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Abstract 

Background:  Predicting allograft survival is vital for efficient transplant success. With dynamic changes in patient 
conditions, clinical indicators may change longitudinally, and doctors’ judgments may be highly variable. It is neces-
sary to establish a dynamic model to precisely predict the individual risk/survival of new allografts.

Methods:  The follow-up data of 407 patients were obtained from a renal allograft failure study. We introduced a 
landmarking-based dynamic Cox model that incorporated baseline values (age at transplantation, sex, weight) and 
longitudinal changes (glomerular filtration rate, proteinuria, hematocrit). Model performance was evaluated using 
Harrell’s C-index and the Brier score.

Results:  Six predictors were included in our analysis. The Kaplan–Meier estimates of survival at baseline showed an 
overall 5-year survival rate of 87.2%. The dynamic Cox model showed the individual survival prediction with more 
accuracy at different time points (for the 5-year survival prediction, the C-index = 0.789 and Brier score = 0.065 for the 
average of all time points) than the static Cox model at baseline (C-index = 0.558, Brier score = 0.095). Longitudinal 
covariate prognostic analysis (with time-varying effects) was performed.

Conclusions:  The dynamic Cox model can utilize clinical follow-up data, including longitudinal patient information. 
Dynamic prediction and prognostic analysis can be used to provide evidence and a reference to better guide clinical 
decision-making for applying early treatment to patients at high risk.

Keywords:  Dynamic prediction, Kidney transplantation, Longitudinal biomarkers, Precise medicine, Individual 
prediction
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Introduction
Chronic kidney disease (CKD) is a major public health 
issue with increasing attention and prevalence world-
wide [1]. Kidney transplantation is well recognized as the 

best treatment option for patients with end-stage renal 
disease [2]. However, there are still a substantial number 
of kidney transplantation failures due to various causes, 
such as rejection, infection and recurrence of glomeru-
lonephritis. Failure after transplantation is a burden on 
the transplant system, health care system, and even the 
patient’s quality of life [3]. Therefore, predicting renal 
allograft survival is vital for efficient transplant success.

During long-term performance after kidney trans-
plantation, a great deal of information, ranging from 
lab results such as glomerular filtration rate (GFR) to 
patients’ conditions such as blood pressure, is measured 
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repeatedly in patients over time during observational 
studies and clinical trials or simply as patients undergo 
routine monitoring [4]. The loss of kidney function (renal 
allograft failure) is often defined as an interesting end 
point in clinical research [5, 6]; thus, the time from base-
line to the events of clinical interest is usually collected 
alongside these longitudinal data.

In recent years, several prediction models (e.g., the 
Cox regression model) for post-kidney transplantation 
have been developed and validated [7–15]. However, 
most studies were limited to making static predictions at 
a fixed time point and with fixed covariates, such as the 
“static prediction” shown in Fig.  1. With the follow-up 
of kidney transplant patients over time, it is necessary to 
assess various biomarkers at periodic follow-up visits and 
to ensure that patients’ conditions are stable. These bio-
markers are usually defined as longitudinal time-depend-
ent covariates whose values may change over time [16]. 
For example, the GFR is a clinical sign of renal function 
for patients in whom it is measured multiple times. An 
increase in the GFR means that the patient’s renal func-
tion is gradually returning to normal. Therefore, longi-
tudinal information should be used to predict the risk of 
kidney transplant failure.

With the development of precision medicine, build-
ing a predictive model with strong performance to 
achieve accurate predictions for individuals is one 
essential aspect [7]. Prediction models for precision 
medicine can be used to guide clinical decision-mak-
ing on diagnosis and treatment, which has important 
clinical implications for personalized kidney transplant 
monitoring based on the risk of transplant failure. For 
example, anticipating therapy for patients with a high 
risk of losing renal function is key to improving allo-
graft survival. Thus, the predicted risk of allograft fail-
ure determines who should receive early treatment and 
when it should be applied. Therefore, the longitudinal 
information obtained during follow-ups should be used 
to predict patient survival and aid in clinical decision-
making, which enables more precise and dynamic indi-
vidual predictions.

Therefore, we need to build a “dynamic” prediction 
model. The method of adding patients’ changing infor-
mation (longitudinal time-dependent covariates) to the 
prediction model and updating the prediction results 
at different prediction times (both at the baseline and 
at later time points) is called “dynamic prediction” [17, 
18]. As shown in Fig.  1, dynamic prediction can yield 

Fig. 1  Prediction processes of the static Cox model and the dynamic Cox model
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the survival probabilities of patients in the next w years 
(w = 5 or w = 10) at different prediction time points.

At present, one of the commonly used methods to 
achieve dynamic prediction is the landmarking method. 
This method constructs a prediction dataset with the 
information of patients at risk at specific landmark times 
sl. The Cox model employing the landmarking method 
can utilize updated survival data to construct a predic-
tion model that spans multiple landmark time points to 
obtain a dynamic survival probability. Therefore, such a 
Cox model can capture the development of time-depend-
ent covariates, and this model is called the dynamic Cox 
model [18–20].

In this study, we introduced a dynamic Cox model 
based on the landmarking approach and applied it to 
a  example data from observational studies after kidney 
transplantation. The dynamic change performance out-
comes of the prediction model were assessed, and spe-
cific patient examples were used to illustrate how the 
predicted survival probabilities of new allografts change 
at different prediction times during follow-up.

Materials and methods
Example data
In a renal allograft failure study [5], 407 patients with 
CKD underwent kidney transplantation in the hospital 
of the Catholic University of Leuven in Belgium between 
January 1983 and August 2000 and were followed until 
renal allograft failure or censorship. The outcome of this 
analysis was overall survival, which was calculated in 
years as the time from transplantation to renal allograft 
failure. Patients whose allografts were still functioning 
at the last follow-up were censored. Six predictors were 
selected for the analysis, including age at transplanta-
tion, sex, and weight measured at baseline. The three 
longitudinal time-varying covariates were hematocrit, 
proteinuria and GFR, and these biomarkers were meas-
ured regularly during follow-ups to check the allograft 
condition of the patients.

Statistical methods
Descriptive statistics are reported as the means ± stand-
ard deviations for continuous variables and the number 
of patients for categorical variables. A landmark analysis 
was performed to make dynamic predictions.

Landmarking approach
The basic idea of the landmarking method is to predeter-
mine a series of meaningful time points and assess the 
statuses of patients at these moments. As shown in Fig. 1, 
we defined landmark time points sl on the expected pre-
diction interval [0, smax], where smax is the maximum pre-
diction time of interest, to estimate the survival of new 

allografts in the next w years (prediction window w = 5 
or w = 10) at different prediction time points sl. For each 
sl (l = 0, 1..., L), we selected individuals who were still at 
risk (still alive and undergoing follow-up) at time point 
sl and neglected any event after sl + w to construct a cor-
responding landmark dataset Rl.

Dynamic Cox model
As shown in Fig.  1, we constructed the dataset R by 
stacking all landmark datasets Rl together and fitting 
a Cox model on R. This model had an effect function 
β(sl) = β0 + β1sl + β2sl

2 for covariates Z at different predic-
tion time points sl, where β0, β1 and β2 are parameters, 
and a time function θ(sl) = θ1sl + θ2sl

2, where θ1 and θ2 are 
parameters. We built a dynamic Cox model as follows:

Predictive performance assessment
The measures used to evaluate the performance of pre-
dictive models are usually divided into discrimination 
and calibration measures. Harrell’s C-index is generally 
used for discrimination [21]. The higher the C-index is, 
the better the consistency, which means that the pre-
dicted survival probability is more consistent with the 
patient’s real survival time. The Brier score is a calibrated 
metric that calculates the squared difference between 
the probability predicted by the prediction model and 
the observed result [22]. A smaller Brier score indicates 
a higher accuracy of prediction by the model. The pro-
cess of Monte Carlo cross-validation with 200 iterations 
is shown in Supplementary Fig. S1 and was used to avoid 
overfitting. Then, the average C-index and Brier score 
values were calculated to assess the performance of the 
two models.

Dynamic analysis
We aimed to construct a dynamic prediction model that 
could provide patients with dynamic survival predic-
tions for new allografts. Compared with the static Cox 
model, the dynamic Cox model can update the survival 
of new allografts at different prediction time points. After 
fitting the dynamic Cox model, the predicted w-year 
dynamic survival probability at landmark time point sl 
was calculated:

To perform precise individual prediction, several 
patients were selected from the data, and we could 
dynamically predict the conditional survival probabilities 
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and real-time survival rate of new allografts for these 
patients in the next w years.

For numeric stability, the landmark time point sl was 
standardized using sl/(sL-s0), which ranged from 0 to 1, 
to calculate the dynamic hazard ratio (HR). Then, the 
w-year dynamic HR could be calculated as follows:

Results
Data description
All 407 patients were included in the analysis. The 
median follow-up time was 11.86 years (range: 
1.04 ~ 19.22 years). The baseline characteristics of the 
study population are depicted in Table 1. Supplementary 
Fig. S2 shows the Kaplan–Meier estimates of survival 
at prediction time point s = 0 (baseline), with an overall 
5-year survival rate of 87.2% (95% confidence intervals: 
84.0% ~ 90.5%) and an overall 10-year survival rate of 
77.9% (95% confidence intervals: 74.0% ~ 82.0%).

Model construction
According to the patients’ median follow-up time of 
11.86 years, we defined the  smax is 10 year, and selected 
the prediction interval  as [0, 10]. From the comple-
tion of kidney transplantation as the initial time point 
(s0 = 0) to the 10th year after transplantation (s40 = 10), 
we selected 41 landmark time points sl ∈ {s0, s1, …, s40} 
in every 3 months. To obtain dynamic survival predic-
tions for the next w years, prediction windows of w = 5 
and w = 10 were selected, which are more reasonable 

HR
w
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= exp
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�0 + �1 ×
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+ �2 ×

(
sl∕

(
sL − s0

))2)
.

for a long-term observation process [23]. The detailed 
results of the static Cox model and dynamic Cox model 
(w = 5) are depicted in Table 1. We built the static Cox 
model based on the baseline values of six covariates; 
however, five covariates did not show significant P 
values (P > 0.05). In contrast, the dynamic Cox model 
showed that age, weight, hematocrit, proteinuria and 
GFR had significant results. The time function and 
three time-dependent covariates (hematocrit, protein-
uria and GFR) with time functions also had significant 
P values and were included to adjust the model. Taking 
hematocrit as an example, β(sl) = 0.256 − 1.498(sl/10) 
means that per 0.1% increase in hematocrit, the risk 
of renal allograft failure increased by 0.256, and as 
the prediction time sl increased, the effect of hemato-
crit decreased. θ(sl) = 8.444(sl/10) − 1.957(sl/10)2 is the 
change in the baseline HR h0(t) with increasing predic-
tion time sl.

Model assessment
The model assessment measures were calculated 
according to the 5-year (w = 5) and 10-year (w = 10) 
survival rates derived from each landmark time point 
sl. Figure  2 shows the prediction measures of the two 
models. We found that compared with the static Cox 
model, the dynamic Cox model was better in terms 
of both the C-index and Brier score as the prediction 
time s increased. The changing trends of the C-index 
and Brier score corresponded to this finding; when the 
dynamic Cox model had higher discrimination, its cali-
bration was better.

Table 1  Baseline characteristics and results from the static Cox model and the dynamic Cox model (w=5)

Coef, coefficient; SE, standard error; age, age at transplantation (per 10 years); sex (male = 0, female = 1); weight (per 10 kg); hematocrit (per 0.1%); GFR, glomerular 
filtration rate (per 10 ml/min); proteinuria (per 1 g/24 hours)

Time function: β(sl) = β0 + β1(sl/10) + β2(sl/10)2, θ(sl) = θ1(sl/10) + θ2(sl/10)2

Variables Mean ± SD Static Cox model Dynamic Cox model (w = 5)

Coef SE (coef) P value Time function Coef SE (coef) P value

Age 4.160 ± 1.278 −0.212 0.079 0.007 1 −0.447 0.023 < 0.001

Sex 220 (male) 0.206 0.210 0.325 \ \ \ \

Weight 6.381 ± 1.142 0.126 0.090 0.162 1 0.603 0.026 < 0.001

Hematocrit 2.951 ± 0.620 0.148 0.146 0.310 1 0.256 0.083 0.143

\ \ \ \ sl / 10 −1.498 0.165 < 0.001

GFR 0.891 ± 0.549 0.133 0.128 0.298 1 −0.375 0.028 < 0.001

\ \ \ \ sl / 10 − 0.545 0.065 0.015

Proteinuria 2.409 ± 3.583 −0.032 0.041 0.433 1 −0.182 0.039 0.053

\ \ \ \ sl / 10 1.948 0.171 < 0.001

\ \ \ \ (sl / 10)2 −1.902 0.157 < 0.001

θ(s) \ \ \ \ sl / 10 8.444 0.703 < 0.001

\ \ \ \ (sl / 10)2 −1.957 0.454 < 0.001
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Dynamic analysis
Individual survival prediction
Three patients were selected for individual predic-
tion  (w=5), and detailed information is shown in Sup-
plementary Table S1. The prediction results regarding the 
individuals are shown in Fig. 3. During the period from 
kidney transplantation to the first year, as the GFR value 
of patient A gradually increased and the proteinuria level 
returned to zero, the conditional survival probability of 

patient A gradually improved (Fig.  3A1). After the first 
year, patient A’s condition stabilized, the real-time sur-
vival curve gradually tended to be horizontal, and almost 
all survival rates were greater than 0.95 (Fig. 3A2). In con-
trast, patient B maintained his condition during 0–7 years 
of follow-up. However, the situation changed at 7.5 years, 
when the GFR presented a downward trend, while the 
proteinuria level gradually increased; at this time, his 
conditional survival probability declined from over 0.9 

Fig. 2  Model assessments (C-indices and Brier scores). Note: A higher C-index indicates a better performing model; a lower Brier score indicates a 
better performing model
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Fig. 3  Individual dynamic prediction. Note: A1-C1 show the 5 year conditional survival probability at each prediction time point; A2-C2 show the 
real-time survival rate from each prediction time point to the next 5 years
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to 0.5 (Fig.  3B1), and the survival curve also showed a 
similar result (Fig. 3B2). The condition of patient C dete-
riorated from s = 0. Figure 3C1-C2 shows that her condi-
tional survival probabilities and real-time survival curves 
gradually decreased, and patient C died at 5.17 years.

The static Cox model, which only considered the infor-
mation at baseline (s = 0), predicted that the survival 
probabilities of these patients would gradually decrease 
over time, and it could not reflect real-time patient sur-
vival probabilities with their longitudinal information.

Prognostic analysis
The dynamic Cox model could also be used to conduct a 
prognostic analysis with the covariates with time-varying 
effects, while the static Cox model can only obtain the 
HR from baseline. The dynamic Cox model for predicting 
5-year (w = 5) survival showed the significance of hema-
tocrit, proteinuria and GFR with time-varying effects 
(Fig. 4). Taking hematocrit as an example, Fig. 4A shows 
that the dynamic HR of hematocrit gradually decreased 
as the prediction time increased and the impact of hema-
tocrit on patients gradually diminished. However, the 
static Cox model could show only the HR at baseline 
and with no significant result (95% confidence interval 
included 0).

Supplementary Appendix S1 illustrates how the static 
Cox model and the dynamic Cox model can be carried 
out in practice with the R code.

Discussion
Precision medicine aims to improve the quality of health 
care by individualizing the health care process to the 
uniquely evolving health status of each patient [24]. 
Dynamic prediction is a method that uses updated fol-
low-up information to predict the individual survival or 
risk of a disease in real time [25]. Currently, the diagnosis 
and early treatment of diseases after kidney transplanta-
tion are expected to enter an era of individualization. It 
is important to make dynamic and precise survival pre-
dictions for individuals to guide clinical decision-making 
(such as adjusting immunosuppression, returning to dial-
ysis, or re-enrolling in the transplant waiting list) based 
on the patients’ longitudinal follow-up information.

Monitoring the survival of renal allografts is a long-
term process. During this process, patients want to know 
the survival probabilities of their allograft at each stage. 
Patients can learn the condition of their allograft in real 
time through the use of dynamic prediction models 
instead of static prediction models. For example, we used 
the baseline information of kidney transplant patients 
to build a static prediction model that could only pre-
dict the survival of the patients when they entered the 
study. After a period of time, each patient returned to the 

hospital for a follow-up, and the values of the covariates 
were changed. The static prediction model is not suit-
able for patients who have survived for a period of time 
after transplantation. In contrast, a dynamic prediction 
model can use both baseline and follow-up information 
to predict the survival probabilities of new allografts for 
patients who have been alive for a period of time after 
transplantation.

In our study, we selected a landmarking approach to 
make dynamic predictions that can handle more limita-
tions than joint modeling methods. Many studies have 
shown that the joint modeling method will have lower 
predictive performance than the landmarking approach 
when the model is not specified correctly [26]. Moreo-
ver, landmarking the dynamic Cox model can also use 
the covariates with time-varying effects to make prog-
noses and predictions [18] at different selected landmark 
time points and predict the next few years’ survival for 
patients, so that patients can know their conditions in 
real time and early treatment can be applied to patients 
with predicted high risk of allograft failure.

It is indeed challenging for doctors to integrate baseline 
and posttransplantation clinical information to dynami-
cally predict the risk of renal allograft failure. However, 
some studies have shown that clinical decisions based on 
only clinical data and doctors’ judgments are often not 
accurate and are highly variable between doctors [27]. 
Therefore, dynamic risk/survival prediction for individu-
als is important in clinical decision-making. For instance, 
it may be possible for a patient to consider an earlier 
return to dialysis or re-enrollment in the transplant wait-
ing list for retransplantation if the predicted risk is very 
high within a shorter prediction window of an early land-
mark time point. Thus, when applying the dynamic pre-
diction model based on the landmarking approach, the 
selection of landmark time points and prediction win-
dows could also be important.

When we apply the landmarking approach, some 
detailed settings are necessary. First, the prediction win-
dow w depends on the disease duration or the duration of 
follow-up. For severe cancers, w = 1 or w = 2 is relevant, 
but for some clinical research with a long duration of 
follow-up, such as that after kidney transplantation, we 
choose a window of prediction of 5 years as a relevant 
time horizon to provide middle-term prognoses [28]. 
Furthermore, the selection of the landmark time point sl 
is independent of the actual event time, which implicitly 
defines the weighting of the prediction time. The simplest 
method is to use an equidistant grid of points on the pre-
diction interval [s0, sL] from the time to clinical research 
entry s0 to sL, and the number of time points between 
20 and 100 is sufficient [23]. In addition, the length of 
[s0, sL] may affect the results, usually selecting the time 
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to clinical research entry as s0 and the median follow-up 
time as the maximum prediction time of interest sL. For 
example, in this article, the landmark dataset R contained 
only those patients’ longitudinal information from the 
time point after kidney transplantation to 10 years after 
transplantation. Finally, the functional form of time-var-
ying effects β(s) and the baseline hazard changing θ(s), 

the most commonly used quadratic functions and spline 
functions should also be chosen in practice.

There are two limitations to our study. First, existing 
models for predicting the survival of renal allografts also 
include predictors such as donor information, primary 
kidney disease, comorbidities, supportive therapies, and 
immunization therapies, which we did not include in our 

Fig. 4  Dynamic HRs and 95% confidence intervals. Note: For example, A shows that the dynamic HR of hematocrit at the prediction time point of 
0 years (s = 0) is 1.292 (hematocrit increase per 0.1%) with no statistical significance (95% confidence intervals includes HR = 1). However, when the 
prediction time point is 4 years (s = 4), the HR changes to 0.736 and is statistically significant (95% confidence intervals excludes HR = 1)
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model [28, 29]. However, these covariates can always be 
directly manipulated in clinical practice (subgroups could 
be made for the analysis), whereas we are more con-
cerned with the impact of directly measured covariates 
that reflect the changes in renal function on patient graft 
survival. The GFR and proteinuria used in our study are 
acknowledged indicators that directly reflect the function 
of the kidneys, and hematocrit can indirectly reflect the 
improvement in kidney function and systemic inflamma-
tory conditions [30–32]. The three variables we analyzed 
were all obtained by measurement and are representa-
tive of the outcomes of any intervention. The landmark 
dynamic Cox model in our study could later gradually 
incorporate more variables that might be more satisfac-
tory. Second, although the Monte Carlo cross-validation 
for internal validation of the proposed models performed 
well in our study, we still strongly encourage external 
validation, which can assess generalizability in a larger 
population of kidney recipients. Moreover, the dynamic 
Cox model constructed from the data presented in our 
paper can serve as an example, enabling similar types of 
data in the transplant field to build models for prediction 
and prognostic analysis.

Conclusions
In summary, dynamic Cox prediction models can solve 
the problem that static Cox models can perform “static 
prediction” only after kidney transplantation, and they 
can realize dynamic survival prediction by utilizing 
updated clinical follow-up data. Based on our study, the 
use of a dynamic Cox model can provide an updated, 
dynamic and more accurate prediction for patients and 
may provide evidence and a reference to better guide 
clinical decision-making for applying early treatment to 
patients at high risk of allograft failure.
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