and 26 patients were excluded

Table 1 Patient's characteristics

N = 70

Age, years 67.2 ± 13.0

Sex (male/female) 45 / 25

Duration of hemodialysis, months 216 (5-1219)

Height, m 1.60 ± 0.10

Body weight, kg 57.9 ± 13

BMI, kg/m2 22.3 ± 3.5

ERI, IU/kg/week/g/dL 7.2 ± 5.4

Skeletal muscle mass, kg 21.8 ± 5.4

Hemoglobin, g/dL 10.9 ± 0.9

Albumin, g/dL 5.6 ± 0.4

CRP, mg/dL 0.19 (0.05–3.25)

Calcium, mg/dL 8.6 ± 0.6

Phosphate, mg/dL 5.4 ± 1.3

Intact PTH, pg/mL 94 (5-887)

Magnesium, mg/dL 2.6 ± 0.3

TSAT, % 25.3 ± 12.1

Ferritin, ng/mL 79 (11–662)

Zinc, mg/dL 54.7 ± 9.0

Copper, mg/dL 98,3 ± 17.7

nPCR, g/kg/ideal body weight/day 0.82 ± 0.17

Kt/V urea 1.76 (0.98–2.99)

BMI body mass index; ERI erythropoietin resistance index; CRP C-reactive
protein; PTH parathyroid hormone; TSAT transferrin saturation; nPCR
normalized protein catabolic rate
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zinc, and skeletal muscle mass are the independent pre-
dictors for ESA responsiveness.
ESA hyporesponsiveness is caused by various condi-

tions. Iron deficiency is one of the major conditions
leading to ESA hyporesponsiveness. It is recommended
to measure TSAT and ferritin to assess the status of iron
deficiency or iron overload. Serum ferritin is affected by
inflammation, and TSAT is the most commonly used
marker for the availability of iron [23]. Thus, we in-
cluded TSAT in the multivariate analysis in the study.
We found that TSAT is an independent predictor for
ERI in line with the widely accepted recognition that
iron deficiency causes ESA hyporesponsiveness. Inflam-
mation can lead to the hyporesponsiveness of ESA [24].
Pro-inflammatory cytokines such as interleukin-6 in-
crease the expression of hepcidin, which is the regulator
of iron homeostasis [25, 26]. HD patients with inflam-
mation showed increased hepcidin levels together with
decreased intestinal absorption of iron [27]. A recent in-
vestigation in patients on hemodialysis showed that Mal-
nutrition Inflammation Score, composite assessment of
inflammation and nutritional status including serum al-
bumin and transferrin, is associated with the response to
ESA [28]. Although we did not find associations between
CRP levels and ERI in the multivariate analysis,

inflammatory conditions in our cohort might be, in
some part, reflected in the iron status.
In the present study, we observed that skeletal muscle

mass was associated with ERI. Previous observations
showed associations between ERI and body composition
including adipose tissue and muscle mass [29]. However,
body size needs to be considered as an influencing factor
for ERI. Since both skeletal muscle mass and ERI, calcu-
lated as a weekly dose of epoetin β divided by body
weight and hemoglobin level, are closely related to body
weight, we further analyzed the association between
skeletal muscle mass and weekly ESA dose/hemoglobin
to eliminate the influence of body size. We found that
there was still an association between skeletal muscle
mass and ESA responsiveness. Previous investigations in

Table 3 Correlations between skeletal muscle mass and clinical
parameters

r p-value

Age, years -0.548 < 0.001

Duration of hemodialysis, months -0.116 0.35

Height, m 0.857 < 0.001

Body weight, kg 0.799 < 0.001

BMI, kg/m2 0.514 < 0.001

Hemoglobin, g/dL 0.140 0.25

Albumin, g/dL 0.376 0.001

CRP, mg/dL -0.116 0.35

Calcium, mg/dL -0.211 0.079

Phosphate, mg/dL 0.106 0.38

Intact PTH, pg/mL 0.184 0.13

Magnesium, mg/dL -0.103 0.45

TSAT, % 0.092 0.45

Ferritin, ng/mL -0.113 0.35

Zinc, mg/dL 0.265 0.029

Copper, mg/dL -0.151 0.22

nPCR, g/kg/ideal body weight/day -0.273 0.028

Kt/V urea -0.424 < 0.001

BMI body mass index; ERI erythropoietin resistance index; CRP C-reactive
protein; PTH parathyroid hormone; TSAT transferrin saturation;
nPCR normalized protein catabolic rate

Table 4 Multiple linear regression analysis

Dependent variable

ESA dose/Hb ERI

Stdβ p value Stdβ p value

TSAT -0.3422 0.003 -0.288 0.004

Zinc -0.2665 0.022 -0.301 0.011

Muscle mass -0.231 0.045 -0.533 < 0.001

CRP -0.1807 0.11 -0.172 0.087

SMI skeletal muscle index; BMI body mass index. Stepforward
selection method

Table 2 Correlations between ESA response and clinical
parameters

ESA dose / Hb ERI

r p value r p value

Age 0.282 0.020 0.373 0.002

Duration of hemodialysis 0.057 0.65 0.116 0.35

Height -0.288 0.017 -0.531 < 0.001

Body weight -0.265 0.029 -0.565 < 0.001

BMI -0.192 0.12 -0.455 < 0.001

Muscle mass -0.307 0.011 -0.541 < 0.001

Albumin -0.119 0.33 -0.173 0.16

CRP -0.003 0.98 -0.027 0.83

Calcium 0.003 0.98 0.056 0.65

Phosphate -0.096 0.43 -0.122 0.32

Intact PTH -0.127 0.30 -0.147 0.23

Magnesium 0.077 0.58 0.018 0.90

TSAT -0.317 0.009 -0.239 0.049

Ferritin -0.135 0.27 -0.063 0.61

Zinc -0.303 0.013 -0.331 0.006

Copper 0.040 0.75 0.016 0.89

nPCR 0.019 0.88 0.175 0.16

Kt/V 0.016 0.90 0.159 0.20

SMI skeletal muscle index; BMI body mass index; PTH parathyroid hormone;
CRP C-reactive protein, TSAT transferrin saturation; nPCR normalized protein
catabolic rate
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murine myoblast cells revealed that the erythropoietin
receptor was expressed in myoblasts, and that erythro-
poietin promoted the proliferation of myoblasts [18].
Erythropoietin receptors are expressed in human skeletal
muscle [19, 30]. In addition, muscle fibers can release
erythropoietin after exercise, and erythropoietin-induced
JAK2 phosphorylation, which is necessary to induce
downstream signaling pathways of erythropoietin, in-
creased after acute exercise [19]. On the other hand,
long-term recombinant erythropoietin had no significant
effecton muscle fiber hypertrophy [30]. These in vitro
and human studies indicate that muscle mass is associ-
ated with ESA responsiveness and that muscle wasting is
potentially a new target for managing anemia in patients
with CKD.
We observed that zinc was also an independent pre-

dictor for ERI. Zinc deficiency is another cause of ESA hy-
poresponsiveness. The prevalence of zinc deficiency is
extremely high in HD patients, and zinc supplementation
reduces the dosage of erythropoietin [31]. Since most of
the zinc distributes to skeletal muscle and bone [32], this
might influence the correlation between skeletal muscle
and ERI. However, we still found that skeletal muscle
mass was associated with ERI independently of zinc.
There are some limitations to this study. ESA hypore-

sponsiveness is caused by various conditions that were
not included in our study. Carnitine, vitamin, or folic
acid are involved in ESA response. This is a retrospective
study; thus, further investigation is required to deter-
mine whether exercise or intervention on skeletal
muscle improves ESA responsiveness.

Conclusions
In conclusion, we found that skeletal muscle mass is an
independent predictor for ESA responsiveness as well as
TSAT and zinc. Sarcopenia is another target for the
management of anemia in patients with HD.
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