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Abstract 

Background: The electronic health record (EHR), utilized to apply statistical methodology, assists provider decision-
making, including during the care of chronic kidney disease (CKD) patients. When estimated glomerular filtration 
(eGFR) decreases, the rate of that change adds meaning to a patient’s single eGFR and may represent severity of renal 
injury. Since the cumulative sum chart technique (CUSUM), often used in quality control and surveillance, continu-
ously checks for change in a series of measurements, we selected this statistical tool to detect clinically relevant eGFR 
decreases and developed  CUSUMGFR.

Methods: In a retrospective analysis we applied an age adjusted  CUSUMGFR, to signal identification of eventual ESKD 
patients prior to diagnosis date. When the patient signaled by reaching a specified threshold value, days from CUSUM 
signal date to ESKD diagnosis date (earliness days) were measured, along with the corresponding eGFR measurement 
at the signal.

Results: Signaling occurred by  CUSUMGFR on average 791 days (se = 12 days) prior to ESKD diagnosis date with sen-
sitivity = 0.897, specificity = 0.877, and accuracy = .878. Mean days prior to ESKD diagnosis were significantly greater 
in Black patients (905 days) and patients with hypertension (852 days), diabetes (940 days), cardiovascular disease 
(1027 days), and hypercholesterolemia (971 days). Sensitivity and specificity did not vary by sociodemographic and 
clinical risk factors.

Conclusions: CUSUMGFR correctly identified 30.6% of CKD patients destined for ESKD when eGFR was > 60 ml/
min/1.73  m2 and signaled 12.3% of patients that did not go on to ESKD (though almost all went on to later-stage 
CKD). If utilized in an EHR, signaling patients could focus providers’ efforts to slow or prevent progression to later stage 
CKD and ESKD.
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Background
Given the morbidity, mortality, and financial burden [1] 
of CKD, identifying eventual ESKD patients, when eGFR 
is ≥ 60  ml/min/1.73  m2, might provide opportunity to 
prevent deterioration leading to ESKD. Because of the 
silent nature of early kidney disease, and lack of recom-
mendation by the US Preventive Services Task Force 
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(USPSTF) for measuring serum creatinine in routine 
health screening [2], providers may not identify early 
CKD patients. The inverse relationship between serum 
creatinine  (Scr) and eGFR results in underappreciation of 
early small increases in serum creatinine.

Rosansky suggested renal function trajectory might 
be more important than CKD staging [3]. The trajec-
tory model measured in ml/min/1.73m2/year assumes a 
regression line fitted to data points over time. Determin-
ing trajectory is difficult as eGFR varies due to volume 
status, short term medication usage, underlying renal dis-
ease activity, age, and gender [4]. Time intervals between 
eGFR measurements in practice vary widely. Goodness-
of-fit with regression analysis depends on observation 
number. Despite these limitations, Altman and Royston 
[4] emphasized the role time plays in a series of meas-
urements. For the provider monitoring renal function, 
“one is specifically looking for the time when something 
changes.” Unfortunately, the pattern of renalfunction 
decline (as estimated by eGFR) can take several forms 
including linear, nonlinear, unidentifiable, and even posi-
tive [5]. This significantly limits the effectiveness of para-
metric approaches for identifying renal decline such as 
regression methods.

Using this concept that eGFR change rate is meaning-
ful, CUSUM can be used for monitoring and detecting 
statistically significant change points in sequential data 
[6]. Often used for industrial process control, CUSUM 
provided a useful tool to analyze clinical data [7]. Subse-
quent CUSUM reviews demonstrated its use in health-
care applications [8–10]. Related to serial laboratory 
measurements, Peeks et al [11] identified changes in glu-
cose levels using CUSUM. In nephrology, CUSUM was 
also used to determine initial dialysis stability [12] and 
transplant center quality [13].

By using a notification threshold value T, or signal, for 
a cumulative deviation over time from a given mean, 
a CUSUM chart can detect clinically relevant eGFR 
decreases in a patient’s series of measurements. The 
CUSUM statistic allows the assignment of weights (w) to 
each calculation, which tunes the signal for optimal sen-
sitivity and specificity for detection of a future clinical 
risk outcome. In this retrospective data analysis using the 
statistic  CUSUMGFR, ESKD diagnosis is the risk outcome, 
and tuned values of w and T optimize the performance of 
 CUSUMGFR. Once the  CUSUMGFR value reaches thresh-
old, the patient is likely to progress to ESKD.

Several researchers have estimated a natural decline 
in kidney function in healthy patients, and hence eGFR, 
with age. Cohen et al. estimate an annual decline in eGFR 
of 0.97  mL/min/1.73m2/year [14]. In a meta-analysis, 
Eriksen et  al. estimate an annual decline in measured 
GFR of 0.72  mL/min/1.73m2/year [15]. The National 

Kidney Foundation report an annual decline in eGFR of 
0.81 mL/min/1.73m2/year [16]. The CUSUM statistic can 
be easily modified to account for this natural progression.

Methods
We selected participants from Cerner Health Facts data-
base (Fig.  1), containing EHR data of 1.3 million adult 
patients with multiple  Scrmeasures from 2010—2019. 
We calculated eGFRs using the 2021 CKD-EPI Eq [17]. 
for all patients. Patients with acute kidney injury (all 
eGFR’s < 90  ml/min/1.73m2 within 3  months) were 
excluded, and the remaining were divided into two mutu-
ally exclusive subgroups (Normal and ESKD groups) 
based on ICD9/10 diagnosis: a group diagnosed with 
ESKD (ICD9 585.6 or ICD10 N18.6) as the outcome, 
and a group without ESKD. This allows for the estima-
tion of sensitivity and specificity of the method. To deter-
mine intrinsic, non-pathologic variation in eGFR in the 
non-ESKD patients, we excluded patients with any CKD 
Diagnoses (Appendix Table 1), and those with any eGFR 
measurement < 60. This Normal Group totaled 85,699 
patients and were used to calculate the eGFR mean, µ̂ , 
and standard deviation, σ̂ , for use in the  CUSUMGFR sta-
tistic and were included in  CUSUMGFR calculations. To 
signal ESKD patients as early as possible, we excluded 
patients in the ESKD Group with initial eGFR < 60 mL/
min/1.73m2 (5,410 patients). LOINC codes (Appendix 
Table 2) were used to collect laboratory data including  Scr 
in all patients.

We use the following cumulative statistic:

where CUSUMGFR0 = 0, µi is the mean of eGFR and 
σ̂ is the standard deviation for patients in the Normal 
Group, and eGFRi is the ith measurement of eGFR for 
each patient in both groups. Note  CUSUMGFR will always 
be less than or equal to zero due to the use of minimum 
operator, which ensures that  CUSUMGFR only detects 
significant decline in eGFR. If the  CUSUMGFR calculation 
falls below the threshold signal value T, the patient sig-
nals likelihood of progressing to ESKD.

Given a natural decline in healthy patients of 0.81 mL/
min/1.73m2/year [16], the age adjusted mean of the nor-
mal group µ̂i is determined as follows:

where µ̂0 is the mean eGFR value for the normal group at 
the age of the patient during their first reported eGFR meas-
urement and �t is the different in years between the age of 
the patient at measurement I and their first measurement.

CUSUMGFRi = min

[

0,

(

eGFRi − �̂i

�̂

)

+ w + CUSUMGFRi − 1

]

µ̂i = µ̂0 − 0.81�t
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The parameters w and T are chosen to balance the 
tradeoff between false positive and false negative out-
comes. The parameter, w, is a tuning parameter that is 
an allowable, clinically meaningful, shift in the cumu-
lative measurement, determined as noted below. To 
determine the best choices for T and w, we analyzed the 
Normal and ESKD Groups using k-fold cross validation 
(k = 10) for several w and T values. A receiver operator 
characteristics (ROC) curve (Fig.  2) revealed the best 
sensitivity, specificity, and accuracy for T, the threshold 
signal value. When signaled, the patient’s eGFR and days 
prior to ESKD diagnosis were recorded. The difference 
between signal date and ESKD diagnosis date defines 
earliness. We determined total population performance 
measures and when stratified by the sociodemographic 
variables of age, sex, and race and the clinical factors 
of hypertension, diabetes, cardiovascular disease, and 
hypercholesterolemia.

Results
Baseline data on demographics, diagnoses, laboratory 
results, and medications for the Normal and ESKD 
Groups are provided in Table 1. The ESKD Group had 
a significantly higher proportion that were male, Black, 
Native American, Asian/Pacific Islander, and Hispanic, 
and higher rates of smoking, hypertension, diabetes, 
cardiovascular disease, and history of cancer, hyper-
cholesterolemia, and urinary tract abnormalities. All 
measured laboratory results were significantly different 
between the Normal Group and the ESKD Group. The 
ESKD Group had higher rates of non-steroidal anti-
inflammatory drug, proton pump inhibitor, and lithium 
use.

The overall mean eGFR value for the Normal Group 
was 85.07 mL/min/1.73  m2 (se = 0.03). Mean eGFR val-
ues for the Normal Group by age are shown in Appen-
dix Table 3. Using Kolmogorov Smirnov goodness of fit 

Fig. 1 Selection criteria. a Million. b All eGFRs in min/ml/1.73m2. c Acute kidney injury. d Patients excluded for any ICD9/10 CKD diagnosis (see 
Appendix Table 1). e Excluded any ESKD Group patient with initial eGFR measurement < 60 min/ml/1.73m2. f Excluded any Normal Group patient 
with any eGFR < 60 min/ml/1.73 m.2
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test, we could not reject the hypothesis that the mean 
eGFR for the Normal Group was normally distributed 
( α=0.05). The values CUSUMGFR0 = 0, w = 0.75, and 
T = –4.0, gave best mean accuracy (0.878), mean sen-
sitivity (0.897), and mean specificity (0.877) to signal a 
patient likely to progress to ESKD. Note that w = 0.75 
corresponds to a meaningful cumulative eGFR shift of 
0.75 σ̂  = 5.84 mL/min/1.73m2. Those patients who sig-
naled in the Normal Group were considered false posi-
tives, and those in the ESKD Group who failed to signal 
false negatives.

Figure  3 shows the distribution of eGFR at time of 
risk signal, and the distribution of signal earliness to 
actual diagnosis date. Of those in the ESKD Group 
who signaled as likely to progress, 86.9% did so when 
eGFR was ≥ 30, 67.9% when ≥ 45, and 30.6% when ≥ 
60 mL/min/1.73m2 and signaled 791 days (mean earli-
ness) prior to ESKD diagnosis date (median earliness 
361 days). Also note that 12.3% of patients that signaled 
as likely to progress to ESKD do not do so, however, 

almost all of these went on to later stage CKD (CKD 
level 4 and 5), which would still benefit from early 
intervention.

CUSUMGFR signal in two ESKD patients is illustrated 
in Fig.  4. The first patient had a rapid decline in eGFR 
starting at age 57 are fell below 30  mL/min/1.73m2 at 
age 60. The signal occurred soon after the initial drop at 
age 57, three years before diagnosis. The second patient 
had a slow decline in eGFR, and never fell below 60 mL/
min/1.73m2 before the age of 45. However, they were 
correctly signaled to be at risk for ESKD at age 40, well 
before their diagnosis at age 56.

CUSUMGFR performance is shown in Appendix 
Table  4 for population subgroups based on sociodemo-
graphic factors and clinical risk conditions. Accuracy, 
sensitivity, and specificity did not vary significantly by 
subgroup compared to the total values, except in two 
subgroups. Sensitivity dropped for the non-hypertension 
subgroup and specificity dropped for the adults over 
65  years of age. Mean earliness was greater for patients 

Fig. 2 Receiver Operating Characteristic (ROC) curve with sample values for w (tuning parameter) and T (signal value) demonstrating the effect on 
performance measures (sensitivity and specificity)
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Table 1 Baseline demographics, diagnoses, laboratory results, and medications data for normal and ESKD patient groups

se Standard error
*  Significant difference in means between normal and ESKD Groups based on chi-squared test (p < 0.05)
**  Significant difference in means between normal and ESKD Groups based on t-test (p < 0.05)

Normal Group
(n = 85,699)

ESKD Group
(n = 5,410)

DEMOGRAPHICS
Mean Age in years** 64.5 57.9

Sex*

 Number Female (percent) 46,456 (54%) 2,354 (44%)

 Number Male (percent) 39,182 (46%) 3,056 (56%)

Race/Ethnicity*

 Number Black (percent) 5,826 (7%) 1,147 (21%)

 Number Native American (percent) 181 (0%) 110 (2%)

 Number Asian/Pacific Islander (percent) 1,062 (1%) 114 (2%)

 Number Hispanic (percent) 26 (0%) 55 (1%)

 Number Middle Eastern/Indian (percent) 490 (1%) 7 (0%)

 Number White (percent) 69,294 (81%) 3,589 (67%)

 Number Biracial (percent) 45 (0%) 7 (0%)

 Number Unknown (percent) 8,754 (10%) 381 (7%)

 Number with History of Smoking (percent)* 15,063 (18%) 2,423 (45%)

DIAGNOSES
Number with Hypertension (percent)* 46,502 (54%) 4,816 (89%)

Number with Diabetes Mellitus (percent)* 22,215 (26%) 3,403 (63%)

Number with Cardiovascular Disease (percent)*

 Coronary Artery Disease 12,812 (15%) 2,346 (43%)

 Cerebrovascular Disease (CVA, Stroke) 5,041 (6%) 764 (14%)

 Peripheral Vascular Disease 4,338 (5%) 1,168 (22%)

Number with History of Cancer (percent)* 10,294 (12%) 767 (14%)

Number with Hypercholesterolemia (percent)* 48,716 (57%) 3,404 (63%)

Number with History of Urinary Tract Abnormalities (percent)* 4633 (5%) 1512 (28%)

LABORATORY RESULTS
Urine Microalbumin/Creatinine (mg/g)*

 Number patients < 30 (percent) 12,755 (81.7%) 31 (25.6%)

 Number patients between 30 and 300 (percent) 2,593 (16.6%) 40 (33.1%)

 Number of patients >  = 300 (percent) 255 (1.7%) 50 (41.3%)

Urine Protein/Creatinine (g/g) (se)* 0.11 (0.010) 3.91 (1.247)

Hemoglobin A1c (g/dL) (se)* 5.3 (0.008) 7.2 (0.062)

Hemoglobin (g/dL) (se)* 13.4 (0.002) 10.9 (0.037)

Serum Calcium (mg/dL) (se)* 9.4 (0.001) 8.8 (0.014)

Serum Cholesterol (mg/dL) (se)* 182 (0.051) 159 (1.814)

Serum Albumin (g/dL) (se)* 4.1 (0.001) 3.2 (0.013)

Serum Phosphorus (mg/dL) (se)* 3.4 (0.001) 4.2 (0.034)

Number of patients Hepatitis C positive (percent)* 945 (1%) 237 (4%)

MEDICATION
Number with any NSAID Use (ibuprofen, naproxen, etc.) (percent)* 16,459 (19%) 2,518 (47%)

Number with any Proton Pump Inhibitor Use (omeprazole, etc.) (percent)* 9,689 (11%) 4,031 (75%)

Number with Bipolar Drug Use (Lithium) (percent)* 233 (0%) 28 (1%)
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with cardiovascular disease (1027 days), hypercholester-
olemia (971 days), diabetes (940 days), and hypertension 
(852 days). Black patients signaled earlier than non-Black 
patients (905 versus 759 days respectively).

Discussion
Global prevalence of CKD was 9.1% in 2017 and has 
increased by over 29% since 1990 [18]. CKD progression 
to ESKD affected over 746,557 individuals in the US in 

Fig. 3 eGFR at  CUSUMGFR Signal, in ml/min/1.73m2/year (a); earliness (in months) from  CUSUMGFR Signal  (CUSUMGFRi <  = –4.0) to ESKD diagnosis. 
Mean earliness is 26.3 months. Only those patients correctly identified prior to their diagnosis were included (b)
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Fig. 4 Two examples of  CUSUMGFR for patients that went on to ESKDillustrating a rapid decrease (a) and graduate decrease (b). Both patients were 
identified as at risk at the observation falling below –4.0
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2017 and is projected at 1.2  M by 2030 [19]. ESKD is a 
leading cost in healthcare with Medicare spending for 
ESKD totaling $35.9B in 2017, 7.2% of Medicare paid 
claims [2]. Earlier identification of CKD patients likely to 
progress might reduce the incidence of ESKD.

Despite previous studies using various models [20–
25]  to predict CKD progression, identification of these 
at-risk patients is challenging. In early renal injury, 
 Scrincreases are subtle, with small increments represent-
ing substantial reductions in eGFR, and may be unrecog-
nized. While normal individuals show a fairly constant 
rate change over a lifetime [26], CKD patients do not 
have predictable patterns of progression [5]. We include 
several typical examples of eGFR change over time for 
patients who developed ESKD in our data in Appendix 
Fig. 1, and the change over time varies considerably. In the 
absence of parametric patterns, linear regression analysis 
does not perform reliably, and any non-pathologic eGFR 
change measurement must be differentiated from patho-
logic causes. No widely accepted method for comput-
ing eGFR changes for individual patients is available and 
 CUSUMGFR provides a useful computed statistical appli-
cation easily incorporated within any healthcare system’s 
EHR.

In our retrospective data analysis using  CUSUMGFR, it is 
possible to signal CKD patients likely to progress early in 
the course of their renal disease. We emphasize that this sta-
tistic provides continual monitoring, looking for significant 
change in eGFR for every serum creatinine measurement 
for every patient enrolled in a healthcare system’s EHR. 
With the current eGFR indication for nephrology CKD 
consultation commonly accepted at < 30  mL/min/1.73m2, 
opportunity for best intervention at higher eGFR levels 
may be lost. Since over a quarter of ESKD Group patients 
signaled likeliness to progress when eGFR ≥ 60, this indi-
cation should be reconsidered. Inclusion of  CUSUMGFR 
within the EHR fits directly into provider workflow since 
the signal alert is to the provider only when Texceeds the 
threshold value and would lead the provider to evaluation 
and treatment algorithms. Early recognition of the CKD 
patients who signal early might reduce ESKD incidence, 
and decrease the high morbidity and mortality associated 
with late nephrology referral [27, 28].

We found that patients with clinical risk factors (car-
diovascular disease, diabetes, hypertension, and hyper-
cholesterolemia) had a greater mean earliness signal 
compared to those with no risk factors. Black patients, 
similarly, had a greater mean earliness signal as well. 
This could be due to the Black patients in our study 
having a higher rate of co-morbidities (clinical risk fac-
tors) compared to non-Black patients (data not shown).

There are several limitations to our study. First, it is 
not reported in the Cerner data which assay type (e.g., 

Jaffe or enzymatic) was used for the SCr measure-
ments, and this likely varied by lab. It is possible that 
differences in assay type could lead to different results. 
Second, although we used a large patient population 
in our study, it was not a random sample and may not 
be nationally representative. Therefore, there could be 
bias in the estimated parameters. Finally, our selec-
tion criteria for the Normal Group required a patient 
to have at least nine eGFR measurements in the EHR. 
This implies that the patients were regular utilizers of 
healthcare and hence may be at higher risk than “nor-
mal” patients nationally. It further implies that applica-
tion of the method for a particular provider may require 
retrospective data analysis on their specific population 
to estimate mean eGFR by age and standard deviation 
for their “normal” population.

Retrospective analysis of  CUSUMGFR in other medical 
databases is needed to validate these findings, but ulti-
mately the benefit of  CUSUMGFR can only be truly esti-
mated through randomized prospective studies. Such 
prospective studies could determine if early detection of 
risk and implementation of interventions could reduce 
the decline in kidney function and incidence of ESKD.

Beyond signaling providers of CKD patients likely to 
progress to ESKD, other  CUSUMGFR applications include 
timing referral for transplantation and placement of arte-
riovenous fistulae, correlating  CUSUMGFR signaling with 
renal biopsy activity staging, and has potential use as an 
endpoint in randomized controlled trials. Not intended 
as a stand-alone statistic in the care of CKD patients, 
 CUSUMGFR can serve as an important new tool for pri-
mary care provider and nephrologist alike.
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