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Background
Among patients suffering from systemic lupus erythem-
atous (SLE), almost all of them have, to some extent, a 
renal affection during the disease course, and between 
40% and 70% will develop clinically diagnosed renal 
involvement named lupus nephritis (LN) [1]. It is a major 
risk factor of morbidity and mortality in SLE, and 10% of 
patients with LN will eventually develop end-stage renal 
disease (ESRD), within 5 years of disease onset [2].

Renal biopsy is the gold standard for LN diagnosis. 
Based on kidney biopsy assessment, a patient can be clas-
sified into any of six histological categories, according to 
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Abstract
Background  Lupus nephropathy (LN) occurs in approximately 50% of patients with systemic lupus erythematosus 
(SLE), and 20% of them will eventually progress into end-stage renal disease (ESRD). A clinical tool predicting 
remission of proteinuria might be of utmost importance. In our work, we focused on predicting the chance of 
complete remission achievement in LN patients, using artificial intelligence models, especially an artificial neural 
network, called the multi-layer perceptron.

Methods  It was a single centre retrospective study, including 58 individuals, with diagnosed systemic lupus 
erythematous and biopsy proven lupus nephritis. Patients were assigned into the study cohort, between 1st January 
2010 and 31st December 2020, and eventually randomly allocated either to the training set (N = 46) or testing set 
(N = 12). The end point was remission achievement. We have selected an array of variables, subsequently reduced to 
the optimal minimum set, providing the best performance.

Results  We have obtained satisfactory results creating predictive models allowing to assess, with accuracy of 91.67%, 
a chance of achieving a complete remission, with a high discriminant ability (AUROC 0.9375).

Conclusion  Our solution allows an accurate assessment of complete remission achievement and monitoring of 
patients from the group with a lower probability of complete remission. The obtained models are scalable and can be 
improved by introducing new patient records.
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the International Society of Nephrology/Renal Pathol-
ogy Society classification, of which classes III–VI are 
associated with the highest risk of long-term damage[3]. 
Class VI reflects the most advanced stage, where patients 
require any type of renal replacement therapy, includ-
ing kidney dialysis or transplantation [3]. Subsequential 
treatment decisions are based on glomerular involve-
ment. Unfortunately, current standards for diagnosis 
and treatment of LN are unsatisfactory and it is neither 
possible to accurately predict a response to therapy nor 
the long-term outcome for individual patients [4]. There-
fore, there is a need for establishing of predictive models 
allowing estimation of long-term results. Currently avail-
able studies provide several both clinical and histopatho-
logical factors, related to unsatisfactory results. Among 
them, the most crucial predictors of poor outcome are 
male gender, younger age, hypertension, increased serum 
creatinine, African American race, proliferative disease, 
high activity and chronicity index, glomerulosclerosis 
and crescents, interstitial inflammation, tubular injury, 
and an extent of interstitial fibrosis [5]. Achievement 
of a proteinuria < 0.7  g/day at month 12, best predicts 
good outcome at 7 years and inclusion of haematuria at 
month 12 undermines the sensitivity of early proteinuria 
decrease for the prediction of good outcome [6].

Based on the clinical data derived from patients with 
diagnosed LN and using artificial intelligence techniques, 
and artificial neural networks, we have built a machine 
learning model allowing prediction of complete remis-
sion in a patient with LN.

Methods
Data collection
It was a single centre trial, including retrospective data of 
58 patients with diagnosed systemic lupus erythemato-
sus and biopsy-proven LN. The SLE diagnosis was based 
on EULAR/ACR classification criteria [7]. The following 
clinical parameters were included: age, gender, serum 
creatinine concentration, estimated glomerular filtra-
tion rate (eGFR) calculated by MDRD equation, C3 and 
C4 concentrations, serum albumin, extent of proteinuria 
measured as urine protein to creatinine ratio (UPCR), 
erythrocytes sedimentation rate (ERS), C-reactive pro-
tein (CRP) concentration, erythrocyturia assessed as 
number of red blood cells (RBC) on high-power field 
(HPF),

All parameters were collected at the time of kid-
ney biopsy. Only patients with significant proteinuria 
(assessed as UPCR > 1.0 mg/mg) were included into study 
group. After 6 months of follow-up, a complete remission 
(CR) of LN was defined as UPCR < 0.5 and stable renal 
function, according KDIGO guidelines [8]. All patients 
were treated according to EURO-LUPUS regimen, using 
6 intravenous pulses cyclophosphamide (500  mg each), 

followed by oral mycophenolate mofetil, unless contrain-
dicated [9].

Statistical scoring
The performance of the artificial neural network mod-
els was assessed with the following statistical indicators: 
area under the receiver-operator curve (AUROC), Accu-
racy, Precision, Recall and F1-Score. AUROC was used 
to assess the discriminant power of the artificial neural 
network.

Artificial neural network
The entire project was created and run in the python 
3.6.8 environment. Incomplete rows, containing blank 
cells, were removed from the original database, allow-
ing reduction of the amount of available data, but got 
100% complete dataset. In our previous work we anal-
ysed mostly random forest classifiers, due to their better 
performance against neural networks [10]. An artificial 
neural network is a complex structure consisting of sev-
eral basic units, called artificial neurons. In its simplest 
form, there are perceptrons containing several inputs, 
with assigned weights and one output. Functions respon-
sible for building a multi-layer perceptron came from 
the scikit-learn library. It is, to some extent, analogous 
to a biological neuron with many dendrites but only one 
axon. The interior of the perceptron is an activating func-
tion, superimposed on the sum of the products of the 
neuron’s inputs and the corresponding weights. The bias 
vector affects performance and results in better fitting to 
the data. Neurons are arranged in layers that are inter-
connected. In a multi-layer perceptron, these layers are 
organized in the input layer, hidden layers, and output 
neurons. Depending on the number of neurons and lay-
ers, different complexity may be obtained. Naturally, the 
greater the complication, there more of the possibilities 
of such network, but at the same time, the more time cost 
needed to train it.

	
output = factivation

(
bias +

n∑

k=1

inputk • weightk

)

The activation function is analogous to the excitability 
threshold of a biological neuron. In MLP, this is a ReLu 
function that returns zero for all non-positive values and 
takes the input value for positive values.

	
σ (x) = max (0, x) =

{
x for positive values

0 otherwise

The activation function for the output in MLP is the 
logistic function, given by the following formula:
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σ (x) =

1
1 + ex

The complexity of the MLP neural network is related to 
the number of samples in the training set, the number 
of input features, predicted classes, and neurons in the 
respective layers. In mathematical notation it is written 
as O (n·m·o·h1·h2), where “n” is the number of samples in 
the training set, “m” is the number of input features, and 
“o” is the number of predicted classes. The sizes of the 
hidden layers are h1 and h2, respectively, and they denote 
the number of iterations leading to the best model.

The completed database has been recursively split into 
subsets per column. For example, the subsets contained 
data for all patients, but only for selected columns. The 
selection of input parameters was based on recursive 
searching of the subset space, individual evaluation of 
each statement, selection of hyperparameters and evalu-
ation on the test set. Initially, we thought about applying 
heuristics to optimize models, but with a cut-off size of 1 
to 45 neurons in the hidden layer, we did not experience 

an appreciable loss of resources, using brute force search. 
Naturally, we are aware that heuristics in model optimi-
zation are necessary in more advanced models and for 
larger input data. The search for optimization solutions 
for modelling in medicine can be an interesting subject 
of research and bring enormous progress in the field of 
personalized medicine. The main hyperparameters of the 
neural network are the number of neurons in the indi-
vidual hidden layers. Due to the speed of calculations 
and their parallelism, we used a for-loop nested in the 
for-loop and limited the maximum number of neurons 
to 150 in a single layer. We are aware that the complexity 
was high, but in practice we were able to trace how the 
performance of the network changes depending on its 
structure, which, however, is not the subject of this work, 
but is discussed in another of our work [10]. The perfor-
mance measured by AUROC, and Accuracy has been 
saved and finally the best configurations was chosen, 
allowing the most accurate prediction of total remission.

Fig. 1  The model with the best performance effectively discriminating the onset and the absence of complete remission in patients with LN. The sensitiv-
ity of the model, with respect to the lack of complete remission, makes it a perfect tool for screening people particularly at risk of further complications
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Results
Study population baseline characteristics
Retrospective data of 58 patients with biopsy proven LN, 
aged 18–72 years (36.05 ± 13.98), 48 women and 10 men, 
were included. All evaluated parameters and variables are 
presented in Table 1.

The input database was randomly divided into train-
ing and testing cohorts. The characteristics of the divided 
groups are described in Table 2.

A multi-layer perceptron with 40 neurons in the first 
hidden layer and 45 neurons in the second hidden layer, 
appeared to be the model with the best performance with 
AUROC of 0.9375 (0.94), Accuracy of 91.67%, Positive 

Predictive Value (precision) of 0.9333 and Sensitivity 
(recall) of 0.9167 (Fig.  1). A similar result was achieved 
by 2 models built with 8 in the first and 22 in the sec-
ond layer, and 30 in the first and 41 in the second hid-
den layer, respectively, but this model turned out to have 
a lower AUROC of 0.9067.

The best model of artificial neural network achieved 
100% precision, for predicting the occurrence of com-
plete remission, in LN from the input variables. Sensitiv-
ity 0.88 for a class with complete remission. For the group 
without complete remission, it achieved 100% sensitivity 
and 80% positive predictive ability.

Table 1  Basic characteristics of the population
Parameter
[N = 58]

Population (Mean ± Standard Derivation (SD) and 
range from minimal to maximal value)
*Categorical (if applicable)
** Not included in program analysis

Gender (male/female) 10/48 (17.24%/82.76%)

Age at biopsy [years] 36.05 ± 13.98 (18 ÷ 72)

LN class II/III/IV/V/VI 1/12/25/12/8 (1.72%/20.69%/43.10%/20.69%/13.79%)

Number of glomeruli in specimen 20.26 ± 9.54 (6 ÷ 62)

Number of totally sclerotic glomeruli 1.88 ± 3.46 (0 ÷ 15)

Number of partially sclerotic glomeruli 3.81 ± 7.14 (0 ÷ 48)

Number of cellular/cellular-fibrotic crescents 1.23 ± 2.83 (0 ÷ 17)

Number of glomeruli with fibrillary necrosis 2.32 ± 4.42 (0 ÷ 25)

Number of glomeruli without changes 0.91 ± 2.28 (0 ÷ 12)

Activity Index 8.96 ± 4.51 (0 ÷ 22)

Chronicity Index 3.15 ± 2.13 (0 ÷ 8)

Interstitial fibrosis [%] 9.91 ± 7.16 (5 ÷ 40)

WBC [10^3/ul] 7.93 ± 3.02 (1.7 ÷ 15.57)

NEU [10^3/ul] 5.51 ± 2.49 (0.52 ÷ 12.84)

LYM [10^3/ul] 1.77 ± 0.93 (0.38 ÷ 4.95)

NLR 4.42 ± 4.36 (0.64 ÷ 24.05)

HGB [g/dl] 11.89 ± 1.73 (7.7 ÷ 17.1)

PLT [10^3/ul] 229.98 ± 78.65 (31 ÷ 475)

PLR 185.63 ± 144.51 (14.09 ÷ 831.58)

ERS [mm/1 h] 35.79 ± 23.44 (3 ÷ 128)

CRP [mg/l] 4.09 ± 7.86 (0.07 ÷ 43.69)

sCr [mg/dl] 1.28 ± 0.65 (0.6 ÷ 3.66)

eGFR [ml/min/1.73 m2] 65.72 ± 26.67 (13 ÷ 127)

TP [g/dl] 5.33 ± 0.93 (3.7 ÷ 7.5)

ALB [g/dl] 2.86 ± 0.56 (1.9 ÷ 3.9)

Total Cholesterol [mg/dl] 268.29 ± 82.39 (116 ÷ 578)

Triglycerides [mg/dl] 196.32 ± 106.88 (49 ÷ 541)

C3 [g/l] 0.84 ± 0.29 (0.32 ÷ 1.74)

C4 [g/l] 0.18 ± 0.10 (0.07 ÷ 0.42)

ANA (0/1/undefined) 3/48/7 (5.17%/82.76%/12.07%)

Erythrocyturia [RBC/HPF] 13/23/22 (22.41%/39.66%/37.93%)

UPCR [mg/mg] 3.29 ± 2.93 (0.5 ÷ 16.16)

Complete Remission [Yes/No] 18/40 (31.03%/68.97%)
Abbreviations. WBC – white blood cells; NEU - neutrophils, LYM – lymphocytes, NLR – neutrophil-to-lymphocyte ratio, HGB – haemoglobin, PLT - platelets, PLR – 
platelets-lymphocyte ratio, ERS – erythrocytes sedimentation rate, CRP – C-reactive protein, sCr – serum creatinine, eGFR – estimated glomerular filtration rate, ALB 
– serum albumin; TP – total protein, C3 – complement component 3, C4 – complement component 4, ANA – antinuclear antibodies, UPCR – urine protein-creatinine 
ratio,
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The search for the best solution required construc-
tion of several models. We made the original assumption 
about the maximum size of the neural network up to 45 
neurons in each of the two layers. In case of failure or 
unsatisfactory results, we would consider increasing this 
limit. The obtained result is within the initially assumed 
limits, i.e., has a relatively low complexity and a superior 
performance, so it has been considered as an optimal 
solution combining costs with efficiency.

Figure  2 shows the Accuracy distribution, depending 
on the number of neurons in the first and second hidden 
layers. The number of neurons in the first hidden layer is 
marked on the horizontal axis, whereas the number of 
neurons in the second hidden layer on the vertical axis. 
The colour corresponds to an Accuracy value, in the 
range from 0.3333 to 0.9167, from the worst to the best 
model constructed. The observation allows to indicate 
the area where the models were useless and, in the future, 
it may be possible to construct a metaheuristic, avoid-
ing ineffective solutions and shorten the time of model 
exploration. The optimal result is a model combining all 
the parameters as high as possible, considering the costs 
of its construction and practical application.

Figure 3 shows the distribution of AUROC, depending 
on the number of neurons in the first and second hid-
den layers, with the axes labelled like at Fig. 2. The colour 
scale starts from 0.500, which is a typical value for a ran-
dom classifier. The graphic shows an edge area where 
one layer of the neural network has several neurons and 
is unable to achieve satisfactory performance regardless 
of calibrating other hyperparameters or modifying the 
input variables. Some of the models had AUROC 1.0000, 
while they had accuracy lower than 0.9. The optimal solu-
tion should have both great accuracy and very discrimi-
nant power.

Figure  4 shows the precision distribution, depending 
on the number of neurons, in the corresponding hidden 
layers. Big data analysis, in combination with a recursive 
algorithm, allowed to generate various models and select 
those with higher sensitivity, in relation to the selected 
weighted average sensitivity target.

Figure  5 shows the Recall distribution, depending on 
the number of neurons in the corresponding hidden lay-
ers. The simplest models, located at the edge of the chart, 
do not have the worst recall. Due to the slight unbalance 
of the data set, the average results are recalled around 
0.65. The worst outcomes overall and the best ones are 
scattered inside the graph, showing the complex struc-
ture of neural network models.

Graphing a neural network, with significant numeri-
cal values, may be difficult due to the complexity of the 
model. Figure  6. shows the matrices, with the values of 
individual connections between the relevant neurons 
in specific layers. Our network has the following layers: 
an input layer with 8 neurons corresponding to specific 
variables. The first hidden layer consists of 40 neurons. 
Each of them is connected to the input layer neurons, 
and the weights of these connections are shown in the 
upper 8 × 40 matrix in Fig.  6. The second hidden layer 
consists of 45 neurons, each connected to each of the 40 
first hidden layer neurons. The weights of these connec-
tions are illustrated by the largest matrix of size 40 × 45 
in Fig. 6. The output neuron is connected to each of the 

Table 2  Baseline characteristics of the patients enrolled in 
the cohorts. Training and testing groups are characterized by 
mean ± standard derivation (SD) and range from minimal to 
maximal value or as categorical, if applicable
Patients’ parameters
[N]*

Study Cohort
(Training set)
N = 46

Test Cohort
(Testing set)
N = 12

Gender [men/women] 8/38 2/10

Age at biopsy [years] 35.50 ± 14.06 38.17 ± 14.06

LN class II/III/IV/V/VI 1/10/21/9/5 0/2/4/3/3

Number of glomeruli in specimen 20.83 ± 10.21 18.08 ± 6.26

Number of totally sclerotic 
glomeruli

1.61 ± 3.08 2.92 ± 4.68

Number of partially sclerotic 
glomeruli

3.95 ± 7.79 3.25 ± 3.93

Number of cellular/cellular-fibrotic 
crescents

1.43 ± 3.07 0.50 ± 1.45

Number of glomeruli with fibril-
lary necrosis

2.52 ± 4.85 1.58 ± 2.07

Number of glomeruli without 
changes

1.09 ± 2.50 0.25 ± 0.87

Activity Index 8.99 ± 4.77 8.83 ± 3.51

Chronicity Index 2.95 ± 1.91 3.92 ± 2.78

Interstitial fibrosis [%] 9.02 ± 5.74 13.33 ± 10.73

WBC [10^3/ul] 8.09 ± 3.26 7.34 ± 1.81

NEU [10^3/ul] 5.49 ± 2.61 5.60 ± 2.09

LYM [10^3/ul] 1.90 ± 0.95 1.28 ± 0.71

NLR 3.90 ± 4.06 6.42 ± 5.05

HGB [g/dl] 12.06 ± 1.82 11.26 ± 1.19

PLT [10^3/ul] 238.35 ± 79.15 197.92 ± 70.78

PLR 176.80 ± 147.66 219.48 ± 132.10

ERS [mm/1 h] 37.75 ± 24.92 28.27 ± 15.11

CRP [mg/dl] 4.59 ± 8.67 2.16 ± 2.70

sCr [mg/dl] 1.27 ± 0.69 1.32 ± 0.48

eGFR [ml/min/1.73 m2] 67.98 ± 26.65 57.08 ± 26.05

TP [g/dl] 5.35 ± 0.95 5.23 ± 0.89

Albumin [g/dl] 2.87 ± 0.58 2.82 ± 0.52

Total Cholesterol [mg/dl] 274.77 ± 80.20 243.48 ± 89.49

Triglycerides [mg/dl] 202.75 ± 114.55 171.70 ± 68.39

C3 [g/l] 0.86 ± 0.29 0.76 ± 0.29

C4 [g/l] 0.18 ± 0.09 0.16 ± 0.12

ANA (0/1/undefined) 1/39/6 2/9/1

Erythrocyturia [RBC/HPF] 10/19/17 3/4/5

UPCR [mg/mg] 2.91 ± 2.12 4.76 ± 4.83

Target - CR [1/0] 14/32 4/8
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45 neurons of the second hidden layer, and the weights 
of these connections are shown in the matrix in the right 
part of the graphic with the size 1 × 45. Due to the trans-
parency of the graphics, we omitted the representation 
of the so-called vector bias, which are an important ele-
ment of the network, improving its performance, but we 
focused on conveying the basic principle of MLP neural 
network operation.

Discussion
The input parameters of all neural networks included 
ERS, CRP, concentrations of serum albumin and tri-
glycerides, complement C3 and C4 levels, presence of 
ANA, UPCR and data derived from the histopathological 
examination. Their significance in the assessment of LN 
progression stay in accordance with the results of stud-
ies carried out with implementation of classical statistical 
analysis. The variables, selected by the computer pro-
gram, correspond with the conclusions of the research 

regarding the relationship of individual variables with the 
severity of the disease.

Simple designs may also achieve a great performance. 
Liu et al. [11] presented the model, based on UPCR, 
reaching AUC 0.778, and established with implementa-
tion of serum albumin with AUC 0.773. The differences in 
UPCR and serum albumin were assessed after 3 months 
follow-up. The cut-off points for change of UPCR and 
serum albumin concentration were for UPCR ≥ 59%, and 
for serum albumin ≥ 32.9 g/l, respectively and allowed to 
predict remission of LN, at sixth month follow-up. The 
level of C3 complement component, at the time of fol-
low-up, allowed the prediction of LN remission, with an 
AUC of 0.701. Similar parameters were demonstrated in 
our study as reliable markers in prediction of LN remis-
sion. Chen et al. [12] obtained a design with AUC 0.819, 
in the validation cohort, using 59 input variables. Most 
of them were assessed at the point of remission. The sim-
plified Cox risk score model implemented 6 variables, 

Fig. 2  Accuracy depending on the number of neurons in the first (horizontal axis) and second (vertical axis) hidden layer
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derived from initial features set, and subsequently 
employed to assess the risk of renal flare with AUC of 
0.746. Tang et al. [13] investigated clinical indices with 
respect to machine learning techniques and achieved an 
accuracy of 40.1–56.2% in depending on the predicted 
LN class.

Adamichou et al. developed a more complex model, 
capable of recognizing LN with accuracy of 97.9% [14]. In 
our work, we tried to avoid too obvious variables, directly 
leading to a given result, so we avoided differentiating the 
healthy versus sick ones as a trivial issue. A comparative 
solution, with a list of several machine learning tech-
niques, was presented by Helget et al. [15], with results 
of AUC 0.800 for Random Forest Classifier, using 4 vari-
ables: chronicity score, intestinal inflammation, UPCR 
and WBC. An Artificial neural network design based on 
activity score, chronicity score, intestinal fibrosis, intesti-
nal inflammation and UPCR, achieved AUC of 0.775.

Regarding renal histopathology, as a crucial factor for 
the clinical management and outcome of patients with 
LN, it is worth to mention that deep learning-based AI 

procedure was also tested for automatic assessment of 
glomerular pathological findings in LN [16]. The main 
motive for the development of such an arrangement was 
an unsatisfactory inter-pathologist agreement. Deep con-
volutional neural network-based system detected and 
classified glomerular pathological findings in LN (dataset 
of 349 renal biopsy whole-slide images). Authors sug-
gested that deep learning is a feasible assistive tool for 
the objective and automatic assessment of pathological 
LN lesions: at the per-patient kidney level, the model 
achieved a high agreement with nephropathologist (lin-
ear weighted kappa: 0.855, 95% CI; quadratic weighted 
kappa: 0.906, 95% CI).

One of the most serious limitations of our study was 
the small size of the examined population. This was a was 
single-centre study, conducted on an ethnically homoge-
neous population. The obtained models are scalable, and, 
in the future, we hope to test them on a larger group. A 
particular advantage is the use of neural networks that 
may be retrained on a smaller group of samples, called 
partial fitting. Machine learning is not a technique, which 

Fig. 3  AUROC depending on the number of neurons in the first (horizontal axis) and second (vertical axis) hidden layer
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may be comparable between centres, as are the clas-
sic analysis, based on odds ratio and survival models. 
Despite the insight into the mechanism of operation, we 
were not able to draw greater conclusions without an in-
depth mathematical and computer analysis of the algo-
rithm, requiring knowledge and experience in computer 
science. The MLP neural network, on the other hand, is 
a practical tool that may be used in clinical practice after 
appropriate calibration for the population.

Conclusion
The use of an artificial neural network, learned even on 
a small patient cohort, allows the construction of a pre-
dictive model, with good or very good performance. A 
huge advantage is the ability to scale models to larger 
and more diverse populations and over-write the val-
ues stored in the network structure with partial fitting. 
We emphasize the possibility of using this solution in a 

pilot program after conducting further observations on a 
larger research group.

Fig. 4  Precision depending on the number of neurons in the first (horizontal axis) and second (vertical axis) hidden layer



Page 9 of 11Stojanowski et al. BMC Nephrology          (2022) 23:381 

Fig. 5  Recall depending on the number of neurons in the first (horizontal axis) and second (vertical axis) hidden layer
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List of abbreviations
ALB	� serum albumin
ANA	� antinuclear antibodies,
C3	� complement component 3
C4	� complement component 4
CRP	� C-reactive protein
eGFR	� estimated glomerular filtration rate
ERS	� erythrocytes sedimentation rate
HGB	� haemoglobin
LN	� lupus nephritis
LYM	� lymphocytes

MLP	� multi-layer perceptron
NEU	� neutrophils
NLR	� neutrophil-to-lymphocyte ratio
PLR	� platelets to lymphocyte ratio
PLT	� platelets
sCr	� serum creatinine concentration.
SLE	� systemic lupus erythematosus.
TP	� total protein concentration.
UPCR	� urine protein to creatinine ratio.
WBC	� white blood cells.

Fig. 6  Visualization of connection weights between relevant nodes. For clarity, the weights of links with bias vectors have been omitted. The input vari-
ables are the same as the input neurons. Each of the eight input neurons is connected to each of the 40 neurons of the first hidden layer. Each of them is 
connected to each of the 45 neurons of the second hidden layer. Each of these neurons is connected to an exit neuron. The middle matrix is transposed 
for graphics
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