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Excretion of urine extracellular vesicles
bearing markers of activated immune cells
and calcium/phosphorus physiology differ
between calcium kidney stone formers and
non-stone formers
Jiqing Zhang1,2, Sanjay Kumar2,3, Muthuvel Jayachandran2,4,5, Loren P. Herrera Hernandez6, Stanley Wang2,
Elena M. Wilson2 and John C. Lieske2,6*

Abstract

Backgrounds:: Previous studies have demonstrated that excretion of urinary extracellular vesicles (EVs) from
different nephron segments differs between kidney stone formers and non-stone formers (NSFs), and could reflect
pathogenic mechanisms of urinary stone disease. In this study we quantified selected populations of specific
urinary EVs carrying protein markers of immune cells and calcium/phosphorus physiology in calcium oxalate stone
formers (CSFs) compared to non-stone formers (NSFs).

Methods: Biobanked urine samples from CSFs (n = 24) undergoing stone removal surgery and age- and sex-
matched NSFs (n = 21) were studied. Urinary EVs carrying proteins related to renal calcium/phosphorus physiology
(phosphorus transporters (PiT1 and PiT2), Klotho, and fibroblast growth factor 23 (FGF23); markers associated with
EV generation (anoctamin-4 (ANO4) and Huntington interacting protein 1 (HIP1)), and markers shed from activated
immune cells were quantified by standardized and published method of digital flow cytometry.
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Results: Urine excretion of calcium, oxalate, phosphorus, and calcium oxalate supersaturation (SS) were significantly
higher in CSFs compared to NSFs (P < 0.05). Urinary excretion of EVs with markers of total leukocytes (CD45),
neutrophils (CD15), macrophages (CD68), Klotho, FGF23, PiT1, PiT2, and ANO4 were each markedly lower in CSFs
than NSFs (P < 0.05) whereas excretion of those with markers of monocytes (CD14), T-Lymphocytes (CD3), B-
Lymphocytes (CD19), plasma cells (CD138 plus CD319 positive) were not different between the groups. Urinary
excretion of EVs expressing PiT1 and PiT2 negatively (P < 0.05) correlated with urinary phosphorus excretion,
whereas excretion of EVs expressing FGF23 negatively (P < 0.05) correlated with both urinary calcium and
phosphorus excretion. Urinary EVs with markers of HIP1 and ANO4 correlated negatively (P < 0.05) with clinical
stone events and basement membrane calcifications on papillary tip biopsies.

Conclusions: Urinary excretion of EVs derived from specific types of activated immune cells and EVs with proteins
related to calcium/phosphorus regulation differed between CSFs and NSFs. Further validation of these and other
populations of urinary EVs in larger cohort could identify biomarkers that elucidate novel pathogenic mechanisms
of calcium stone formation in specific subsets of patients.
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Background
Urinary stone disease (USD) is common, painful, and
costly to manage, affecting approximately 1 in 11 people
in the United States and 5–15 % of the population
worldwide[1–3]. Management of USD constitutes a sig-
nificant portion of the patient load in urology clinics[4].
The majority (70–80%) of urinary stones are composed of
calcium oxalate (CaOx), often in combination with calcium
phosphate[5].The 5 year recurrence rate after a first USD
event can be as high as 50%[6]. Many stones, especially idio-
pathic CaOx stones, appear to arise from subepithelial inner
medullary calcium phosphate (CaP) crystal deposits called
Randall’s plaques (RP)[2, 7, 8]. These interstitial apatite de-
posits appear to originate in basement membrane zones of
the thin limb of Henle’s loop, and over time extend along
the basement membrane of the thin limb to create apatite
plaques beneath the papillary epithelium[7–10]. The plaques
eventually breach the surface epithelium of renal papillae
and extrude into the urinary space[2, 9, 10]. Once exposed,
RP appear to serve as a nidus for deposition of protein and
crystal layers from the urine in the renal pelvis, thus ultim-
ately leading to anchored CaP and/or CaOx urinary stones[2,
8, 9].However, much is still not clear about the initiation and
progression of RP and calcium stone formation. This lack of
an in-depth mechanistic understanding has hindered the de-
velopment of potential therapies [5].
Supersaturation within tubular fluid favors CaOx crys-

tal formation. Once formed these crystals may adhere to
and become internalized by tubular epithelial cells, and
subsequently transmigrate into the interstitium[11].
These, crystals may activate interstitial mononuclear
phagocytes including dendritic cells and macrophages
that can release cytokines including interleukin-1β (IL-
1β) to promote inflammatory cell transmigration and re-
cruitment to the site of inflammation[11, 12]. Activation

of nicotinamide adenine dinucleotide phosphate (NADP
H), leucine-rich repeat (LRR), and NOD like pyrin
domain-containing protein 3 (NLRP3) in macrophages
can potentially aid in crystal dissolution, and in vitro
studies suggest that CaOx crystals up to 200 μm in size
can be dissolved within 3 days[7, 11]. NLRP3 serves as a
marker of inflammasome activation, a process that pro-
motes immune cell influx and triggers vascular perme-
ability, leukocyte recruitment, complement activation,
and inflammatory mediator production[13].
Extracellular vesicles (EVs) are lipid bilayer

membrane-bound vesicles secreted by almost all cells in-
volved in pathophysiological processes[12, 14]. EVs ap-
pear to transmit signals between cells under both
physiological and pathological conditions[14]. The con-
centration and content of bioactive molecules in urinary
EVs, including microRNA, DNA, mRNA, lipids and pro-
teins all depend on their cell of origin and/or stimulus
for their secretion [14–16]. Previous studies have re-
ported that EVs participate in signal communication
during renal regenerative and pathological processes[14].
Thus, specific populations of urinary EVs may reflect
pathophysiological processes within the kidney[15]. In
particular, urinary EVs released from the epithelium of
different nephron segments could serve as biomarkers of
diverse pathological states and response to therapeutic
agents[5]. Previous reports demonstrated that EVs de-
rived from specific immune cells and EVs carrying in-
nate immune proteins can be detected in the urine after
kidney transplantation[17, 18].Thus, in the present study
we characterized populations of urinary EVs derived
from activated immune cells in CSFs compared to NSFs
(controls). Our previous studies demonstrated that urin-
ary excretion of specific EV populations derived from
different nephron segments varied between cohorts of
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CSFs and NSFs[5, 19].Specifically we quantified urinary
EVs bearing markers of immune/inflammatory cells acti-
vation, calcium/phosphorus physiology and EV gener-
ation from the plasma membrane and endocytic vesicles.

Methods
Urine sample collection and storage
This study was approved by the Institutional Review Board
at the Mayo Clinic, Rochester, MN. CSFs were recruited at
the time of percutaneous nephrolithotomy (PCNL) for stone
removal. Those CSFs with majority calcium oxalate stones
and without secondary causes including hyperparathyroidism
or enteric hyperoxaluria were included in the current study.
All CSFs had preoperative stone protocol CT examinations
available for review. Age- and sex- matched NSFs were re-
cruited from the community lacked history of a clinical kid-
ney stone event, but did not have imaging to exclude
asymptomatic stones. Renal papillary surface area affected by
RP was assessed via ureteroscopic video mapping at the time
of percutaneous stone removal followed by quantitative
image processing as described previously [9, 10, 20]. A papil-
lary tip biopsy was obtained from a representative calyx at
the time of mapping as previously described for 17 of the
CSFs in the current study [21]. Hematoxylin and eosin and
Yasue stained sections of the biopsies were semi quantita-
tively scored for the presence of intraluminal crystals, base-
ment membrane crystals and interstitial inflammation by a
renal pathologist (LPH) blinded to the clinical data. Urine
samples (24-hr) were collected in toluene preservative from
CSFs (n = 24, 15 males and 9 females) with low (< 5% pa-
pillary surface area; n= 16, 8 males and 8 females) and high
(≥ 5% papillary surface area; n = 8, 7males and 1 female )
amounts of RP as determined at the time of urologic stone
removal surgery, and from age-/sex-matched non-stone for-
mers (NSFs; controls) in the general population (n= 21; 10
males and 11 females), as previously described [10, 21]. Urine
from CSFs was collected a minimum of 6 weeks after the
surgical procedure. Urine aliquots were centrifuged (2100 g
for 10 min) to remove urinary cells and larger protein aggre-
gates prior to freezing at -80 °C for EV analysis. Urine bio-
chemistries of the 24-hr urine samples were performed at
the Mayo Clinic Renal Testing Laboratory using standard
protocols as previously described [21].

Chemicals, reagents, and antibodies
Recombinant annexin-V (microvesicle marker) and
mouse anti-human cluster of differentiation 3 (CD3;
marker of T-lymphocyte), CD14 (monocyte marker),
CD15 (neutrophil marker), CD19 (B-lymphocyte
marker), CD45 (total leukocytes marker), CD68 (macro-
phage marker), and CD138 (plasma cell marker) anti-
bodies conjugated with fluorescein isothiocyanate
(FITC) or R-phycoerythrin (PE) and TruCOUNT™
(4.2 μm) beads were purchased from BD Biosciences,

San Jose, CA. Mouse anti-human CD319 (marker of
plasma cell) antibody was purchased from BioLegend,
San Diego, CA. FITC conjugated rabbit anti-human
fibroblast growth factor 23 (FGF23) antibody was ob-
tained from Biorbyt, Cambridge, Cambridgeshire, UK.
PE conjugated rabbit anti-human Huntington interacting
protein 1 (HIP1), anti-human SLC20A1 (phosphate
transporter 1; PiT1), anti-human SLC20A2 (phosphate
transporter 2; PiT2), and anti-human Klotho antibodies
were from Lifespan Biosciences, Inc. Seattle, WA. FITC
conjugated rabbit anti-human anoctamin-4 (ANO4)
antibody was obtained from United States Biological,
Salem, MA. HEPES (4-(2-hydroxyethyl)-1-piperazi-
neethanesulfonic acid), and Hanks balanced salts were
purchased from Sigma Chemicals, St. Louis, MO. All re-
agents and solvents used in this study were of analytical/
reagent grade.

Quantification of urinary EVs by flow cytometry
A standardized and validated flow cytometry (BD FACS
Canto™) method was used to define EVs by size (≥
200nm to ≤ 1000nm) and annexin-V-fluorescence for
quantification of selected surface biomarker carrying
urinary EVs as previously described in detail[5, 15,
16].The absolute number of urinary EVs positive for se-
lected specific biomarkers is reported as both the num-
ber of EVs per µL of urine and also normalized to 24-hr
urine creatinine concentration[5]. Normalization to urin-
ary creatinine was used to account for the varied con-
centration of the timed urine collections[22].

Statistical analysis
Continuous variables were expressed as the median,
25th and 75th percentile. The Wilcoxon rank sum test
was used to identify significant differences between
groups for continuous variables. Correlations between
specific urinary EV populations and urinary phosphorus
or calcium excretion was assessed using Spearman’s rank
correlation coefficient. Nominal and categorical variables
were compared using a chi-squared likelihood ratio or
Fisher’s exact test. P < 0.05 was accepted as statistically
significant. JMP Pro 13 statistical software (SAS Insti-
tute; Cary, NC) was used for all statistical analysis.

Results
Analysis of clinical characteristics
All stones removed from CSFs at PCNL were composed
of a majority calcium oxalate. CSFs had a (median (25 %,
75 %)) of 2 (1, 5) clinical stone events and 4 (1,7) stones
on preoperative imaging. There was no significant differ-
ence found in age, sex distribution, body mass index,
and systolic/diastolic blood pressure between the CSFs
and NSFs groups, or between the high and low RP-CSF
patients among CSFs (Table 1). Urine pH in CSFs was
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markedly lower than NSFs (P < 0.05), whereas, as ex-
pected, urine calcium, oxalate, creatinine, phosphorus,
and CaOx supersaturation (SS) were significantly
higher in CSFs than NSFs (P < 0.05). By papillary tip
mapping, 8 CSF had high (≥ 5 %) RP and 16 low
(< 5 %) RP. Urine pH was significantly lower in high RP-
CSFs than NSFs and low RP-CSFs(P < 0.05).Urine cal-
cium was significantly higher in high RP-CSFs than

NSFs (P < 0.05), but there was no difference between
low RP-CSFs and NSFs (Table 1).

Total number of urinary EVs from activated immune/
inflammatory cells
Urinary EVs derived from total leukocytes (CD45), neu-
trophils (CD15), and macrophages (CD68) were reduced
in CSFs compared to NSFs (P < 0.05, Table 2 and

Table 1 Preoperative patient characteristics and 24-hours urine metabolic profile

Variables NSF
(n = 21)

High RP CSF (n = 8) Low RP CSF (n = 16) CSF
(High + Low RP), (n = 24)

Age (years) 65.5
(57.4, 73.0)

69.2
(60.4, 72.2)

61.2
(50.1, 72.9)

63.9
(57.1, 72.2)

Sex n (%) Male 10 (47.6 %) 7 (87.5 %) 8 (50 %) 15 (62.5 %)

Female 11 (52.4 %) 1 (12.5 %) 8 (50 %) 9 (37.5 %)

Body mass index (kg/m2) 26.2
(24.5, 30.5)

30.5
(24.3, 34.9)

27.7
(24.4, 30.0)

28.7
(24.4, 32.4)

Systolic Blood Pressure (mmHg) 124
(116.0, 137.5)

130.5
(112.3, 133.5)

119
(114, 137.8)

126
(114, 136.8)

Diastolic Blood Pressure (mmHg) 72
(64.0, 82.0)

72
(62.0, 82.3)

69.5
(62.0, 77.0)

70
(62.0, 77.8)

Urine pH 6.4
(6.0, 7.0)

5.5a

(5.2, 5.6)
6.2b

(5.7, 6.5)
6.0c

(5.4, 6.3)

Urine calcium (mg/24hr) 158.3
(86.4, 192.3)

255.5a

(132.5, 406.0)
186.5
(103.2, 273.2)

207.5c

(110.8, 330.0)

Urine oxalate (mmol/24hr) 0.27
(0.22, 0.35)

0.41a,b

(0.28, 0.64)
0.28
(0.22, 0.36)

0.30c

(0.25, 0.48)

Urine chloride (mmol/24hr) 113.8
(73.4, 139.7)

170.5a

(121.8, 233.3)
107b

(78.0, 153.8)
117.8
(99.6, 189.3)

Urine citrate (mg/24hr) 625.3
(331.3, 756.8)

298.5
(206.3, 805.1)

557
(231.7, 690.5)

450.2
(218.8, 690.5)

Urine creatinine (mg/24hr) 869.2
(633.1, 1067.3)

1790.5a

(1583, 2060)
1068b

(844.3, 1451.5)
1384.1c

(904.8, 1647.3)

Urine osmolality (mOsm/kg) 458
(314.5, 731.5)

494
(126.3, 687)

363
(319.5, 472.8)

392.5
(319.5, 556.8)

Urine phosphorus (mg/24hr) 516.3
(371.5, 759.9)

1204.5a

(1030, 1575.3)
747.8b

(483.1, 1008.3)
913.5c

(525.3, 1169.6)

Urine potassium (mmol/24hr) 48.7
(36.7, 76.0)

80.5
(59.3, 86.8)

45.4
(33.1, 66.8)b

59.5
(36.4, 78.8)

Urine sodium (mmol/24hr) 116.3
(72.1, 155.1)

174a

(131.5, 257.5)
118.5b

(91, 191.8)
144.5
(106.3, 215.7)

Urine sulfate (mmol/24hr) 15.4
(11.3, 27.5)

25
(12, 34)

11
(9, 24)

21.5
(10.3, 27.3)

Urine volume (ml, 24 h) 2087
(1597, 2529)

2388
(1596, 3222)

2095
(1454, 2788)

2115
(1454, 3064)

Urine calcium phosphate-brushite SS (DG) −0.8
(− 1.7, 0.4)

-1.7
(-2.0, 0.1)

-0.1
(-1.7, 0.8)

-0.34
(-2.0, 0.6)

Urine calcium oxalate SS (DG) 1.1
(0.7, 1.6)

1.8
(1.2. 2.5)

1.6
(1.1, 2.3)

1.6c

(1.1, 2.3)

Data are presented as median (25th and 75th percentile)
P values in bold denote significance at < 0.05 level
Abbreviations: CSF calcium stone formers; DG delta Gibbs; NSF non-stone formers; SS supersaturation
aSignificant difference between high RP CSF and NSFs
bSignificant difference between high RP and low RP CSF
cSignificant difference between CSFs and NSFs
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Supplemental Figure 1), while excretions of EVs from
activated T-lymphocytes (CD3),B-lymphocytes (CD19),
monocytes (CD14)and plasma cells (CD138 plus CD319
positive) were not statistically different between CSFs
and NSFs (Table 2).The number of total leukocyte (CD45)
positive urinary EVs in high and low RP-CSF patients was
lower than NSFs (P < 0.05). Urinary excretion of EVs bearing
markers of immune cells did not statistically differ between
high and low RP-CSFs (Table 2). In all cases, relative differ-
ences in the population of EVs were the same when
expressed as EVs/µl (Supplemental Table 1).

Urinary EVs expressing biomarkers of plasma membrane
vesicle generation (anoctamin 4;ANO4) and endocytosis
mediated exosome generation (Huntington interacting
protein 1;HIP1)
Urinary excretion of ANO4 expressing EVs was signifi-
cantly lower in CSFs than NSFs (P < 0.05), while EVs ex-
pressing HIP1 trended lower in CSFs compared to NSFs
(P = 0.07, Table 3 and Supplemental Figure 2). There
were no marked differences in the urinary excretion of
EVs carrying HIP1 and ANO4 between low and high
RP-CSF groups (Table 3). In all cases, relative differences
in the population of EVs were the same when expressed
as EVs/µl (Supplemental Table 2).

Urinary EVs expressing calcium/phosphorus physiology
Urinary excretions of EVs positive for FGF23, Klotho,
PiT1, and PiT2 were significantly (P < 0.05) lower in
CSFs compared to NSFs (Table 3 and Supplemental Fig-
ure 2).Urinary excretion of FGF23- carrying EVs in high
RP-CSFs was significantly lower than NSFs (P < 0.05),
while there was no significant difference between low
RP-CSFs and NSFs (Table 3). In all cases, relative

differences in the population of EVs were the same when
expressed as EVs/µl (Supplemental Table 1). The num-
ber of PiT1 positive urinary EVs in high and low RP-
CSF patients was lower than NSFs (P < 0.05). Urinary ex-
cretion of Klotho positive EVs were reduced in low RP-
CSFs compared with NSFs (P < 0.05). There was no sig-
nificant difference observed between high RP-CSF and
low RP-CSF for PiT1, PiT2, FGF23 and Klotho (Table 3).
Urinary excretion of EVs bearing PiT1 (ρ=-0.35;P < 0.05)
and PiT2 (ρ=-0.36;P < 0.05) negatively correlated with
24-hr urine phosphorus excretion (Table 4), while excre-
tion of EVs bearing FGF23 negatively correlated with
24-hr urine phosphorus (ρ=-0.34; P < 0.05, Table 4) and
calcium (ρ=-0.29; P < 0.05, Table 5).
In an exploratory analysis, the association of urinary

EV populations with clinical stone events, stones on im-
aging, and papillary tip histology was examined (Table 6).
Urinary EVs bearing HIP1 and ANO4 negatively (P <
0.05) correlated with clinical stones and basement mem-
brane crystallization, while those bearing PiT1, PiT2,
and Klotho negatively (P < 0.05) correlated with base-
ment membrane crystallization. Urinary EVs bearing
CD19 correlated positively with intraluminal crystals and
interstitial inflammation.

Discussion
In the current study, we quantified specific populations
of EVs in the urine of CSFs compared to NSFs. Results
indicate that the number of EVs carrying immune/in-
flammatory cell markers including those of leukocytes,
neutrophils, and macrophages were lower in CSFs com-
pared to NSFs. In addition, the number of EVs bearing
markers of proteins important in calcium and phos-
phorus regulation including FGF23, PiT1, PiT2, and

Table 2 Urinary excretion of EVs carrying biomarkers of immune/ inflammatory cells in CSFs and NSFs

Urinary EVs/ mg creatinine Marker NSF
(n = 21)

High RP CSF
(n = 8)

Low RP CSF (n = 16) CSF
(High + Low RP) (n = 24)

Total leukocyte CD45 10.5
(10.2, 11.9)

10.1a

(9.4, 10.3)
10.1b

(9.5, 10.7)
10.1c

(9.5, 10.3)

Neutrophil CD15 11.7
(10.8, 12.6)

10.8
(10.0, 11.7)

10.8
(10.2, 11.5)

10.8c

(10.2, 11.5)

B-lymphocyte CD19 11.0
(10.0, 12.3)

10.0
(9.7, 11.2)

10.0
(9.7, 11.2)

10.0
(9.7, 11.2)

T-lymphocyte CD3 10.5
(10.1, 11.4)

10.3
(9.8, 10.4)

10.2
(9.7, 10.5)

10.2
(9.8, 10.5)

Monocyte CD14 11.4
(10.1, 12.3)

10.4
(9.7, 11.2)

10.2
(9.5, 11.4)

10.3
(9.5, 11.2)

Macrophage CD68 10.9
(10.4, 12.2)

10.0a

(9.5, 10.7)
10.4
(10.1, 10.9)

10.3c

(9.8, 10.8)

Plasma cell CD138 + CD319 8.9
(7.8, 10.6)

8.8
(8.3, 9.4)

8.4
(7.5, 9.5)

8.7
(7.7, 9.5)

Data are presented as median (25th and 75th percentile) of natural log of EVs/mg creatinine. P values in bold denote significance at < 0.05 level
aSignificant difference between high RP-CSF and NSFs
bSignificant difference between low RP-CSF and NSFs
cSignificant difference between CSFs and NSFs
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Klotho were also lower in the CSFs compared to NSFs.
In general, the number of EVs did not differ between
CSFs with high versus low amounts of RP. These results
indicate that specific populations of urinary EVs may re-
flect ongoing pathological events in the kidney of the
CSFs, but perhaps those pathways are independent of, or
differ in some way, from pathways that resulted in RP
formation.
Under normal conditions, nanocrystals can form and

grow in tubular fluid, but then pass out as crystal-
luria[23]. Generally speaking, the literature suggests that
on average stone formers excrete a greater number of
crystals of larger size[23, 24]. Observations made using
cultured cells in vitro, experimental animals in vivo, and
kidney tissue from CSFs suggest that CaOx crystals can
adhere to tubular epithelial cells, become transcytosed to
the renal interstitium, and undergo dissolution within
cells[8, 11, 12, 25–27]. The kidney harbors a variety of
resident immune cells including macrophages and lym-
phocytes[28]. CaOx crystal deposition can activate renal
immune cells to increase release of chemokines and pro-
inflammatory cytokines, which in turn can recruit

additional inflammatory cells including monocytes and
neutrophils to the site[11, 12, 28, 29]. EVs secreted by
these immune cells can serve as a biomarker of their
presence and activation, and may also serve signaling
functions in vivo, including antigen presentation, im-
mune suppression, and tissue remodeling[30]. EVs se-
creted by innate immune cells such as macrophages
appear to impact innate immune regulation primarily as
pro-inflammatory and paracrine mediators[31]. In con-
trast, some subsets of immune cells and their signaling
molecules can suppress an immune response[13, 32].
For example, neutrophils secrete EVs that have anti-
inflammatory and immunosuppressive effects, mainly on
dendritic cells and macrophages[31].
Although it is assumed that urinary EVs are mainly

derived from kidney cells, evidence suggests that circu-
lating exosomes can also enter the urine via trans tubu-
lar release[33]. Interestingly, in the current study the
number of urinary EVs bearing immune cell markers
CD45, CD15, and CD68 were reduced in CSFs com-
pared with NSFs. Previously we had demonstrated that
urinary excretion of EVs carrying the inflammatory

Table 3 Urinary excretion of EVs carrying biomarkers of calcium and phosphorus physiology in CSFs and NSFs

Urinary EVs/ mg creatinine Marker NSF
(n = 21)

High RP CSF (n = 8) Low RP CSF (n = 16) CSF
(High + Low RP) (n = 24)

Exosome generation HIP1 11.7
(10.5, 12.7)

10.6
(10.2, 12.1)

10.8
(10.5, 11.4)

10.8
(10.3, 11.5)

Microvesicles generation ANO4 12.0
(11.2, 13.0)

11.2
(10.2, 12.6)

11.3
(10.6, 12.3)

11.3c

(10.5, 12.3)

Calcium/phosphorus regulators FGF23 11.5
(10.0, 12.0)

9.8a

(9.4, 11.2)
10.4
(9.8, 11.0)

10.0c

(9.7, 11.0)

Calcium/phosphorus regulators Klotho 13.6
(13.0, 14.7)

12.9
(12.4, 14.3)

12.5b

(11.6, 13.0)
12.5c

(11.7, 13.5)

Phosphate transporter 1 PiT1 12.1
(10.8, 13.0)

10.5a

(10.2, 11.7)
10.6b

(10.0, 11.6)
10.6c

(10.1, 11.6)

Phosphate transporter 2 PiT2 12.8
(11.6, 14.7)

11.8
(11.1, 13.8)

11.6
(10.6, 13.0)

11.7c

(10.9, 13.0)

Data are presented as median (25th and 75th percentile) of natural log of EVs/mg creatinine. P values in bold denote significance at < 0.05 level
aSignificant difference between high RP-CSF and NSFs
bSignificant difference between low RP-CSF and NSFs
cSignificant difference between CSFs and NSFs

Table 4 Correlation between urine EVs carrying markers of EVs generation, calcium and phosphorous regulators and urine
phosphorus

Urinary EV vs. Urine phosphorus correlation Spearman’s Coefficient
(ρ)

P value

Huntington interacting protein 1 (HIP1) −0.19 0.20

Anoctamin 4 (ANO4) −0.22 0.12

Fibroblast growth factor 23 (FGF23) −0.34 0.02

Klotho −0.21 0.15

Phosphate transporter 1 (PiT1) −0.35 0.02

Phosphate transporter 2 (PiT2) −0.36 0.01
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mediator monocyte chemoattractant protein-1 was also
lower in CSFs compared to NSFs[16]. Although in the
current study sufficient quantities of matching kidney
tissue was not available from the CSFs in order to quan-
titate sub populations of immune/inflammatory cell
and correlate that with urinary EV populations, previ-
ously published studies do suggest that the number of
immune cells within the kidney bearing CD68 may differ
in CSFs compared to NSFs[27]. In the current study the
number of inflammatory cell-derived EVs did not differ
between high RP and low RP-CSFs. This finding is con-
sistent with previous reports that RP is not associated
with inflammation[8]. Thus, in this study the observed

populations of EVs that differed between CSFs and NSFs
likely reflect events involved in stone formation, but that
are independent of RP formation and instead may relate
to processing of those crystals that are retained in the
kidney.
Singhto et al., [13, 29] reported that exposure of mac-

rophages to calcium oxalate monohydrate (COM) crys-
tals altered expression of 26 exosome proteins involved
in immune signaling. They also demonstrated that ex-
posure of macrophages with exosomes derived from
COM-treated macrophages enhanced their COM bind-
ing capacity and increased crystal migration through the
extracellular matrix[29].These macrophages manifest in-
creased fragility due to actin cytoskeleton alterations[29].
To some extent, these findings may partially explain why
in the current study the number of urinary EVs derived
from immune cells was lower in CSFs than NSFs; how-
ever, further studies are needed to elucidate this
mechanism.
In bone and cartilage the transmembrane proteins

PiT1 and PiT2 transport inorganic phosphate (Pi) into
matrix vesicles, promoting nucleation and crystallization
of Ca2+−PO4[34]. Fibroblast growth factor 23 (FGF23) is
produced primarily by osteocytes[35]. FGF23 acts on the
proximal tubule to decrease phosphorus reabsorption
and reduce serum levels of 1,25-dihydroxyvitamin D3 [1,
25(OH)2 Vitamin D3][35–37].The proximal tubule is re-
sponsible for reclaiming the majority of phosphorus fil-
tered from the blood[38]. Klotho is a co-receptor that
increases the binding affinity of FGF23 to its recep-
tors[39]. In this study, urinary excretion of EVs carrying
all four of these calcium and phosphorus related pro-
teins (FGF23, Klotho, PiT1, and PiT2) were significantly
lower in CSFs compared to NSFs. In addition, urinary
excretion of FGF23- and PiT1-carrying EVs were signifi-
cantly lower in high RP-CSFs compared to NSFs. Al-
though the exact mechanisms are not clear, these results
suggest that alterations and phosphorus transport in the
proximal tubule may influence susceptibility to RP
formation.
Urinary EVs are a mixture of exosomes and microvesi-

cles[14]. Exosomes are formed within the endosomal
network including early endosomes, late endosomes

Table 5 Correlation between urinary EVs carrying markers of EVs generation, calcium and phosphorous regulators and urine calcium

Urinary EV vs. urine Ca++ correlation Spearman’s coefficient
(ρ)

P value

Huntington interacting protein 1 (HIP1) 0.04 0.78

Anoctamin 4 (ANO4) 0.10 0.49

Fibroblast growth factor 23 (FGF23) -0.29 0.04

Klotho -0.08 0.59

Phosphate transporter 1 (PiT1) -0.17 0.26

Phosphate transporter 2 (PiT2) -0.08 0.60

Table 6 Correlation between specific populations of urinary
extracellular vesicles (EVs), clinical stone events, and papillary tip
histology in calcium kidney stone formers

Urinary EV population Spearman’ correlation (ρ) P-value

Clinical Stones

Total Stone Events

HIP1 positive EVs -0.47 < 0.05

ANO4 positive EVs -0.45 < 0.05

Stones on imagining at the time of surgery

HIP1 positive EVs -0.37 0.06

Papillary Biopsy Findings

Intraluminal crystals

CD19 positive EVs 0.59 < 0.05

Punctate basement membrane crystals

HIP1 positive EVs -0.44 < 0.05

ANO4 positive EVs -0.57 < 0.05

Klotho positive EVs -0.55 < 0.01

PiT1 positive EVs -0.52 < 0.01

PiT2 positive EVs -0.45 < 0.05

Dense basement membrane staining

ANO4 positive EVs -0.41 0.09

Interstitial inflammation

CD19 positive EVs 0.56 < 0.05

Only significantly associated biomarker-positive urinary EVs are presented.
Other biomarker-carrying urinary EVs did not correlate significantly with
clinical stone events and papillary tip histology in this cohort of calcium
kidney stone formers (data not shown)
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(multivesicular bodies, MVBs), and recycling endo-
somes[14]. Clathrin has been found in early endosomes,
which form from clathrin-coated buds[40]. HIP1 recruits
clathrin to endosomes through its central helical do-
main, which binds directly to highly conserved clathrin
light chains (CLCs)[41]. HIP1 binding to CLC is neces-
sary for HIP1 targeting to clathrin-coated pits and
clathrin-coated vesicles[41]. Biogenesis of microvesicles
occurs via outward budding and fission of the plasma
membrane[14]. Anoctamin 4 (ANO4), a Ca2+-dependent
phospholipid scramblase, not only takes part in exposing
phosphatidylserine from the inner leaflet to the outer
leaflet [42, 43], but also alters membrane curvature and
facilitates EV release[43]. Thus, HIP1 and ANO4 play
essential roles in membrane budding and EV formation
and secretion[43]. PiT1 and PiT2 are present in matrix
vesicles as noted above. We found that the numbers of
EVs carrying plasma membrane EV-biogenesis markers
(ANO4) were significantly lower in CSFs compared to
NSFs, while the number of EVs carrying HIP1 also
trended lower. It is possible that the reduced number of
these matrix vesicles relates to their ongoing rupture
and calcification within the interstitium of the CSFs.
Differences in the urinary biochemical profile of

the CSF versus NSF group in the current study
were not surprising, including lower urine pH and
greater calcium and phosphorous excretion and cal-
cium oxalate SS in CSF (Table 1) [4, 16, 27, 44].
Urine calcium and phosphorus excretion in high RP
participants were markedly higher compared with
NSFs, however those of low RP were not signifi-
cantly different. Thus, metabolic factors may differ
between high versus low RP-CSFs, as we have pre-
viously reported[21].We also found that EVs ex-
pressing PiT1 and PiT2 were negatively correlated
with urinary phosphorus excretion, and urine excre-
tion of EVs expressing FGF23 negatively correlated
with urinary calcium and phosphate excretion.
Thus, EVs containing FGF23, PiT1, and PiT2 may
reflect underlying metabolic features that favor RP
formation. However, further study will need to be
completed to determine if quantification of EVs ex-
pressing PiT1, PiT2 and FGF23 will add additional
clinically useful information to traditional urinary
super saturation profiles, perhaps reflecting risk for
RP and serving as a “liquid biopsy” for USD[5].
Our investigation has some limitations. The sample

size is relatively small because we were limited to avail-
able biobanked urine samples from surgically mapped
CSFs at Mayo Clinic, Rochester, MN. Thus, findings
need to be verified in larger cohorts of CSFs. However,
the results suggest that urinary EVs differ between CSFs
and NSFs may influence directly or indirectly USD
pathogenesis.

Conclusions
In this study we demonstrated that the urinary excretion
of EVs carrying immune cell markers including CD45,
CD15, and CD68 were lower in CSFs compared to NSFs,
but did not differ in the CSFs by RP amount. Excretion
of EVs bearing proteins related to renal calcium/phos-
phorus physiology (FGF23, Klotho, PiT1, and PiT2) were
also reduced in CSFs. These differences may reflect on-
going pathogenic events in both low and high RP-CSFs.
The cause of the reduced number of these EVs associ-
ated with specific biomarkers related to USD risk, and
their association with stone pathogenic mechanism(s),
needs further study in larger cohorts of CSFs.
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