
Han et al. BMC Nephrology          (2022) 23:172 
https://doi.org/10.1186/s12882-022-02801-y

RESEARCH

Construction and validation of a prognostic 
model of RNA binding proteins in clear cell renal 
carcinoma
Wenkai Han1, Bohao Fan2, Yongsheng Huang2, Xiongbao Wang2, Zhao Zhang1,2, Gangli Gu2* and Zhao Liu2* 

Abstract 

Background:  The dysfunction of RNA binding proteins (RBPs) is associated with various inflammation and cancer. 
The occurrence and progression of tumors are closely related to the abnormal expression of RBPs. There are few stud-
ies on RBPs in clear cell renal carcinoma (ccRCC), which allows us to explore the role of RBPs in ccRCC.

Methods:  We obtained the gene expression data and clinical data of ccRCC from the Cancer Genome Atlas (TCGA) 
database and extracted all the information of RBPs. We performed differential expression analysis of RBPs. Risk model 
were constructed based on the differentially expressed RBPs (DERBPs). The expression levels of model markers were 
examined by reverse transcription-quantitative PCR (RT-qPCR) and analyzed for model-clinical relevance. Finally, we 
mapped the model’s nomograms to predict the 1, 3 and 5-year survival rates for ccRCC patients.

Results:  The results showed that the five-year survival rate for the high-risk group was 40.2% (95% CI = 0.313 ~ 0.518), 
while the five-year survival rate for the low-risk group was 84.3% (95% CI = 0.767 ~ 0.926). The ROC curves 
(AUC = 0.748) also showed that our model had stable predictive power. Further RT-qPCR results were in accordance 
with our analysis (p < 0.05). The results of the independent prognostic analysis showed that the model could be an 
independent prognostic factor for ccRCC. The results of the correlation analysis also demonstrated the good predic-
tive ability of the model.

Conclusion:  In summary, the 4-RBPs (EZH2, RPL22L1, RNASE2, U2AF1L4) risk model could be used as a prognostic 
indicator of ccRCC. Our study provides a possibility for predicting the survival of ccRCC.
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Background
Among urological tumors, renal cell carcinoma (RCC) 
is one of the most prevalent malignancies [1]. The most 
common subtype of RCC is clear cell renal cell carci-
noma (ccRCC), which accounts for about 4/5 of all renal 
cell carcinomas [2, 3]. With the increase in early diagno-
sis of ccRCC, the survival rate for stage 1 and 2 renal cell 
carcinoma (RCC) is above 90% [4]. However, there are 

limitations in the treatment of advanced ccRCC and the 
prognosis for the patients is poor, with a 5-year survival 
rate of less than 10%, and about 1/3 of patients develop 
metastatic disease after treatment [5]. Although there 
has been significant progress in the treatment of late 
stage ccRCC, such as tyrosine-kinase inhibitors (TKIs) 
and immune checkpoint therapies (ICTs), most patients 
were refractory due to tumor heterogeneity and lack of 
effective signature predicting efficacy and prognosis [6]. 
Therefore, it is urgently needed to develop new mark-
ers to improve the individual therapy and prognosis of 
ccRCC.
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RNA binding proteins (RBPs) can interact with various 
types of RNA and play their biological functions. At pre-
sent, 1,542 RBP related genes have been identified in the 
human genome [7]. RBPs play roles in maintaining the 
physiological balance of cells and are particularly impor-
tant in the development process and stress response [8]. 
In RNA metabolism, RBPs are involved in selective splic-
ing, modification, localization and translation [9, 10]. It 
has been proved that RBPs have an essential relationship 
with the occurrence of many diseases [11]. Although 
RBPs control transcriptional metabolites to influence 
tumor development and progression, the role of RBPs 
in tumor remains unclear [12]. Studies have shown that 
RBPs are differentially expressed between normal and 
tumor tissues, affecting the translation process of mRNA 
and occurrence of tumors [13, 14]. In addition, a series of 
studies have reported that differential expression of RBP 
related with prognosis in different cancer patients [15, 
16]. To date, there has been a relative lack of research on 
RBPs in ccRCC.

In this study, we investigated the role of RBPs in ccRCC 
and its correlation with patient survival. The raw data of 
ccRCC was obtained from the TCGA database. The dif-
ferential expressed RBPs (DERBPs) between tumor tis-
sues and normal tissues were analyzed, and the biological 
function analysis and protein–protein interaction analysis 
of DERBPs were performed. Risk prediction model were 
constructed based on DERBPs as a way to predict patient 
prognosis. The expression levels of model markers were 
examined in cancerous tissue, normal renal tissue, renal 
cancer cell lines and non-renal cancer cell lines using RT-
qPCR. Finally, we explored the clinical relevance of risk 
marker genes and constructed a nomogram to formulate 
precise clinical prognosis strategies effectively.

Materials and methods
Cell culture
Human Embryonic Renal Cell Line (293  T), Renal non-
cancer cell line (HK2), Human renal carcinoma cell lines 
786-O and OS-RC-2 were obtained from the Typical 
Culture Preservation Commission Cell Bank, Chinese 
Academy of Sciences (Shanghai, China). Materials for the 
cell culture process, including Fetal Bovine Serum (FBS), 
RPMI 1640 culture medium, trypsin, penicillin and strep-
tomycin, were purchased from Gibco (Grand Island, NY, 
USA). The culture medium for all cell lines contained 
90% RPMI 1640, 10% FBS and 1% antibiotics (100 U/
ml streptomycins and 100 U/ml penicillin). All cell lines 
were cultured at 37 °C, 5% CO2.

Each cell was inoculated at a density of 1 × 106 cells/
well in 6-well plates, 2  ml of mixed media per well and 
incubated for 24 h at 37 °C in a humidified incubator with 

5% CO2. Total RNA was extracted from the 6-well plates 
using Trizol reagent (Vazyme, China).

Patients and samples
Twenty pairs of clear cell renal cancer tissues and para-
neoplastic tissue specimens were obtained from patients 
after radical surgery for clear cell renal cancer at the Affil-
iated Hospital of Medical College of Qingdao University. 
The detailed clinicopathological characteristics of the 20 
ccRCC patients are shown in Table 1. The cancerous and 
paraneoplastic tissues (5 cm apart) were rinsed in sterile 
PBS and rapidly frozen in liquid nitrogen within 30 min 
after removal. The Institutional Review Board approved 
the study protocol, and informed consent was obtained 
from the patients.

Data preparation
We obtained all transcriptome (FPKM) and clinical data 
of ccRCC from the TCGA (https://​portal.​gdc.​cancer.​gov/) 
database, it contains 72 paraneoplastic samples and 539 
tumor samples. In human cells, 1542 RBPs genes (Supple-
ment Table 1) were screened by high-throughput screening 
[7]. We extracted 1495 RBPs genes expression data from 
TCGA data. The process of this study follows the flow chart 
(Fig. 1).

Differential expression analysis of RBPs genes
To observe whether RBPs genes are expressed differently 
in tumor and normal tissues. In R (Version 3.6.2) language 
environment, “limma" packages (http://​www.​bioco​nduct​
or.​org/​packa​ges/​relea​se/​bioc/​html/​limma.​html) were used 
for data correction, and Wilcox test was used for data dif-
ference analysis. The cut-off value of our screening cri-
teria was |logFC|> 1 and FDR < 0.05 (Adjusted p-value). 
Heat maps were drawn using “pheatmap” package, and 
volcanoes were mapped. Finally, we collate the differential 
expression RBPs (DERBPs) output into a readable file.

Biological functional analysis of DERBPs
To further understand the biological function of DER-
BPs in ccRCC. We carried out Gene Ontology (GO) [17] 
enrichment analysis and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) [18] pathway enrichment analysis 
of DERBPs. A p-value < 0.05 and FDR < 0.05 was used as 
the GO and KEGG enrichment analysis filtration stand-
ard. The analysis process is carried out in the R language 
environment. The R packages used include "clusterPro-
filer", "ggplot2" and" enrichplot".

https://portal.gdc.cancer.gov/
http://www.bioconductor.org/packages/release/bioc/html/limma.html
http://www.bioconductor.org/packages/release/bioc/html/limma.html
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Construction of protein–protein interaction (PPI) network 
of DERBPs
To explore the interaction between DERBPs. We used 
STRING (http://​www.​string-​db.​org/, Version 11.0), an 
online analysis tool, for PPI analysis [19]. Visualise the 
PPI network using Cytoscape (Version 3.7.2).

Construction of the RBPs prognostic risk model
To further verify the model’s prediction efficiency, sam-
ples were randomly divided into training group and test 
group in a 1:1 ratio. We obtained information on a total 
of 537 patients from the TCGA database. A total of 530 
patient sample data were obtained by excluding samples 
with missing data. The training group contained 266 
samples, while the test group contained 264 samples. 
We screened the prognosis genes associated with ccRCC 
survival from the PPI network. We performed univariate 
Cox regression analysis of genes in the network to iden-
tify genes associated with overall survival (p < 0.0001). 
Finally, we performed multivariate Cox regression anal-
ysis of genes related to survival, constructed a risk pre-
diction model of RBPs, and calculated the patients’ risk 
scores in the training group. Risk score = Ʃ (βn × Expn). 
In the formula, β represents the regression coefficient, 
and Exp represents the expression level of related genes. 
All operations for this step are performed in the R lan-
guage environment. The R package used in the opera-
tion procedure includes "survival", "caret", "glmnet" and 
"survminer".

Validation of the RBPs risk model
We divided the 264 samples in the test group into 
high-risk and low-risk groups based on the median 
risk score of the model. The overall survival of the two 
groups was observed. We also draw the receiver oper-
ating characteristic (ROC) curve to evaluate our pre-
diction effectiveness and by using the "survivalROC” 
package in R.

Risk model and clinical correlation analysis
To further investigate the relevance of the model to clini-
cal practice. In the R environment, the chi-square test is 
used for analysis. We were able to assess the correlation 
between the model and clinicopathological features. We 
also performed an independent predictive analysis of the 
model to determine whether our model can be used as a 
prognostic indicator of ccRCC alone. To better apply the 
clinical practice model, we drew a nomogram to predict 
patients’ survival status accurately.

Reverse transcription‑quantitative PCR analysis
To further analyze the accuracy of the model, we vali-
dated the expression levels of model-related genes at the 
tissue and cell line levels, respectively. The procedure for 
tissue extraction of RNA is provided in Supplementary 
Material (S1). For cells, total RNA was extracted from 
the 6-well plates using Trizol reagent (Vazyme, China). 
A microgram of total RNA was reverse transcribed to 
cDNA with HiScript III RT SuperMix for qPCR Reverse 

Table 1  Our ccRCC patients’ characteristics. The proportion 
of each clinical characteristics in our sample (Grade: G1, 
highly differentiated; G2, moderately differentiated; G3, poorly 
differentiated; G4, undifferentiated; T status: T1, Tumour confined 
to the renal with a maximum diameter ≤ 7  cm; T2, Tumour 
confined to the renal with a maximum diameter > 7  cm; T3, 
Tumour invading a segmental or renal vein or the inferior vena 
cava, or invading perirenal tissue without invading the ipsilateral 
adrenal gland or exceeding the perirenal fascia; T4, Tumour 
invading the perirenal fascia, including invading the ipsilateral 
adrenal gland. M status: M0, No distant metastases;  M1 with 
distant metastases. N status: N0, No regional lymph node 
metastases; N1, With regional lymph node metastase.)

Clinical characteristics Total (n = 20) Percent (%)

Age

  <60 5 25

  ≥ 60 15 75

Gender

  Female 9 45

  Male 11 55

Grade

  G1 1 5

  G2 4 20

  G3 11 55

  G4 4 20

Stage

  Stage I 5 25

  Stage II 2 10

  Stage III 6 30

  Stage IV 7 35

T

  T1 5 25

  T2 3 15

  T3 9 45

  T4 3 15

N

  N0 14 70

  N1 6 30

M

  M0 13 65

  M1 7 35

http://www.string-db.org/
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Transcriptase (Vazyme, China). Quantitative real-time 
PCR was performed to analyse the cDNA according to 
the SYBR Color qPCR Master Mix (Vazyme, China) 
instructions with a Roche LightCycler 480II real-time 
PCR detection system (Roche, Switzerland). Normaliza-
tion was carried out using GAPDH. Details of the prim-
ers used in this experiment are given in Table 2.

Statistical analysis
The data mining and processing in this study were done 
using R software (version 3.6.2). All the experimen-
tal data  (PCR data) in this study  have been repeated 
3 times and are expressed as X ± S. The experimental 
data (PCR data) were all statistically analyzed using 
SPSS software (version 26.0) and the data were visual-
ised using Graphpad Prism software. For the subgroups 
in this experiment where only two groups were com-
pared, we used the t-test for comparison, and for data 

containing more than two subgroups, we used one-way 
ANOVA for statistical analysis. The analysis results 
p < 0.05 considered the differences to be statistically 
significant.

Results
Differential expression analysis of RBPs
In R language environment, 1495 RBPs-related genes 
in ccRCC were analyzed according to the screening 
criteria (|log FC|> 1, FDR < 0.05). The RNA expression 
matrix of 72 paracancer samples and 539 tumor sam-
ples were analysed for differential expression, statisti-
cally using the wilcoxon test. The results showed 125 
dysregulated RBPs in tumor tissues, among which 38 
genes were up-regulated, and 87 were down-regulated 
(Supplement Table  2). We visualized the differentially 
expressed genes by mapping heat map and volcanic 
maps (Fig. 2).

Fig. 1  The flow chart of this study
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GO and KEGG enrichment analysis of DERBPs
We carried out GO and KEGG enrichment analysis for 
DERBPs. GO enrichment analysis includes three cat-
egories, including biological process (BP) analysis, cell 
component (CC) analysis and molecular function (MF) 
analysis. GO enrichment results showed that the enrich-
ment of most genes was related to RNA metabolism and 
protein formation. Such as: “regulation of mRNA meta-
bolic process," "regulation of RNA splicing," "RNA cata-
bolic process," "RNA phosphodiester bond hydrolysis” 
and "RNA splicing". Figure  3A shows the GO enrich-
ment results, with each function showing only the top 10 
critical terms. KEGG enrichment analysis results showed 
that it was related to "Ribosome," "RNA transport," and 
"mRNA surveillance pathway." The analysis results are 
shown in Fig. 3B.

Construction of protein–protein interaction networks
To explore the interaction between DERBPs, we used 
STRING, an online web page analysis tool, to build a 
PPI network (Confidence = 0.7). Which is visualized 
by using Cytoscape (Fig.  3C). Our PPI network con-
tains 225 networks and 100 nodes. We only show the 
first 30 nodes based on the number of genes connected 
(Fig. 3D, Supplement Table 3).

Prognostic related RBPs were screened
We performed univariate Cox regression analysis of 
RBPs in the network to screen genes associated with 

survival. The results showed that 17 genes (p < 0.0001) 
were correlated with the survival of ccRCC (Fig.  3E, 
Supplementary Fig. 1).

Construction of the RBPs prognostic risk model
In the training group, we used the built-in functions 
in R to perform a multivariate Cox regression analy-
sis of 17 genes associated with survival, assessing the 
relative effect of each gene, comparing the regression 
p-values of individual genes, resulting in the identi-
fication of a four RBPs-related (U2AF1L4, RPL22L1, 
EZH2, RNASE2) prediction model (Fig.  4, Table  3). 
The patient’s risk score was calculated according 
to the model, and the risk formula was as follows: 
Risk score = (EXPU2AF1L4 Χ 0.4984) + (EXPRPL22L1 X 
0.5104) + (EXPEZH2 X 0.4014) + EXPRNASE2 X 0.6551). 
We divided patients into high-risk and low-risk 
groups based on the median risk score in the train-
ing data set. Kaplan–Meier survival analysis was per-
formed to see the significance of survival between 
the high and low risk groups. We plotted survival 
curves to assess survival differences between the 
two groups, and we plotted the ROC curve to see 
the accuracy of our model predictions. The results 
showed that the five-year survival rate for the high-
risk group was 40.2% (95% CI = 0.313 ~ 0.518), while 
the five-year survival rate for the low-risk group was 
84.3% (95% CI = 0.767 ~ 0.926). The five-year survival 
rate for the low-risk group was much higher than that 

Table 2  All sequences used in this study
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of the high-risk group (Fig.  5A). The ROC curves 
(AUC = 0.748) also showed that our model had stable 
predictive power (Fig. 5B).

Validation of the predictive power of risk model
To verify the predictive power of the model, we vali-
dated our model in the test group. Like the above 
risk formula, patients in the verification group were 
divided into high-risk and low-risk groups accord-
ing to the median risk score. The survival and prog-
nosis of the two groups were observed. The results in 
Fig.  5C showed that the high-risk group had a worse 
prognosis than the low-risk group. The five-year sur-
vival rate for the high-risk group was 47.9% (95% 
CI = 0.381 ~ 0.603), while the five-year survival rate for 
the low-risk group was 73% (95% CI = 0.639 ~ 0.834). 
The ROC analysis showed an AUC = 0.690, also dem-
onstrating that our model also had good predictive 
power in the test group (Fig. 5D).

Expression of model‑related genes in tissues and cell lines
This analysis was all compared using t-tests. The analysis 
results p < 0.05 considered the differences to be statisti-
cally significant. The RT-qPCR showed that the mRNA 
expressions of EZH2, RPL22L1, RNASE2, and U2AF1L4 
were higher in renal tumor tissues than in normal renal 
tissues (Fig. 6A). In addition, this pattern was verified at 
the cellular level that the expressions of EZH2, RPL22L1, 

RNASE2, and U2AF1L4 were higher in renal tumor cells 
(786-O, OSRC) than in non-cancerous renal cells (HK2) 
(Fig.  6B). Collectively, these results demonstrated the 
accuracy of our model.

Independent prognostic analysis and clinical correlation 
analysis
To further evaluate whether our model can be used 
as a sole factor in assessing prognosis of ccRCC. Uni-
variate and multivariate Cox regression analyses were 
performed for the model and clinical indicators. Uni-
variate analysis (Fig.  7A) showed that patient age, 
tumor stage, tumor grade, and our model were associ-
ated with the prognosis of ccRCC patients (p < 0.001). 
Multivariate analysis (Fig.  7B) showed that patient 
age, tumor stage, and our model were associated with 
prognosis in ccRCC patients (p < 0.001). The results 
altogether demonstrated that our risk model could be 
used as an independent prognostic factor for ccRCC, 
and the accuracy of prediction is not affected by any 
other  clinicopathological indicators. Chi-square 
test was used to analyze the correlation between the 
model and clinicopathological features. The results 
showed that the high-risk score was closely related to 
tumor stage (p < 0.001), pathological grade (p < 0.001), 
metastasis status (p < 0.01), but not related to gen-
der or age (Fig.  7C). Also, the relationship between 
the expression levels of four genes in the model and 

Fig. 2  Differential expression RBPs (DERBPs) of TCGA ccRCC data. The RNA expression matrix of 72 paracancer samples and 539 tumour samples 
were analysed for differential expression, statistically using the wilcoxon test, with a cut-off of |logFC|> 1 and FDR < 0.05 (Adjusted p-value). 
A Differential expression heatmap. Each vertical column represents each sample, and each row represents an RBP gene. B Differential expression 
volcanic map. The volcano gram shows the differential expression of DERBPs, with green indicating down-regulated, red indicating up-regulated, 
and black indicating no difference. N, normal; T, tumor
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Fig. 3  Bioenrichment analysis of differential expression RBPs. A-B Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
enrichment analysis, screening criteria as p < 0.05, q < 0.05 (Adjusted p value). DERBPs are enriched for relevant biological co-energies and associated 
molecular signalling pathways (BP:biological process CC: cell component MF: molecular function). C DERBPs protein–protein interaction network. 
The connections in the network represent interactions among genes, with green representing down-regulated genes and red up-regulated genes 
(Confidence = 0.7). D Number of node connections in a PPI network. The connections of the first 30 genes are displayed by the number of node 
connections. E RBPs associated with survival were screened by univariate Cox regression analysis (p < 0.0001)
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the risk score was demonstrated. To better apply the 
model in the clinic, we developed the nomogram of 
the model. The 1-year, 3-year, and 5-year survival 
rates for ccRCC patients were predicted using the 
nomogram (Fig. 8).

Discussion
Dysregulation of RBPs have been reported to be asso-
ciated with tumor formation and progression [12, 20]. 
There have been several studies describing the prognos-
tic value of RBPs in ccRCC [21–25]. For example, Hua 
et al. constructed a risk score model by using ten RBPs 

Fig. 4  RBPs risk model. Multivariate Cox regression analyses were conducted on genes associated with survival and risk prediction models for RBPs 
were constructed. A The heat map of four genes (RNASE2, RPL22L1, U2AF1L4, and EZH2) expression (B) Distribution of risk score in RBPs model. 
C Survival chart of ccRCC patients

Table 3  Multivariate Cox regression analysis of risk model 
prognosis-related RBPs

Gene Coef HR P-value

U2AF1L4 0.498 1.646(1.111 ~ 2.439) 0.0123

RPL22L1 0.510 1.666(1.255 ~ 2.211)  < 0.0001

EZH2 0.401 1.494(0.971 ~ 2.298) 0.068

RNASE2 0.655 1.925(1.438 ~ 2.577)  < 0.0001
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and validated the expression of hub genes in The Human 
Protein Altas database [20]; Xiang et al. also developed a 
risk model by using seven RBPs and potentially improve 
individualized diagnostic and therapeutic strategies 
of ccRCC [21]. However, the hub RBPs they identified 
and the risk models they built in above studies were not 
verified in real-world tumor tissues and cells. In order 
to make up for the shortcomings of previous studies, 
we built a new risk model of RBPs for predicting the 

survival of ccRCC and verified the expression of RBPs 
in clinical tissue samples and cancer cell lines. Moreo-
ver, the model we created consisted of only four RBPs, 
which makes our model more feasible when applying to 
clinical practice.

In this study, the ccRCC data were obtained from the 
TCGA database. We extracted the expression spec-
trum data based on 1542 RBPs and analyzed the dif-
ferential expression of RBPs between the ccRCC group 

Fig. 5  Validation of the model in the training and testing groups. Based on the median risk score, patients in each group were divided into high 
and low risk groups and Kaplan–Meier survival analysis was performed to see the significance of survival between the high and low risk groups. 
A The survival of high-risk and low-risk groups in the model. B The time-dependent ROC curve shows the area under curve (AUC) for ccRCC at 
5 years (training group). C) Survival of high-risk and low-risk groups in the testing group. D The time-dependent ROC curve shows the area under 
curve (AUC) for ccRCC at 5 years (testing group)
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and the control group. We further performed GO and 
KEGG enrichment analysis for DERBPs and the results 
showed that DERBPs were enriched in the functions 
related to RNA metabolism, splicing, catabolic process 
and phosphodiester bond hydrolysis. Previous stud-
ies have shown that a variety of RBPs play important 
roles in the development and progression of kidney 
cancer. For example, Monocyte endoribonuclease acid 
endoribonuclease acid enzyme (MCPIP1) can affect 
the development of ccRCC by degrading the mRNA 
encoding pro-inflammatory cytokines [26]. In addi-
tion, there have been a large number of reports in the 
research of ccRCC that have proved the important 
correlation between RNA metabolism and the occur-
rence and development of tumors [27], and have pro-
vided the possibility for the precisely targeted therapy 
of ccRCC.

To construct a risk prediction model associated with 
RBPs, we performed univariate Cox analysis of genes in 
the PPI network to obtain RBPs associated with survival. 
We ended up with 17 genes (p < 0.0001) that were signifi-
cantly associated with survival. We constructed a 4-RBPs 
risk model using multivariate Cox regression analysis 
of selected genes. Patients in the training group were 
divided into high-risk and low-risk groups according to 
the median risk score, and the results showed that the 
high-risk group had a worse prognosis than the low-risk 
group. The model results in the test group also showed 
that the high-risk group had a worse prognosis than the 
low-risk group, and the ROC curve results showed that 
our model had a stable predictive ability.

Our risk model consists of four RBPs genes, includ-
ing U2AF1L4, RPL22L1, EZH2 and RNASE2. We found 
that all the genes in the model were risk factors for 
ccRCC. RNASE2 is an RBPs and immune-related gene 
that can be used as a marker of the immune risk model 
to predict patients’ survival prognosis in ccRCC [28]. 

Studies have shown that EZH2 gene disorders or direct 
and indirect effects of other molecules can lead to the 
occurrence, development and metastasis of ccRCC 
[29, 30]. Besides, high expression of EZH2 correlates 
with poor prognosis in ccRCC. Our PCR results show 
that EZH2 gene expression levels are elevated in renal 
tumors compared to normal kidney tissue. It has been 
reported that RPL22L1 can be used as a marker in the 
ccRCC prediction model to predict the prognosis of 
patients [31]. Furthermore, RPL22L1 has been reported 
in other tumors. RPL22L1 can promote ovarian can-
cer metastasis by inhibiting vimentin and N-cadherin 
expression, thereby inducing epithelial-mesenchymal 
transition [32]. In addition, RPL22L1 could be used as 
a prognostic marker for prostate cancer and colorec-
tal cancer [33, 34]. As a shear factor, U2AF1L4 plays 
an essential role in protein synthesis [35], however, 
U2AF1L4 has not been reported in ccRCC so far. More 
importantly, the differential expression of the four 
RBPs were verified in our clinical samples and cancer 
cell lines.

A comprehensive analysis of the model and clinico-
pathological features showed that the model was cor-
related with clinical stage, pathological grade and 
metastasis status. It is worth emphasizing that no cor-
relation was found between the model and lymph node 
status, which was not in line with our expectations. After 
analysis, it turned out that the missing cases of lymph 
node status was more than 1/3 of the total cases, result-
ing in the deviation of the results. Cox regression analy-
sis of our model and clinicopathological data proved that 
the model could be an independent prognostic factor for 
ccRCC and was not affected by clinical indicators. Finally, 
we constructed a nomogram to help clinicians predict 
1-year, 3-year, and 5-year survival more accurately.

Our research still has some limitations. Firstly, the 
raw data are obtained from the TCGA database, and 

Fig. 6  Expressions of hub genes were verified using RT-qPCR in 20 pairs of sample tissues and cell lines (HK2, 786-O, OSRC). This analysis was all 
compared using t-tests. The analysis results p < 0.05 considered the differences to be statistically significant. **, p < 0.01, ***, p < 0.001



Page 11 of 13Han et al. BMC Nephrology          (2022) 23:172 	

the patients in the database are mainly from Amer-
ica. The predictive ability of the model for patients 
from other countries needs to be further studied 
and confirmed. Secondly, although we have verified 
the model, subsequent clinical experiments are still 
needed to predict our model’s predictive efficacy. 
Only in this way can our model be truly applied to the 

clinic and improve the prognosis prediction of ccRCC 
patients.

Conclusions
In conclusion, we analyzed the role of RBPs in ccRCC, 
built a risk prediction model with RBPs, and verified 
the model’s prediction efficiency. The model could be 

Fig. 7  Prognostic analysis of the model and correlation between the model and clinicopathological indicators. A Univariate Cox regression 
analysis of the association between clinical parameters (including risk scores) and overall survival in patients with ccRCC. B Multivariate Cox 
regression analysis of the association between clinical parameters (including risk scores) and overall survival in patients with ccRCC. C Differences 
in clinicopathological indicators between the high and low risk groups. (clinicopathological indicators: AJCC stage, T stage, M stage, N stage, Grade, 
Gender, age)
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used to stratify patients with different prognosis and 
improve the clinical practice in the future.
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