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Abstract

Background: Combining tubular damage and functional biomarkers may improve prediction precision of acute
kidney injury (AKI). Serum cystatin C (sCysC) represents functional damage of kidney, while urinary N-acetyl-β-D-
glucosaminidase (uNAG) is considered as a tubular damage biomarker. So far, there is no nomogram containing
this combination to predict AKI in septic cohort. We aimed to compare the performance of AKI prediction models
with or without incorporating these two biomarkers and develop an effective nomogram for septic patients in
intensive care unit (ICU).

Methods: This was a prospective study conducted in the mixed medical-surgical ICU of a tertiary care hospital.
Adults with sepsis were enrolled. The patients were divided into development and validation cohorts in
chronological order of ICU admission. A logistic regression model for AKI prediction was first constructed in the
development cohort. The contribution of the biomarkers (sCysC, uNAG) to this model for AKI prediction was
assessed with the area under the receiver operator characteristic curve (AUC), continuous net reclassification index
(cNRI), and incremental discrimination improvement (IDI). Then nomogram was established based on the model
with the best performance. This nomogram was validated in the validation cohort in terms of discrimination and
calibration. The decision curve analysis (DCA) was performed to evaluate the nomogram’s clinical utility.
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Results: Of 358 enrolled patients, 232 were in the development cohort (69 AKI), while 126 in the validation cohort
(52 AKI). The first clinical model included the APACHE II score, serum creatinine, and vasopressor used at ICU
admission. Adding sCysC and uNAG to this model improved the AUC to 0.831. Furthermore, incorporating them
significantly improved risk reclassification over the predictive model alone, with cNRI (0.575) and IDI (0.085). A
nomogram was then established based on the new model including sCysC and uNAG. Application of this
nomogram in the validation cohort yielded fair discrimination with an AUC of 0.784 and good calibration. The DCA
revealed good clinical utility of this nomogram.

Conclusions: A nomogram that incorporates functional marker (sCysC) and tubular damage marker (uNAG),
together with routine clinical factors may be a useful prognostic tool for individualized prediction of AKI in septic
patients.

Keywords: Acute kidney injury, Sepsis, Serum cystatin C, Nomogram, N-acetyl-β-D-glucosaminidase, Intensive care
unit

Key messages
The nomogram that incorporates functional marker
(sCysC) and tubular damage marker (uNAG) effectively
predicts AKI risk for septic patients in ICU.

Background
Acute kidney injury (AKI) is frequent [1–3] and associ-
ated with poor prognosis [4–6]. Notably, one of the most
common causes of AKI is sepsis [7] which is increasingly
prevalent in critically ill patients [8–10]. Early recogni-
tion of AKI in septic patients may improve their clinical
prognosis. Nevertheless, both AKI and sepsis are hetero-
geneous syndrome that represent multifactorial clinical
conditions. In this context, early identification of AKI in
septic patients remains a big challenge by using any sin-
gle marker. Prior studies implied that combining
markers of different characteristics may prove more ac-
curate for AKI prediction in complex clinical settings
[11–13].
Recently, combining functional and tubular damage

biomarkers was reported to be an effective clinical strat-
egy for AKI prediction, including patients suffering from
heart failure [14] or those after cardiac surgery [15, 16].
Serum cystatin C (sCysC) is a glomerular filtration renal
biomarker, while urinary N-acetyl-β-D-glucosaminidase
(uNAG) represents tubular damage [12, 17]. NAG origi-
nates from the lysosomes of the renal proximal tubule
cells and can be measured in the urine [12, 17]. Urinary
NAG performed well as an early damage biomarker for
AKI. In addition, previous study indicated that the incre-
ment of uNAG was caused not by sepsis, but by the oc-
currence of AKI [18].Moreover, both two biomarkers are
clinically available [19]. Recently, we found that combin-
ing uNAG and sCysC was as an effective clinical strategy
for detecting AKI in the postsurgical population [20].
Nevertheless, there is no nomogram containing this
combination for predicting AKI in septic cohort.

Nomogram is used as a visualized, appreciable and in-
tuitive tool for AKI prediction [21–23]. However, limited
data exist on the nomogram for AKI prediction in septic
patients. Furthermore, there are no prior nomograms in-
corporating uNAG or sCysC for AKI prediction in septic
cohort. Therefore, this study aimed to compare the per-
formance of AKI prediction models with or without in-
corporating the above-mentioned biomarkers and then
develop an effective prediction nomogram for septic pa-
tients in intensive care unit (ICU).

Materials and methods
Study design and participants
This prospective observational study was conducted in
the mixed medical-surgical ICU of a tertiary care hos-
pital in China. All consecutive septic patients admitted
to ICU from October 2014 to April 2019 were eligible
for enrollment. The exclusion criteria included age
under 18 years, presence of AKI before ICU admission,
preexisting dialysis before ICU admission, end-stage
renal disease (ESRD), renal transplantation, nephrec-
tomy, refusal of consent, or missing data. The outcome
was the detection of AKI within one week of ICU admis-
sion. The enrolled septic patients were divided into two
cohorts in chronological order: development cohort and
validation cohort. The protocol of this study was met
Strengthening the Reporting of Observational Studies in
Epidemiology [24] and Standards for Reporting Diagnos-
tic Accuracy [25] criteria. 55oved by the local institu-
tional review board.

Sample and data collection
Similar to prior studies [19, 20], we simultaneously col-
lected blood and urine samples within one hour after
ICU enrollment. With the standard protocol, measure-
ments of all samples were conducted at the central la-
boratory of the Guangdong Provincial People’s Hospital
in 24 h after collection. The levels of uNAG and sCysC
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were measured once at the time of ICU admission. The
detection of serum creatinine (sCr) was performed at
ICU admission, and thenceforth at least once a day dur-
ing ICU hospitalization. We prospectively collected base-
line clinical characteristics of patients and recorded the
hourly urine output from ICU admission to discharge.
The following clinical variables of patient were also re-

corded: sex, age, body mass index (BMI), preexisting
clinical conditions of each patient, admission type, base-
line sCr, baseline estimated glomerular filtration rate
(eGFR),, blood laboratory values at ICU admission
(hemoglobin, serum glucose, procalcitonin, lactate, C-
reactive protein), Acute Physiology and Chronic Health
Evaluation (APACHE) II score at ICU admission, Se-
quential organ failure assessment score (SOFA) at ICU
admission, use of nephrotoxic drugs within 5 days before
ICU admission (nonsteroidal anti-inflammatory drug,
angiotensin-converting enzyme inhibitor, angiotensin re-
ceptor blocker, immunosuppressant, sulfadiazine, ami-
noglycoside, vancomycin, acyclovir, amphotericin,
allopurinol, or polymyxin), administration of radio-
graphic contrast before ICU admission, site of infection,
mean arterial pressure at ICU admission, use of vaso-
pressor at ICU admission (dopamine, norepinephrine, or
vasopressin), length of ICU stay, length of hospital stay,
renal replacement therapy (RRT) during ICU stay, 30-
day mortality after ICU admission. The baseline esti-
mated glomerular filtration rate (eGFR) was calculated
by the Chronic Kidney Disease Epidemiology Collabor-
ation Eq. [26].

Definitions
The outcome was the development of AKI. According to
the Kidney Disease Improving Global Outcomes
(KDIGO) criteria for AKI [27], AKI was defined within
one week after ICU admission as any of the following:
increase in sCr by ≥ 0.3 mg/dl (≥ 26.5 µmol/l) within
48 h, or increase in sCr to ≥ 1.5 times baseline within
one week, or urine output < 0.5 ml/kg/h for 6 h. Severe
AKI was defined as KDIGO stage 2 or stage 3 AKI. A
baseline creatinine was defined by the following rules
ranked in the descending order of preference as previ-
ously recommended [28]: (1) the most recent pre-ICU
creatinine value between 30 and 365 days before ICU
admission (n = 58); (2) a stable pre-ICU creatinine
value > 365 days for patients aged < 40 years, (the stable
creatinine value was defined as within 15 % of the lowest
ICU measurement) before ICU admission (n = 1); (3)
pre-ICU creatinine value > 365 days before ICU admis-
sion and less than the initial sCr at ICU admission (n =
14); (4) a pre-ICU creatinine value (between 3 and 39
days before ICU admission) less than or equal to the ini-
tial on-admission creatinine to ICU and not distinctly in
AKI (n = 153); (5) the lowest creatinine value upon initial

admission to ICU (n = 54), the last ICU value (n = 51), or
the minimum value at follow-up up to 365 days (n = 27).
Sepsis was defined according to the American College of
Chest Physicians and the Society of Critical Care Medi-
cine Consensus Conference Committee guidelines [29].

Biomarker assays
According to the manufacturer’s instructions, serum
Cystatin C (CysC) and creatinine, urinary creatinine, and
NAG levels were measured using the UniCel DxC 800
Synchron System (Beckman Coulter, USA). The coeffi-
cients of intraassay and interassay variation for sCysC
were ≤ 10 % and < 5 %, respectively. The coefficients of
intraassay and interassay variation of uNAG were both
≤ 10 %. The value of urinary NAG was normalized to
urinary creatinine concentration. The personnel measur-
ing the biomarkers were blinded to all patient’s clinical
characteristics. The stability of sCysC and uNAG has
already been proven [30–32], thereby pre-analysis about
the influence of cooling or freezing of these samples was
not performed.

Sample size consideration
The sample size was calculated based on the rule de-
scribed by Harrell, Vittinghoff, Steyerberg [33], namely,
events per variable (EPV) being ten or greater was an
important issue for estimation of multivariable regres-
sion coefficients in the multivariate regression model.
Based on previous similar studies [19, 34], we considered
about 5–6 significant clinical risk factors in developing a
risk model of AKI. Therefore, it would need a minimum
sample size of 50–60 (5*10 − 6*10) patients who had
events (AKI) after ICU admission in development
cohort.

Statistical analysis
SPSS version 13.0 (SPSS, Chicago, IL, USA), R version
3.3.1 (R Foundation for Statistical Computing, Vienna,
Austria), and MedCalc version 12.5.0 (MedCalc Soft-
ware, Ostend, Belgium) software programs were used for
statistical analysis.
Non-normally distributed continuous variables were

presented as medians (interquartile range). The non-
normally distributed continuous variables were com-
pared by Wilcoxon rank-sum test or Kruskal-Wallis test
for one-way analysis of variance. If the Kruskal–Wallis
test showed statistical significance, a post hoc test was
subsequently conducted with the Bonferroni correction.
Categorical variables were expressed as number (per-
centage) and Chi-square or Fisher’s exact test was then
used to compare the categorical variables. Non-
parametric Spearman’s test was used to assess the corre-
lations among continuous variables displayed non-
normal distributions or categorical variables.
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In order to assess the discrimination capability of clin-
ical models for AKI prediction, receiver-operating char-
acteristic (ROC) curve was generated. The area under
the curve (AUC) was then derived from the ROC curve.
All confidence interval (CI) presented are 95 %. The
comparison of AUC between the groups in same data
set was conducted with the method developed by
DeLong et al. [35], and the comparison of AUC between
the groups was conducted using Hanley-McNeil
methods [36]. The optimal cut-off value for predicting
AKI was defined according to the Youden’s index [37].
The specificity and sensitivity, negative and positive pre-
dictive values (NPV and PPV), and negative and positive
likelihood ratios (LR) were also calculated.
To construct a predictive nomogram for the probabil-

ity of AKI in septic patients, we firstly conducted univar-
iate and multivariate logistic regression to construct the
clinical models in the development cohort. The candi-
date variables with P < 0.10 in univariate analysis were
included in multivariate analysis for further variable se-
lection. The forward stepwise (likelihood ratio) was then
used. Since the APACHE II score system not only over-
laps with the SOFA score but also contains more evalu-
ating parameters than the SOFA score. To avoid the
collinearity and over-fitting, the APACHE II score but
not the SOFA score was included in logistic regression.
A clinical model was firstly constructed without candi-
date variables of uNAG and sCysC in univariate logistic
regression. Then the performance of the two biomarkers
(uNAG and sCysC) combined with this clinical model
was compared by AUC, integrated discrimination im-
provement (IDI) index, and continuous net reclassifica-
tion improvement (cNRI) index, as described previously
[38, 39]. A predictive nomogram was obtained from the
best one. The points of each factor in the nomogram
were first gotten by drawing a vertical line from the pre-
dictor to the point axis. The total points for each patient
were the sum of all the points from all the factors. The
estimated probability of AKI occurrence was obtained by
drawing a vertical line from the total point axis to the
risk of AKI prediction. The Hosmer-Lemeshow test [40]
was then used to evaluate the calibration plot of the
nomogram. The validity of the predictive nomogram
was verified in the validation cohort. Decision curve ana-
lysis (DCA) [41, 42] was also performed to evaluate the
net benefit of decision for AKI prediction with the
nomogram in the entire cohort.
All the tests were two-tailed, and P < 0.05 was consid-

ered statistically significant.

Results
Patient characteristics
Of the 713 consecutive adult septic patients screened for
the inclusion in this study, 355 (49.8 %) were excluded

(Additional file 1: Fig. S1). Thus, 358 patients were en-
rolled for analysis, including development cohort (232
patients) and validation cohort (126 patients). Patient
characteristics are present in Table 1. In the develop-
ment cohort, 69 patients (29.7 %) developed AKI after
ICU admission, while 52 patients (41.3 %) developed
AKI in the validation cohort. In entire cohort, there were
100 non-survivors within 30-day after ICU admission.

Development of the nomogram model for AKI prediction
The ROC curve analysis in development cohort revealed
that both sCysC and uNAG predicted AKI with statis-
tical significance (Additional file 2: Table S1). The AUC-
ROC value of sCysC for AKI was 0.724, which was not
superior to that of uNAG. The AUC-ROC value of the
combination (sCysC and uNAG) for AKI was 0.781,
which demonstrated better performance than either of
these two individual biomarkers.
We first analyzed the risk factors for AKI prediction

without candidate variables of uNAG and sCysC in
univariate logistic regression (Table 2). The independ-
ent risk factors included APACHE II score, serum
creatinine, and vasopressor used at ICU admission.
The clinical model A for AKI prediction was then
constructed. This model could predict AKI with rea-
sonable certainty (AUC-ROC = 0.784). To evaluate the
added contribution of these two biomarkers (uNAG
and sCysC) to the clinical model for AKI prediction,
logistic regression analysis was further performed
(Table 3 and Additional file 3: Table S2). The AUC-
ROC was significantly improved to 0.831 with the
addition of uNAG plus sCysC (P = 0.034). The
Hosmer-Lemeshow goodness-of-fit indicated that the
risk model calibration was good (P = 0.383). Moreover,
addition of sCysC plus uNAG significantly improved
the risk reclassification of AKI over the clinical model
A alone, with the largest cNRI (0.575) and IDI (0.085)
(Table 3). Additionally, sCysC had significant but
weak correlation with sCr at ICU admission (P <
0.01), while there was no significant correlation be-
tween uNAG and sCr at ICU admission (Additional
file 4: Table S3). Therefore, the model containing
sCysC, uNAG, serum creatinine, APACHE II score,
and vasopressor used at ICU admission for AKI pre-
diction was presented as the prediction nomogram
(Fig. 1). ROC-AUC analyses for AKI prediction in the
development cohort were showed in the Fig. 2.
Severe AKI can also be distinguished by the prediction

model which included sCysC and uNAG. The AUC for
severe AKI is 0.741 (0.675–0.808) in the entire cohort.
However, there was no significant difference in nomo-
gram score between mild and severe AKI patients (Add-
itional file 5: Table S4).
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Table 1 Baseline characteristics and outcomes in entire cohorta

Characteristics Development cohort (n = 232) Validation cohort (n = 126) P-value

Demographic variables

Age, years 62 (50–72) 60 (51–72) 0.606

Males, n (%) 143 (61.6) 83 (65.9) 0.428

BMI, kg/m2 22.1 (20.3–23.9) 22.4 (19.6–25.7) 0.440

Preexisting clinical conditions

Hypertension, n (%) 76 (32.8) 47 (37.3) 0.387

Diabetes mellitus, n (%) 34 (14.7) 18 (14.3) 0.925

Cerebrovascular disease, n (%) 63 (27.2) 46 (36.5) 0.066

Chronic liver disease, n (%) 11 (4.7) 2 (1.6) 0.220

Coronary artery disease, n (%) 23 (9.9) 17 (13.5) 0.305

Heart failure, n (%) 18 (7.8) 11 (8.7) 0.748

Malignancy, n (%) 51 (22.0) 29 (23.0) 0.823

CKD, n (%) 19 (8.2) 9 (7.1) 0.725

COPD, n (%) 28 (12.1) 13 (10.3) 0.619

Admission type, n (%) 0.112

Elective surgical, n (%) 38 (16.4) 14 (11.1)

Emergency surgical, n (%) 44 (19.0) 17 (13.5)

Medical, n (%) 150 (64.7) 95 (75.4)

Medication before ICU admission, n (%)

Nephrotoxic drugsa 45(19.4) 26(20.6) 0.779

Radiographic contrast 20(8.6) 15(11.9) 0.318

Sites of infection, n (%) 0.666

Pulmonary or thoracic cavity 163 (70.3) 3 (73.8)

Abdomen 26 (11.2) 11 (8.7)

Biliary tract 5 (2.2) 3 (2.4)

CNS infections 19 (8.2) 6 (4.8)

Othersb 19 (8.2) 13 (10.3)

MAP at ICU admission, mmHg 93 (84–104) 90 (82–101) 0.096

Need for vasopressor at ICU admission, n (%) 31(13.4) 25(19.8) 0.107

Mechanical ventilation at ICU admission, n (%) 143(61.6) 89(70.6) 0.089

Laboratory test

Baseline serum creatinine, mg/dL 0.70 (0.57–0.87) 0.74 (0.59–0.89) 0.416

Baseline eGFR, mL/min/1.73 m2 96.01(81.98-111.62) 97.42(80.74–110.20) 0.997

sCysC at ICU admission, mg/L 0.93 (0.76–1.21) 0.99 (0.75–1.32) 0.271

uNAG at ICU admission, U/g Cre 44.21(24.07–74.25) 34.22 (20.60-61.52) 0.016

Serum creatinine at ICU admission, mg/dL 0.79 (0.66–1.01) 0.85 (0.69–1.03) 0.244

Serum glucose at ICU admission, mg/dL 143 (112–186) 150 (125–211) 0.060

Hemoglobin at ICU admission, g/L 110 (93–124) 106 (89–124) 0.420

Platelet at ICU admission,109/L 197 (139–266) 188 (135–264) 0.903

Serum PCT at ICU admission,ng/ml 0.58 (0.16–2.89) 0.56 (0.18–2.55) 0.780

CRP at ICU admission,mg/L 58.66(18.33-124.48) 61.30(21.90-141.18) 0.638

Total bilirubin at ICU admission > 2 mg/dL, n (%) 30 (12.9) 19 (15.1) 0.572

Albumin at ICU admission < 3 mg/dL, n (%) 115(49.6) 47(37.3) 0.026

Lactate at ICU admission > 2mmol/L, n (%) 64 (27.6) 42 (33.3) 0.255
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Validation of the nomogram model for AKI prediction
Based on the clinical models constructed in the develop-
ment cohort, we compared the predictive ability of these
two models in the validation cohort (Additional file 6:
Table S5). In validation cohort, the clinical model in-
cluding the APACHE II score, serum creatinine, and
vasopressor used at ICU admission yielded AUC of
0.668 (95 % CI 0.570–0.765). Adding sCysC and uNAG
to this model significantly improved the AUC to 0.784
(95 %CI 0,703-0.865) (P < 0.001). Furthermore, incorpor-
ating them significantly improved risk reclassification
over the predictive model alone, with cNRI (0.660) and
IDI (0.104). Therefore, the model containing sCysC,
uNAG, serum creatinine, APACHE II score, and vaso-
pressor used at ICU admission was presented as the pre-
diction nomogram for AKI (Fig. 1). Correspondingly,
ROC analysis of this model for AKI in the validation co-
hort was demonstrated (Fig. 2). The P value for the
Hosmer-Lemeshow goodness-of-fit of this model in the
validation cohort were 0.541. The AUC-ROC (95 %CI)
for the development and validation cohort was 0.831
(0.775–0.887) and 0.784(0.703–0.865), respectively.
There was no significant difference between them (P =
0.349). First, the clinical model was internally validated
with the bootstrap validation method (Fig. 3 a). Calibra-
tion plots for the nomogram in the development (Fig. 3 a)
and validation (Fig. 3b) cohort were then generated. The
calibration plots demonstrated that the AKI predicted
probabilities of AKI agreed with the actual probabilities.
The DCA demonstrated that nomogram could add

more net benefits over the “treat-none” or “treat-all”

strategies, which indicated good clinical utility of this
nomogram (Fig. 4).

Nomogram and adverse outcome
Notably, there was significantly positive relationship be-
tween mortality and the total score calculated by the
AKI risk nomogram (Additional file 7: Table S6). More-
over, there was significantly negative relationship be-
tween the nomogram score and the timing of AKI
occurrence (r = -0.264, P = 0.003) (Additional file 8:
Table S7).
SOFA predicted AKI in development cohort with a

sensitivity of 52 % and a specificity of 79 %, respectively
(Additional file 9: Table S8). Given the correlation be-
tween SOFA score and sepsis, we further constructed a
prediction model in the development cohort with SOFA
score as one of the candidate variables instead of APAC
HE II (Additional file 10: Table S9). A prediction model
for AKI prediction was then built including serum cre-
atinine at ICU admission, need for vasopressor at ICU
admission, SOFA score, sCysC, and uNAG (Additional
file 11: Table S10). The model yielded an AUC of 0.830
in the development cohort, and 0.776 in the validation
cohort (Additional file 12: Table S11). There was no sig-
nificant difference between them.

Discussion
The main finding of the present study was that the pre-
diction nomogram incorporating renal functional marker
(sCysC) and tubular damage marker (uNAG), together
with routine clinical factors may be a useful tool for

Table 1 Baseline characteristics and outcomes in entire cohorta (Continued)

Characteristics Development cohort (n = 232) Validation cohort (n = 126) P-value

pH value at ICU admission≤ 7.30, (%) 18 (7.8) 13 (10.3) 0.411

APACHE II score, at ICU admission 19 (15–24) 19 (15–24) 0.953

SOFA score, at ICU admission 5 (3–7) 4 (3–5) < 0.001

UPc, ml/kg/h 1.77 (1.26–2.59) 1.66 (1.19–2.44) 0.128

Outcomes

AKI, n (%) 69 (29.7) 52 (41.3) 0.028

Severe AKI, n (%) 30 (12.9) 24 (19.0) 0.123

RRT (during ICU stay), n (%) 12 (5.2) 19 (15.1) 0.001

ICU mortality, n (%) 47 (20.3) 18 (14.3) 0.161

In-hospital mortality, n (%) 53 (22.8) 20 (15.9) 0.118

30-day mortality, n (%) 64 (27.6) 36 (28.6) 0.843
aThe non-normally distributed continuous variables are expressed as median (25th percentile to 75th percentile [interquartile range]). Categorical variables are
expressed as n (%); bincludes any of the following medications administered within 5 days before ICU admission: nonsteroidal anti-inflammatory drug,
angiotensin-converting enzyme inhibitor, angiotensin receptor blocker, immunosuppressant, sulfadiazine, aminoglycoside, vancomycin, acyclovir, amphotericin,
allopurinol, or polymyxin; cincludes any of the following sites of infection: soft tissue, blood, or urinary tract; cUP, urine production first 24 h after admission.
Abbreviations:AKI acute kidney injury; BMI body mass index; CKD chronic kidney disease, defined as baseline eGFR<60 ml/min per 1.73m2; COPD chronic
obstructive pulmonary disease; CNS central nervous system; MAP mean arterial pressure; ICU Intensive care unit; eGFR estimated glomerular filtration rate;
sCysC serum Cystatin C; uNAG urinary N-acetyl-ß-D-glucosaminidase; Cre creatinine concentration; PCT procalcitonin; CRP C-reactive protein; APACHE II Acute
Physiology and Chronic Health Evaluation score; SOFA sequential organ failure assessment score; UP urine production first 24 hours after admission; RRT renal
replacement therapy.
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Table 2 Logistic regression analysis of factors related to AKI in the development cohorta

Variable Univariate analysis Multivariate analysis

ORunadj 95 % CI P value ORadj 95 % CI P value

Age, years 1.006 0.989–1.025 0.476

Males 0.622 0.351–1.102 0.104

BMI, kg/m2 0.985 0.901–1.077 0.735

Preexisting clinical conditions

Hypertension 1.248 0.690–2.256 0.464

Diabetes mellitus 1.349 0.626–2.907 0.444

Cerebrovascular disease 1.696 0.919–3.128 0.091

Chronic liver disease 2.044 0.602–6.937 0.251

Coronary artery disease 1.956 0.813–4.704 0.134

Heart failure 1.560 0.578–4.210 0.380

Malignancy 0.669 0.326–1.374 0.274

CKD 3.675 1.408–9.591 0.008

COPD 1.137 0.487–2.655 0.767

Admission type, n (%) 0.064

Elective surgical (reference)

Emergency surgical 3.080 0.990–9.578 0.052

Medical 3.300 1.214–8.970 0.019

Medication before ICU admission, n (%)

Nephrotoxic drugsb 1.084 0.535–2.194 0.823

Radiographic contrast 2.073 0.818–5.255 0.125

Sites of infection, n (%) 0.982

Pulmonary or thoracic cavity (reference)

Abdomen 1.065 0.434–2.615 0.891

Biliary tract 1.597 0.259–9.864 0.614

CNS infections 0.856 0.292–2.508 0.776

Othersc 1.106 0.397–3.080 0.847

MAP at ICU admission, mmHg 1.002 0.985–1.019 0.833

Need for vasopressor at ICU admission 6.694 2.948–15.196 < 0.001 5.637 2.349–13.528 < 0.001

Mechanical ventilation at ICU admission 1.925 0.730–5.071 0.185

Serum creatinine at ICU admission, mg/dL 7.732 2.784–21.472 < 0.001 8.955 2.775–28.903 < 0.001

Serum glucose at ICU admission, mg/dL 1.004 0.999–1.008 0.093

Hemoglobin at ICU admission, g/L 0.996 0.985–1.007 0.454

Platelet at ICU admission,109/L 0.997 0.994-1.000 0.070

Serum PCT at ICU admission,ng/ml 1.014 0.994–1.034 0.170

CRP at ICU admission,mg/L 1.002 0.998–1.006 0.287

Total bilirubin at ICU admission > 2 mg/dL 1.994 0.909–4.371 0.085

Albumin at ICU admission < 3 mg/dL 1.160 0.660–2.038 0.606

Variable Univariate analysis Multivariate analysis

ORunadj 95% CI Pvalue ORadj 95% CI Pvalue

Lactate at ICU admission > 2mmol/L 0.996 0.531–1.871 0.991

pH value at ICU admission≤ 7.30 1.198 0.431–3.334 0.729

APACHE II score 1.106 1.057–1.156 < 0.001 1.104 1.050–1.160 < 0.001

UP, ml/kg/h 1.142 0.893–1.460 0.289

aThe clinical model was constructed without candidate variables of uNAG and sCysC in univariate logistic regression
bincludes any of the following medications administered within 5 days before ICU admission: nonsteroidal anti-inflammatory drug, angiotensin-converting enzyme inhibitor,
angiotensin receptor blocker, immunosuppressant, sulfadiazine, aminoglycoside, vancomycin, acyclovir, amphotericin, allopurinol, or polymyxin; cincludes any of the following
sites of infection: soft tissue, blood, or urinary tract. Abbreviations: AKI acute kidney injury; ORunadj odds ratio unadjusted; ORadj odds ratio adjusted; CI confidence interval;
BMI body mass index; CKD chronic kidney disease, defined as baseline eGFR<60 ml/min per 1.73m2; COPD chronic obstructive pulmonary disease; CNS central nervous system;
MAP mean arterial pressure; ICU Intensive care unit; eGFR estimated glomerular filtration rate; sCysC serum Cystatin C; uNAG urinary N-acetyl-ß-D-glucosaminidase;
Cre creatinine concentration; PCT procalcitonin; CRP C-reactive protein; APACHE II Acute Physiology and Chronic Health Evaluation score; UP urine production first 24 hours after
admission; RRT renal replacement therapy.
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individualized prediction of AKI in septic patients. To
the best of our knowledge, this study demonstrates for
the first time that the nomogram incorporating sCysC
and uNAG yields good discrimination for AKI predic-
tion in septic patients.
AKI, one of the most frequent complication of critic-

ally ill patients, is especially common in septic patients
[7]. In our septic cohort, AKI prevalence after ICU ad-
mission was 33.8 %. Hitherto, no single marker can re-
flect the complexity of the pathogenesis of AKI [43].
Accordingly, the ADQI working group recommended
biomarkers combination for improvement in the recog-
nition of AKI [13], including combining tubular damage
and functional biomarkers. Urinary NAG represents
tubular damage [12, 17], while sCysC is considered as
functional biomarker [17]. Notably, they are clinically
available. Moreover, sCysC was reported to be associated
with AKI development in septic patients [44]. Addition-
ally, previous study indicated that the increment of
uNAG was caused not by sepsis, but by the occurrence
of AKI [18]. Hence, we selected them to conduct our in-
vestigation based on the hypothesis that renal bio-
markers can be classified as those indicating tubular
damage and those representing changes in renal func-
tion [17]. In the present study, we found that compared
to the clinical model without sCysC and uNAG, the
model incorporating them performed better for AKI pre-
diction in septic patients. The improved ability of these
two biomarkers (sCysC and uNAG) in this study is in
keeping with our prior study in patients undergoing
neurosurgery [20].
Therefore, we developed and validated a nomogram

for AKI risk prediction including above-mentioned bio-
markers. Previous studies reported several nomogram
models in predicting AKI [21, 23], however, seldom fo-
cused on septic patients. Recently, an analysis identified
predictive factors in septic patients admitted to the ICU
in the first 24-hour and constructed a nomogram for
AKI [45]. In that study, only traditional clinical parame-
ters were considered without new renal biomarkers. To
our knowledge, our nomogram is the first one incorpor-
ating functional and tubular damage biomarkers for AKI
prediction in septic patients. Our nomogram effectively

predicted AKI risk as indicted by the AUC-ROC value.
The bootstrapped calibration curves also demonstrated
that the prediction agreed well with the actual observa-
tion of AKI.
The foremost usage of this nomogram is to individu-

ally predict the probability of AKI occurrence in septic
patients. The points of each risk factor in this nomo-
gram were first determined by drawing a vertical line
from the predictor to the point axis. Second, all the
points from all the risk factors were sum up to generate
the total points. Third, the estimated probability of AKI
could be obtained by drawing a vertical line from the
total point axis to the risk of AKI. For example, a patient
who need for vasopressor at ICU admission (corre-
sponds to 12 points) has serum creatinine at ICU admis-
sion of 0.6 mg/dL (5 points), uNAG at ICU admission of
98 U/g Cr (10 points), sCySc at ICU admission of
1.2 mg/L (10 points), and APACHE II score of 26 (15
points). According to the proposed nomogram, the final
point is calculated as the sum of scores for all risk fac-
tors (12 + 5 + 10 + 10 + 15 = 52), predicting AKI risk of
approximately 60 %. To validate the clinical utility of this
nomogram, we employed DCA to assess the nomogram
in the entire cohort. Based on threshold probability, this
novel statistic method provided further insight into clin-
ical consequences and calculated the net benefit gained
from the nomogram. In the present study, the DCA in-
dicated that the proposed nomogram had good clinical
utility. Therefore, this nomogram could facilitate doctors
an advisable decision before any administration of pre-
vention or treatment.
CKD is associated with AKI occurrence [46]. How-

ever, CKD was not retained in the present risk model.
The APACHE II score, including but not limited to
patient’s serum creatinine and chronic kidney func-
tion status, is a physiologically based system contain-
ing 12 physiological parameters. Therefore, APACHE
II score is a common prediction tool of adverse out-
come in ICU patients. In the present study, APACHE
II was chosen as one of the independent predictors in
the risk model. Probably owing to this reason, CKD
was not chosen during the multivariate logistic re-
gression in our study.

Table 3 AUC-ROC, NRI and IDI analyses of AKI in development cohort

Variables AUC-ROC P-valueb IDI (95% CI) P-valueb cNRI (95% CI) P-valueb

Clinical model Aa 0.784(0.720–0.849)

+uNAG 0.817(0.759–0.876) 0.091 0.068(0.028–0.108) < 0.001 0.504(0.231–0.776) < 0.001

+sCysC 0.807(0.747–0.867) 0.142 0.034(0.004–0.063) 0.024 0.468(0.193–0.743) < 0.001

+sCysC and uNAG 0.831(0.775–0.887) 0.034 0.085(0.042–0.128) < 0.001 0.575(0.303–0.847) < 0.001
aClinical model A for AKI prediction is composed of serum creatinine at ICU admission, need for vasopressor at ICU admission, APACHE II score; bVersus clinical
model A. Abbreviations: AKI acute kidney injury; AUC-ROC area under the receiver operating characteristic curve; NRI net reclassification improvement index;
IDI integrated discrimination improvement index; CI Confidence Interval; sCysC serum Cystatin C; uNAG urinary N-acetyl-ß-D-glucosaminidase; ICU intensive care
unit; APACHE II Acute Physiology and Chronic Health Evaluation score.
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Fig. 1 Nomogram predicting the probability of AKI in septic patients of the development cohort. Abbreviations: ICU, Intensive care unit; sCr,
serum creatinine; sCysC, serum Cystatin C; uNAG, urinary N-acetyl-ß-D-glucosaminidase; APACHE II, Acute Physiology and Chronic Health
Evaluation score
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Fig. 2 Receiver operating characteristic curve analyses of model for predicting the AKI in the development and validation cohort. Abbreviations:
AKI, acute kidney injury; AUC, area under the receiver operator characteristic curve; CI, confidence interval

Fig. 3 Calibration plot for nomogram in the development (A) and validation cohort(B). In the calibration plot, the X-axis represents the predicted
probability of AKI, and the Y-axis indicates the actual AKI rate. The 45º dashed line illustrates ideal predictions, the plot represents the accuracy of
the best-fit model (“Apparent”) and the bootstrap model (“Bias-corrected”) for predicting AKI. The calibration plot illustrates the relationship
between the predicted probability and observed probability of the scoring system for predicting AKI in the data set. Abbreviations: AKI, acute
kidney injury
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Our study has limitations. First, we only measured
these two biomarkers once at ICU admission. According
to ADQI recommendation [13], it may be not practical
and cost-effective for collecting and measuring a series
of samples at frequent time points. Therefore, we specu-
late that our conclusions are not debilitated by this limi-
tation. Second, without an external validation dataset,
we could not assess whether our nomogram may be
suitable to patients outside of our center. Future study
including multicenter is need. Third, there was signifi-
cant but weak correlation between sCysC and sCr at
ICU admission. Hence, multicollinearity of the risk fac-
tors still should be concerned in our study, even though
we used multivariate logistic regression for further vari-
able selection. Last but not least, nephrotoxins exposure
was not included in our risk model. We constructed an
AKI nomogram with readily available variables obtained
at ICU admission for clinicians to screen the high-risk
patients. Accordingly, nephrotoxins exposure after ICU
admission was not taken into account in this study,
which may partly contribute to the exclusion of
nephrotoxins exposure. The study regarding the renal
effects of nephrotoxins exposure will be conducted in
future study.
The performance of AKI risk model may differ

considerably across different clinical settings. Our fu-
ture studies will focus on the comparison between
other published models and our proposed nomo-
gram. In addition, more recent statistical techniques,
such as logistic least absolute shrinkage and selection
operator (LASSO) regression need to be applied in
future study.

Conclusions
The present study showed that a prediction nomogram
that incorporates functional marker (sCysC) and tubular
damage marker (uNAG), together with routine clinical
factors may be an effective tool for individualized predic-
tion of AKI in septic patients.
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