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Abstract 

Background: Acute kidney injury (AKI) is independently associated with morbidity and mortality in a wide range of 
surgical settings. Nowadays, with the increasing use of electronic health records (EHR), advances in patient informa-
tion retrieval, and cost reduction in clinical informatics, artificial intelligence is increasingly being used to improve 
early recognition and management for perioperative AKI. However, there is no quantitative synthesis of the perfor-
mance of these methods. We conducted this systematic review and meta-analysis to estimate the sensitivity and 
specificity of artificial intelligence for the prediction of acute kidney injury during the perioperative period.

Methods: Pubmed, Embase, and Cochrane Library were searched to 2nd October 2021. Studies presenting diagnos-
tic performance of artificial intelligence in the early detection of perioperative acute kidney injury were included. True 
positives, false positives, true negatives and false negatives were pooled to collate specificity and sensitivity with 95% 
CIs and results were portrayed in forest plots. The risk of bias of eligible studies was assessed using the PROBAST tool.

Results: Nineteen studies involving 304,076 patients were included. Quantitative random-effects meta-analysis using 
the Rutter and Gatsonis hierarchical summary receiver operating characteristics (HSROC) model revealed pooled 
sensitivity, specificity, and diagnostic odds ratio of 0.77 (95% CI: 0.73 to 0.81),0.75 (95% CI: 0.71 to 0.80), and 10.7 (95% 
CI 8.5 to 13.5), respectively. Threshold effect was found to be the only source of heterogeneity, and there was no 
evidence of publication bias.
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Conclusions: Our review demonstrates the promising performance of artificial intelligence for early prediction of 
perioperative AKI. The limitations of lacking external validation performance and being conducted only at a single 
center should be overcome.

Trial registration: This study was not registered with PROSPERO.

Keywords: Artificial intelligence, Machine learning, Acute kidney injury, Acute kidney failure, Perioperative period

Introduction
Acute Kidney Injury (AKI) is a clinical syndrome charac-
terised by a sudden decrease in glomerular filtration rate, 
defined by a rapid increase in serum creatinine, decrease 
in urine output, or both [1]. Noteworthy, AKI in the 
perioperative period is one of the most serious yet under-
recognised complications, associated with increased risk 
of morbidity and mortality, chronic kidney disease, long-
term adverse events, and increased cost and resource uti-
lisation [2–4]. Nephrologists should recognise the huge 
medical burden.

Despite remarkable improvements in the identification 
of high-risk patients [5], assessment of AKI is still based 
on two relatively non-specific markers that may lack util-
ity in discriminating patients with incipient AKI: serum 
creatinine (SCr) and urine output (UO) [6]. Urine output 
is a sensitive detection tool for identifying acute kidney 
injury, but probably confounded by multiple factors [7]. 
One randomized prospective study examined the rela-
tionship between fluid administration and intraoperative 
urine output and its correlation with postoperative acute 
kidney injury. The authors failed to find a correlation 
between intraoperative low urine output and postopera-
tive acute kidney injury in 102 bariatric surgery patients 
receiving high- or low-volume of lactated Ringer’s solu-
tion [8]. Moreover, SCr detected may vary in critically 
ill patients (e.g., severe hepatic disease) or by diet (e.g., 
food rich in proteins). In addition, sarcopenia and sepsis 
lead to reduced creatine release and decreased creatinine 
production [6]. This suggested that there remained many 
difficulties in diagnosing perioperative AKI and it was of 
high importance to develop a more accurate and timely 
diagnostic approach [6].

Artificial intelligence (AI) is a fast-growing field, and 
its applications to acute kidney injury can reform the 
approach to diagnosing and managing this clinical syn-
drome. There are numerous AI algorithms (random for-
est, Bayesian network, Gradient boosting machines, etc.) 
to choose from to support predictive models which can 
automatically trigger an electronic alert to physicians [9]. 
In previous studies, AI models demonstrate improved 
accuracy in identifying patients at risk of developing 
AKI, as well as early recognition of subclinical AKI, com-
pared with traditional multivariate regression models 
[10]. However, there is no quantitative synthesis of the 

diagnostic accuracy of these methods. Researchers have 
tried different ways, including but not limited to expand-
ing sample sizes, use of real-time predictive analytics, 
finding novel biomarkers, and optimising algorithms, in 
an attempt to raise diagnostic accuracy but have received 
conflicting results [11, 12].

We conducted a systematic review and meta-analysis 
to quantitatively analyse the diagnostic accuracy of the 
AIs in detecting acute Kidney Injury during the periop-
erative period and investigated the factors that affected 
diagnostic accuracy.

Methods
Data sources and searches
Two independent evaluators searched PubMed, Embase, 
and the Cochrane Library using combined free texts 
and MeSH terms relating to the perioperative period, 
acute kidney injury, and AI (prior to October 2021). 
The abstracts of all identified studies were reviewed to 
exclude irrelevant articles. Full-text reviews were con-
ducted to determine whether the inclusion criteria were 
satisfied in all the studies. We also manually checked the 
reference lists of relevant publications including reviews 
and commentaries to include eligible studies. Disagree-
ments were resolved by a discussion between two evalu-
ators. Additional file 1 shows the detailed search strategy.

Selection criteria
Studies were eligible if they met the following inclusion 
criteria: (1) AKI was defined using consensus criteria 
such as RIFLE, AKIN, and KDIGO, or studies with clear 
AKI definitions; (2) the main outcome was the onset of 
AKI during the immediate pre-operative period until 
the time of discharge; (3) application of the AI algorithm 
for the prediction of perioperative acute kidney injury; 
(4) inclusion of diagnostic performance indices of the 
AI algorithm, including specificity, sensitivity, positive 
likelihood ratio (PLR), negative likelihood ratio (NLR), 
positive predictive value (PPV), negative predictive value 
(NPV), or the figure of the area under the receiver oper-
ating characteristic curve, which enables the construction 
of a 2 × 2 diagnostic table; and (5) human adult subjects.

The exclusion criteria were the studies that were not 
original studies such as letters, comments, editorials, 
protocols or reviews.
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Data extraction and quality assessment
The data that was extracted independently by two inves-
tigators included study characteristics (authors and year 
of publication); characteristics of the sample set (sam-
ple size, age, sex, and type of surgery); characteristics 
of the index test (external validation, number of predic-
tors, and type of AIs); characteristics of reference stand-
ard; and accuracy data (number of true positives, true 
negatives, false positives, and false negatives). If differ-
ent types of models were compared in the same study, 
we only included the model which had the highest diag-
nostic accuracy. When original studies reported the 
sensitivity and specificity under multiple thresholds, we 
extracted the accuracy data under the threshold with the 
largest Youden’s index, defined as the sum of sensitivity 
and specificity minus one. If both the internal validation 
and external validation were performed, the two-by-
two data of the latter was extracted, because of better 
generalisability.

We assessed the methodological quality in 20 signal-
ling questions in 4 key domains: participants, predictors, 
outcome, and analysis of each study using the Prediction 
model Risk Of Bias Assessment Tool (PROBAST), which 
is a risk of bias assessment tool designed for systematic 
reviews of diagnostic or prognostic prediction models 
[13, 14]. According to the signal problem and the author’s 
judgment, each of the domains was divided into “high”, 
“low” and “unclear”. Overall risk of bias is graded as low 
risk when all domains are considered low risk, and over-
all risk of bias is considered high risk when at least one of 
the domains is considered high risk.

Data synthesis and analysis
Extracted two-by-two data were first graphically shown 
in the forest plot with the point estimate of sensitivity 
and specificity and their 95% confidence intervals (Cis). 
To remove the effect of a possible heterogeneous thresh-
old, we conducted a quantitative random-effects meta-
analysis using Rutter and Gatsonis hierarchical summary 
receiver operating characteristics (HSROC) model to 
combine summary receiver operating characteristic 
curves (SROC) curve which was the standard method for 
meta-analysing diagnostic studies reporting pairs of sen-
sitivity and specificity [15]. This method comprehensively 
considers the effect of diagnostic tests under different 
diagnostic thresholds and converts the diagnostic odds 
ratio (DOR) by the sensitivity and specificity of each pair 
as the only metric of diagnostic analysis [16].

Subgroup analysis and meta-regression were used to 
explore the potential heterogeneity. The following pre-
specified subgroup analyses were performed based on 
AI algorithms, surgery type, number of patients, external 

validation, diagnostic criteria, and methodological qual-
ity of included studies. We regarded the factor as a source 
of heterogeneity if the coefficient of the covariate was sta-
tistically significant (P < 0.05). Because the Metandi and 
Midas package of STATA required a minimum of four 
studies to conduct the diagnostic test accuracy meta-
analysis (reference), if less than four studies were enrolled 
in the subgroup analysis, Meta-DiSc 1.4 using the 
‘Moses-Shapiro-Littenberg method’ was used (reference).

We performed sensitivity analysis to evaluate the 
robustness of our main outcomes by exploring the effect 
of excluding one study at a time and used Deek’s funnel 
plot [17] to assess the presence of publication bias. All 
the data analysis were conducted in STATA (version 16.0) 
with the two-tailed probability of type I error of 0.05 
(α = 0.05).

Results
Identification of relevant studies
A total of 540 articles were identified by searching three 
electronic databases. Among them, 105 were duplicate 
studies, and 384 were excluded during the initial screen-
ing by reviewing titles and abstracts. The full texts of the 
remaining 53 articles were thoroughly reviewed. Among 
these, 34 studies were excluded from the final analysis 
due to the following reasons: abstract (n = 15), review 
(n = 11), clinical score (n = 2), study with incomplete data 
(n = 2), failed to get the original text (n = 3) and did not 
pertain to topic (n = 1; the topic of this article was auto-
mated identification of the electronic medical record). 
The remaining 19 studies were included in the final anal-
ysis, which was shown in Fig. 1.

Characteristics of eligible studies
The total number of subjects tested in the included stud-
ies was 304,076, with the sample size ranged from 109 to 
96,653 [18–36].

Seventeen studies described the demographic charac-
teristics of their study population, of whom the mean age 
was 37 to 71 years old and the percentage of males was 16 
to 88% [18, 20, 21, 23–30, 36].

The included studies were categorized based on the 
type of the surgery participants received, including car-
diothoracic surgery, any inpatient operative procedure, 
liver transplantation, total knee arthroplasty [18–36].

Enrolled studies presented the performance of the AI 
algorithms with test dataset (internal validation), and 
there were only four studies [22, 27, 28, 35] that pre-
sented the performance of external validation. Nine stud-
ies [22–26, 29, 33–35] established the AI algorithm based 
on the gradient boosting machine (GBM), three studies 
[18, 20, 36] established random forest (RF)-based algo-
rithms, three studies [21, 28, 30] established two types 
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of artificial neural network (ANN)-based algorithms, 
one study [27] established Bayesian network (BN)-based 
algorithm, one study [32] established decision-tree (DT)-
based algorithm, one study [31] established an ensemble 
algorithm, and another study even conducted a novel 
machine learning risk algorithm [19] called: MySurger-
yRisk .

Fifteen studies applied the Kidney Disease Improv-
ing Global Outcomes (KDIGO) definition for AKI [18–
20, 22, 23, 25–28, 30, 31, 36]. Among these, some used 
serum creatinine changes only to define AKI while urine 
output criteria were not adopted [22, 24, 26, 30, 35]. Two 
studies applied the Acute Kidney Injury Network (AKIN) 
criteria [21, 24].

These characteristics (modifiers) were evaluated as 
potential sources of heterogeneity through subgroup 
analysis and meta-regression. (Table  1) shows the 
detailed characteristics of the studies.

Methodological quality of the studies (Fig. 2)
Among the 19 studies [18–36] in the final analysis, 4 
studies [19, 26, 33, 34] showed low risk of bias, 2 stud-
ies [27, 30]showed unclear risk of bias, and 13 studies [18, 
20–25, 27–29, 31, 32, 36] showed high risk of bias.

Regarding the participants domain, the risk of bias was 
high in 6 studies [18, 21, 22, 25, 27, 34] because their par-
ticipant data were from existing sources, such as existing 
cohort studies or routine care registries and didn’t appro-
priately adjust baseline hazards or registry outcome fre-
quency in the analysis. The risk of bias was unclear in one 
due to insufficient information describing the sampling 
method in external validation [27]. Models developed 
using data without restricted inclusion criteria tend to 
show lower discriminative ability.

Concerning the predictors domain, we considered the 
risk of bias unclear in one study [32] because the details 
of the predictors were not reported.

In terms of the outcomes, 15 studies [18–20, 22, 23, 
25–28, 30, 31, 36] applied the Kidney Disease Improv-
ing Global Outcomes (KDIGO) definition for AKI, but 
we considered the risk of bias unclear in five studies [22, 
23, 25, 30, 35] because they utilised creatinine changes 
only. The risk of bias was high in one study [28] because 
only patients with severe AKI were enrolled. In addition, 
two studies [29, 36] which used their own criteria for AKI 
were also considered to have high risk of bias. These dif-
ferences in outcome determination affect the estimated 
associations between predictors and outcome and thus 
the predictive accuracy of the diagnostic models [14].

Fig. 1 Flow diagram of the identification of relevant studies
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The most concerning issue regarding “analysis” was the 
high risk of bias in majority of the included studies. The 
risk of bias in 12 studies [18, 20–24, 28, 29, 31, 32, 35, 36] 
was considered high and primarily related to unreason-
able number of participants (e.g., EPV < 10 or small sam-
ple sizes), follow-up losses, and the absence of calibration 
and discrimination.

Overall, studies [18, 20–25, 27–29, 31, 32, 36] with high 
risk in at least one of the four domains were rated as low 
methodological quality in the diagnostic test accuracy of 
artificial intelligence for the prediction of acute kidney 
injury during the perioperative period (Fig. 2, Additional 
file 2).

Diagnostic test accuracy of artificial intelligence 
for the prediction of acute kidney injury 
during perioperative period
The Fig.  3 showed the paired forest plot for sensitivity 
and specificity with the corresponding 95% CIs for each 
study. The SROC curve, with a 95% confidence region, 
was illustrated in Fig. 4. The following summarised esti-
mates using the HSROC model were also calculated: sen-
sitivity 0.77 (95% CI: 0.73 to 0.81), specificity 0.75 (95% 
CI: 0.71 to 0.80), positive likelihood ratio 3.2 (95% CI: 
2.7 to 3.7), negative likelihood ratio 0.30 (95% CI: 0.26 to 
0.35), and diagnostic odds ratio 10.7 (95% CI 8.5 to 13.5). 
To investigate the clinical utility of AI, a Fagan nomo-
gram was generated. Assuming a 50% prevalence of AKI 
during the perioperative period, the Fagan nomogram 
shows that the posterior probability of AKI was 76% if 

the test was positive, and the posterior probability of the 
absence of AKI was 23% if the test was negative (Fig. 5).

Exploring heterogeneity with Meta‑regression 
and subgroup analysis
The shape of the SROC curve was symmetric (Fig.  4). 
However, we observed a medium positive correlation 
after logit transformed TPR and FPR (Spearman correla-
tion coefficient = 0.48), and an asymmetric parameter, β, 
with a significant P-value (P = 0.036) indicating threshold 
heterogeneity among the studies.

The heterogeneity was not found among the included 
studies in the joint model of meta-regression (AI algo-
rithms [P = 0.58], number of included patients [P = 0.22], 
type of surgery [P = 0.17], methodological quality 
[P = 0.93], external validation [P = 0.69], the definition of 
AKI [p = .14] Fig. 6).

(Table 2) shows the detailed results of subgroup anal-
ysis exploring the potential source of between-study 
heterogeneity.

Sensitivity analysis
After excluding one study at a time, the results (Fig.  7) 
showed that every result is 95% within the confidence 
interval, combined DOR was 10.66 (95% CI: 8.47 to 
13.40), which meant the outcomes of meta-analysis was 
robust.

Publication Bias
Publication bias were assessing using Deek’s funnel plot 
for the prediction of AKI during the perioperative period 

Fig. 2 Risk of bias assessment (using PROBAST) based on four domains
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(Fig.  8). The plot was grossly symmetrical with respect 
to the regression line. The Deek’s funnel plot asymmetry 
test showed no evidence of publication bias (P = 0.62).

Discussion
Here, we assessed the predictive utility of artificial intel-
ligences (AIs) in AKI during the perioperative period. 
Due to heterogeneous thresholds, the current optimal 
way to merge data is using the hierarchical summary 
receiver operating characteristics (HSROC) model [15]. 
Our study showed that the AIs can correctly detect 77% 
(95% CI: 0.73 to 0.81) of the patients with perioperative 
AKI and exclude 75% (95% CI: 0.71 to 0.80) of patients 
without perioperative AKI. These results presented bet-
ter performance compared to the clinical scoring tools 
physicians used [19, 29, 35] and implied application pros-
pects of artificial intelligences in perioperative AKI. The 
utlity of AKI is not only used for the prediction of AKI, 
but can also be used for predicting the response of AKI to 
specific therapies. The transition from risk stratification 

to therapeutic intervention is a milestone for clinical 
practice.

In a lot of cases, perioperative AKI are managed by 
non-nephrologists who may have reduced awareness of 
AKI and have a paucity of effective interventions [37]. 
In the developed countries, 30 ~ 45% of patients experi-
enced drug-related adverse events in the non-nephrology 
departments [38, 39]. The delayed recognition of nephro-
toxins in other departments was associated with higher 
mortality compared to those in the nephrology or urol-
ogy department [37]. A widespread application of AI 
could send electronic alerts, provide a second opinion, 
and offer opportunities for identifying patients at risk 
within a time window that enables renal referral [40, 41]. 
Currently, how physicians would react to the early pre-
diction made by AIs is not clear. Therefore, a prospective 
study based on the application of AI in clinical practice is 
needed.

Another important finding of this study is the robust-
ness of the predictive performance of the AI algo-
rithm, irrespective of the modifiers detected during the 

Fig. 3 Forest plots of sensitivity and specificity of artificial intelligence algorithm for the prediction of Acute Kidney Injury during the perioperative 
period
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systematic review process such asAI algorithms, the type 
of surgery, or the criteria used in diagnosis.

Of the included 19 studies, 4 reported gradient boosted 
machine showed the best performance in both liver 
transplantation and cardiac surgery [20–22, 24]. A recent 
meta-analysis performed by Song and Liu et  al. also 
found gradient boosting exhibited superior performance 
at predicting AKI as compared to other ML models [42]. 
However, after comparing the performance of seven arti-
ficial intelligence algorithms using meta-regression, no 
significant difference among them were found. In sub-
group analysis, RF (random forest) even was superior to 
GBM (gradient boosting machine) with pooled sensitivity 
and specificity of 0.82 and 0.74 compared with 0.77 and 
0.69, respectively, indicating that other algorithms might 
also have great potential in clinical application with pre-
dictive accuracy as good as gradient boosted machine.

[20–22, 24]The occurrence of acute kidney injury 
in patients receiving cardiac and vascular surgery has 
been widely reported, but less information was avail-
able regarding non-cardiac surgery [43], probably due to 
its overall lower incidence which is approximately 1% of 
general surgery cases [44]. Therefore, more research is 
required before we draw a conclusion regarding the influ-
ence of surgery type.

Our study showed that none of pre-specified sub-
groups showed an impact on the predictive accuracy. 
It suggested that the development of artificial intelli-
gence might have hit a plateau and it might be difficult 

to further optimise predictive accuracy through exist-
ing methods without technological innovation. Previous 
studies have also shown that although physicians’ prac-
tice effectively improved, e-alerts alone could not reduce 
the mortality and the rate of severe AKI [45–48]. Cur-
rently, AKI diagnosis depends on changes in serum cre-
atinine. However, novel biomarkers such as neutrophil 
gelatinase-associated lipocalin (NGAL), kidney injury 
molecule-1 (KIM-1), Cystatin C, IGFBP7, and osteo-
pontin, as reliable measurement tools for detecting AKI 
have shown promising results [49–52]. NGAL or KIM-
1, reportedly directly released from kidney injury might 
further provide methods to promptly predict an AKI 
event and patient prognosis in the early phase [53]. Cys-
tatin C, a molecule with a short half-life in the serum (2 
hours), is completely filtered at the glomerulus of healthy 
kidneys, so it might be an ideal surrogate for glomerular 
filtration rate and tubular cell integrity [54, 55]. Due to 
insufficient data about novel biomarkers on AKI risk pre-
diction models in current studies, the real value of novel 

Fig. 4 Summary receiver operating characteristic curve with 95% 
confidence region for the prediction of AKI during the perioperative 
period

Fig. 5 Fagan normogram for the prediction of AKI during the 
perioperative period
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biomarkers applied in AI could not be evaluated. Further 
studies using novel biomarkers as input variables are 
essential.

The utlity of AI in AKI is not only used for the pre-
diction of AKI, but can also be used for predicting the 
response of AKI to specific therapies. The transition from 
risk stratification to therapeutic intervention is a mile-
stone for clinical practice [56]. Nowadays, e-alerts based 
on AI were widely used in conjunction with AKI care 
bundles to construct integrated clinical decision support 
system (CDS). Is the system truly rational at its current 
stage? Perhaps not, as the evidence base around clinical 
decision support system is growing but conflicting [57, 
58], but if it can be tied to novel biological markers or 
even molecular imaging of kidney diseases, it might be.

Strength
This reviewed included all high-quality and large-scale 
clinical studies published so far. Quality assessment of 

studies was carried out following Prediction model Risk 
Of Bias Assessment Tool (PROBAST) and sensitivity 
analysis was conducted to evaluate the robustness of our 
results. As a result, the artificial intelligence could prove 
valuable for early detection of AKI and provide aid on 
management decisions.

Limitations
Despite the promising results, important limitations 
have to be considered. Firstly, many arguably exaggerated 
claims exist about AIs equivalence with (or superiority 
over) clinicians. It is not enough to show good predic-
tive performance on the training set only because most 
show optimistic results, external validation studies are 
scarce, and when performed, tend to show reduced accu-
racy of the studied model [59]. In fact, few AI models 
have described any clinical effects of their use. Thus, we 
do not know whether it will improve (or worsen) clini-
cal decisions [60]. Secondly, if a user strongly trusts in 

Fig. 6 Meta-regression for the reason of heterogeneity in the diagnostic test accuracy meta-analysis. Nopt:number of patients
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Table 2 Summary of diagnostic test accuracy and subgroup analysis of the included studies

ANN artificial neural network, GBM gradient boosting machine, RF random forest, KDIGO Kidney Disease: Improving Global Outcomes, AKIN Acute Kidney Injury 
Network

Subgroup Number of 
included studies

Sensitivity (95% CI) Specificity (95% CI) PLR NRL DOR

Type of AI algorithms

 GBM 9 0.77 (0.76–0.78) 0.69 (0.69–0.69) 2.7 (2.4–3.0) 0.34 (0.29–0.41) 7.8 (6.1–10)

 RF 3 0.82 (0.80–0.84) 0.74 (0.72–0.76) 3.5 (1.9–6.4) 0.25 (0.22–0.27) 13 (6.5–26)

 ANN 3 0.62 (0.59–0.64) 0.87 (0.86–0.87) 4.9 (4.0–6.0) 0.29 (0.14–0.60) 16 (7.8–34)

Number of patients

  < 1000 8 0.79 (0.76–0.82) 0.77 (0.75–0.79) 3.4 (2.6–4.3) 0.25 (0.17–0.36) 14 (9.0–21)

  ≥ 1000 11 0.78 (0.78–0.79) 0.71 (0.71–0.71) 3.1 (2.7–3.7) 0.33 (0.28–0.39) 9.6 (7.3–13)

Type of surgery

 Cardiovascular surgery 9 0.73 (0.72–0.74) 0.71 (0.71–0.71) 3.4 (2.7–4.4) 0.33 (0.28–0.38) 11 (8.0–15)

 Any type of inpatient 
operative procedure

4 0.79 (0.78–0.80) 0.73 (0.73–0.73) 3.7 (2.8–5.0) 0.31 (0.23–0.41) 12 (9.0–17)

 Liver transplantation 3 0.82 (0.77–0.87) 0.73 (0.69–0.78) 2.7 (1.6–4.6) 0.26 (0.20–0.34) 11 (4.9–23)

 Total joint arthroplasty 2 0.75 (0.72–0.78) 0.60 (0.60–0.61) 2.8 (1.2–6.3) 0.27 (0.07–1.01) 11 (1.2–110)

Methodological quality

 Low quality 13 0.73 (0.72–0.74) 0.72 (0.72–0.72) 3.4 (2.7–4.2) 0.32 (0.26–0.38) 11 (8.2–15)

 Unclear quality 2 0.72 (0.70–0.75) 0.82 (0.80–0.84) 3.9 (3.5–4.4) 0.27 (0.14–0.54) 15 (6.8–32)

 High quality 4 0.80 (0.80–0.80) 0.71 (0.71–0.71) 2.6 (2.0–3.5) 0.30 (0.26–0.35) 8.6 (5.6–13)

External validation

 No 15 0.78 (0.78–0.79) 0.71 (0.71–0.71) 3.1 (2.7–3.6) 0.31 (0.26–0.36) 10 (8.0–13)

 Yes 4 0.72 (0.69–0.75) 0.85 (0.84–0.85) 3.7 (2.5–5.6) 0.30 (0.22–0.42) 13 (7.0–24)

AKI definition

 KDIGO 14 0.80 (0.79–0.80) 0.71 (0.71–0.71) 2.9 (2.5–3.5) 0.30 (0.27–0.34) 10 (7.8–13)

 Self-defined 3 0.73 (0.72–0.74) 0.71 (0.71–0.71) 4.1 (2.1–8.1) 0.32 (0.22–0.45) 13 (4.7–37)

 AKIN 2 0.60 (0.55–0.61) 0.88 (0.87–0.89) 4.6 (4.1–5.1) 0.34 (0.15–0.80) 13 (5.8–29)

Fig. 7 Sensitivity analysis for the prediction of AKI during the perioperative period
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the e-alerts of the automatic system, they might present 
an indolent attitude and wait for AKI alert trigger from 
the model before taking action. The model requires these 
actions to dynamically adjust parameters and trigger the 
alert. This may lead to missed opportunities to mitigate 
or prevent AKI [61]. Thirdly, none of the 19 included 
studies were prospective longitudinal cohort designs, 
and their participant data were all from existing sources, 
such as existing cohort studies or routine care registries, 
besides, partially studies were conducted at a single cen-
tre, didn’t appropriately adjust baseline hazards or regis-
try outcome frequency in the analysis, which had higher 
risk of bias and limited the reproducibility and the gen-
eralisability of the results. Fourth, AI entering the field 
of nephrology must adapt to legal and ethical concerns. 
The inability to clarify the features used because of a 
black-box nature conflicts with general data protection 
requirements [62]. Additionally, used by and serving the 
interests of private finance, corporations, and start-ups, 
AI can lead to widening social inequalities, which violates 
the ‘right to health legislation’ [63, 64].
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