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Exosomes from high glucose-treated
macrophages promote epithelial-
mesenchymal transition of renal tubular
epithelial cells via long non-coding RNAs

Huayu Yang', Yu Bai', Chen Fu', Wenhu Liu"" and Zongli Diao"""

Abstract

Background Macrophages contribute to epithelial-mesenchymal transition (EMT) in diabetic nephropathy (DN).
Exosomal long non-coding RNAs (IncRNAs) derived from macrophages play a major role in transmitting biological
information, whereas related studies on DN are rare. Here we investigated the effects of exosomal IncRNAs from high
glucose-treated macrophages on EMT.

Methods High glucose-treated macrophage exosomes (HG-exos) were extracted by coprecipitation and stabilized.
Then, mouse renal tubular epithelial cells were treated with HG-exos for 24 h. Expression of E-cadherin, a-smooth
muscle actin (a-SMA), and fibronectin was detected by western blotting, gPCR, and immunofluorescence. High-
throughput sequencing was then applied to analyze the bioinformatics of HG-exos.

Results HG-exos inhibited the proliferation of tubular epithelial cells. Additionally, HG-exos markedly upregulated
a-SMA and fibronectin expression and downregulated E-cadherin expression in tubular epithelial cells, indicating
EMT induction. A total of 378 differentially expressed IncRNAs and 674 differentially expressed mRNAs were identified
by high-throughput sequencing of HG-exos. Bioinformatics analysis and subsequent gPCR validation suggested 27
INcRNAs were enriched in the EMT-related MAPK pathway. Among them, ENSMUST00000181751.1, XR_001778608.1,
and XR_880236.2 showed high homology with humans.

Conclusion Exosomes from macrophages induce EMT in DN and IncRNAs in exosomes enriched in the MAPK
signaling pathway may be the possible mechanism.

Keywords Macrophages, Exosomes, Long non-coding RNA, High glucose, Renal tubular epithelial cells, Epithelial-
mesenchymal transition
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Background

Diabetic nephropathy (DN) is one of the most common
complications of diabetes and persistently regarded to be
the primary cause of end-stage renal disease [1]. Renal
interstitial fibrosis (RIF) is the central pathological path-
way of DN and continuous fibrosis eventually leads to
renal failure. Epithelial-mesenchymal transition (EMT),
a process by which epithelial cells undergo phenotypic
conversion, has a critical role in fibrosis development [2].

Accumulation and activation of macrophages in kidney
tissue have been found both in DN mice and patients and
a reduction of macrophages effectively inhibits RIF pro-
gression, indicating the pathological role of macrophages
[3-5].

Macrophages may be involved in RIF pathogenesis in
DN patients through several mechanisms. Macrophages
generate inflammatory cytokines that influence syn-
thesis and degradation of extracellular matrix proteins
[6]. Additionally, macrophages have been identified as a
major source of myofibroblasts in macrophage—myofi-
broblast transformation, which subsequently contribute
to RIF [7]. Recent reports show that macrophages exert
biological effects on recipient cells through a novel type
of cell-cell communication mediated by exosomes. Exo-
somes are membrane-enclosed nanoscale particles that
carry bioactive substances including mRNAs and long
non-coding RNAs (IncRNAs). Under activation of physi-
ological or pathological factors, exosomes are formed by
the intracellular endocytic trafficking pathway [8, 9]. In
vitro, high glucose-treated macrophage exosomes (HG-
exos) activate glomerular mesangial cells, which induces
the proliferation of mesangial cells and secretion of extra-
cellular matrix and inflammatory cytokines [10]. Until
now, the role of macrophage-derived exosomes in the
mechanism of renal tubular injury in DN has not been
reported.

Here, we investigated the role of HG-exos in EMT of
renal tubular epithelial cells and differentially expressed
IncRNAs in HG-exos to explore the underlying
mechanism.

Methods
Cell Culture and experimental groups
RAW?264.7 macrophages and mouse renal tubular epi-
thelial cells (mRTECs) were purchased from the Ameri-
can Type Culture Collection (Virginia, USA). RAW?264.7
macrophages were cultured in DMEM (Gibco, USA)
supplemented with 10% fetal bovine serum, penicillin
(1x10° U/L), and streptomycin (100 mg/L). Low glu-
cose (5.5 mmol/l) DMEM and high glucose (35 mmol/l)
DMEM were used. Exosomes from macrophages cul-
tured in low glucose DMEM are referred to as LG-exos.
MRTECs were cultured in EpiCM-a medium (ATCC,
USA) supplemented with 10% fetal bovine serum and
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epidermal growth factor. The culture medium was
changed every other day for 7 days. All cells were incu-
bated in a 37 °C in a humidified atmosphere with 5% CO,.
Cells were passaged with 0.25% trypsin (Sigma, USA) at
70-80% confluence.

Experimental groups included a control group
(mRTECs cultured in EpiCM-a medium), LG-exo group
(mRTECs cultured with EpiCM-a medium with 100 pg/
ml LG-exos), and HG-exo group (mRTECs cultured in
EpiCM-a medium with 100 ug/ml HG-exos).

Isolation and identification of exosomes

Macrophages were incubated in DMEM supplemented
with 10% exosome-free FBS and 1% penicillin/strepto-
mycin for 72 h. The culture supernatant as centrifuged
at 2000 x g for 30 min to remove cells and debris. The
sample was mixed with a 0.5 volume of Total Exosome
Isolation Reagent (Invitrogen, USA), vortexed, and incu-
bated at 4 °C overnight. Then, the sample was centrifuged
at 10,000 X g for 1 h. The pellet was then resuspended in
PBS.

The ultrastructure of exosome was examined under an
Hitachi 7700 transmission electron microscope at 80 kV.
The exosome concentration was measured by a ZetaView
PMX 110 (Particle Metrix, Germany) under the emission
condition of 405 nm. Western blotting was performed to
detect expression of exosome-enriched proteins. CD9
and CD81 (Abcam, USA) were used as exosome markers.

Exosome uptake by MRTECs
Exosomes were resuspended in diluent C solution (200
limulus amebocyte lysate L) and stained with PKH67
(Sigma-Aldrich, USA) for 5 min at room temperature.
Then, 0.5% BSA (200 limulus amebocyte lysate L) at the
same volume was added to terminate the staining reac-
tion. The PKH6- labeled exosomes were applied to
mRTECs for 24 h. After incubation, the cells were washed
with PBS and fixed with 4% paraformaldehyde at room
temperature. Nuclei were stained with DAPI (Vector
Laboratories, USA). Fluorescence was observed under a
laser scanning confocal microscope (Olympus, Japan).
MRTECs were also cultured in EpiCM-A supple-
mented with 10% exosome-free FBS and endothelial
growth medium supplement mix at 37 °C with 5% CO,.
At 70-80% confluence, exosomes or PBS at the same vol-
ume was added. Analysis was conducted after 30 min and
24 h.

Determination of MRTEC viability

MRTEC viability was measured by a cell counting kit-8
assay (Dojindo, Japan, CK-04). At 80% confluence, cells
were harvested with 0.25% trypsin and seeded in 96-well
plates at a 2x10® cells/L. Exosomes were applied in
accordance with the experimental groups and five wells
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Table 1 Primer sequences for quantitative real-time polymerase
chain reaction

Gene Forward (5'-> 3') Reverse (5'-> 3’)

Collagen IV CTGGCACAAAAGGGACGAG  ACGTGGCCGAGA-
ATTTCACC

a-SMA GTCCCAGACATCAGGGAG-  TCG-

TAA GATACTTCAGCGT-

CAGGA

E-cadherin CAGGTCTCCTCATGGCTTTGC CTTCC-
GAAAAGAAGGCT-
GTCC

fibronectin GCTCAGCAAATCGTGCAGC  CTAGGTAGGTC-
CGTTCCCACT

ENS- AGCTACACCTTCTTCTTG- ACCAAGCTGTAC-

MUST00000181751.1  GACTG CAGAGTGC

XR_001778608.1 TTTTCAGCTAGAGCACCCCC  ATGAGA-
AGGGCAGTCTGG-
GA

XR_880236.2 GTCTGATGGGGTCAGTGCAT  TTGGGGACTGTG-
TAATCGGG

B-actin GGCTGTATTCCCCTCCATCG  CCAGTTGGTAA-
CAATGCCATGT

Abbreviation: a-SMA:a-smooth muscle actin

were used for each group. After 24 h, the supernatant was
discarded and 10 pl CCK-8 solution was added to each
well, followed by incubation at 37 °C with 5% CO, for 2 h.
The optical density (OD) was measured by an enzyme
marker at 450 nm. Cell viability (%) = (OD value of test
group-OD value of blank sample) / (OD value of control
group-OD value of blank sample) x 100%.

Western blot analysis

Cells were lysed in RIPA lysis buffer. The protein con-
centration was measured using a bicinchoninic acid
protein assay kit (Thermo Fisher, USA). The superna-
tant was collected after centrifugation. Protein samples
were subjected to sodium dodecyl sulfate polyacryl-
amide gel electrophoresis. The resolved proteins were
transferred to a polyvinylidene difluoride membrane
(Merck Millipore, USA). After blocking with 5% BSA,
the membrane was incubated with a primary antibody
or anti-B-actin antibody as the loading control at 4 °C
overnight. The following primary antibodies were used:
anti-E-cadherin (1:1000, ab76055, Abcam), anti-a-
smooth muscle actin (a-SMA, 1:1000, ab32575, Abcam),
anti-fibronectin (1:500, ab2413, Abcam), anti-collagen
IV (1:1000; Abcam), anti-plasminogen activator inhibi-
tor-1 (PAI-1, 1:1000, ab241696, Abcam), and anti-B-actin
(1:1000, ab8826, Abcam). After washing with TBST, the
membrane was incubated at room temperature for 1 h
with a secondary antibody. Protein bands were then
visualized using hypersensitive ECL. The blots were cut
before hybridization with antibodies according to differ-
ent molecular weight. Band density was analyzed using
Image] software.
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Quantitative reverse transcription-polymerase chain
reaction

Total RNA was extracted from cells and exosomes using
TRIzol reagent (Ambion, USA) in accordance with the
manufacturer’s instructions. Then, 1 ug RNA was reverse
transcribed into cDNA by a Reverse Transcription Sys-
tem (Roche, USA). NCBI Primer BLAST (www.ncbi.
NLM.NIH.Gov/tools/primerblast/) and Primer bank
(https://pga.mgh.harvard.edu/primerbank/) were used to
design primers. RT-qPCR analysis was carried out using
a IncRNA qPCR Detection Kit (Tiangen, China) and Fast
SYBR Green Master Mix (Thermo Fisher). -Actin were
used as an internal reference. Relative mRNA levels were
calculated by the 2722T method. Details of RNA primers
are shown in Table 1.

Immunofluorescence staining

Cells were fixed with 4% paraformaldehyde for 10 min.
Then, the cells were permeabilized with 0.5% Triton
X-100 (Sigma) for 10 min, followed by blocking with
5% BSA at room temperature for 1 h. Primary antibod-
ies against a-SMA (1:500, ab32575, Abcam), E-cadherin
(lug/ml, ab76055, Abcam), and fibronectin (1:500,
ab2413, Abcam) were applied at 4 °C overnight. After
washing with PBS three times, the cells were incubated
with fluorescent dye-labeled secondary antibodies
in the dark for 1 h at room temperature and then with
0.1% DAPI for 10 min. The cells were observed under an
inverted fluorescence microscope and photographed.

RNA sequencing

To identify differentially expressed mRNAs (DEmRNAs)
and differentially expressed IncRNAs (DEIncRNAs) in
macrophage exosomes after high glucose stimulation,
we performed high-throughput sequencing. The cul-
ture supernatant was mixed with Ribo™ Exosome Isola-
tion Reagent (Ribobio, China) and exosome isolation
was performed. Exosomal RNA was extracted by Mag-
zol Reagent (Magen, China). Then, a NEBNext® Ultra™
RNA Library Prep Kit was used to construct RNA-seq
libraries. Sequencing was conducted using the Illumina
platform (Illumina, USA) by RiboBio Biotechnology Co
(Guangzhou, China). Read quality was examined using
the FastQC software. Adapter removal and read trim-
ming were performed by Trimmomatic (version 0.36).
Paired-end reads were aligned to the mouse genome
database (mm10) with HISAT2 software (version 2.0.5).
HTSeq (version 0.12.4) was used to count the reads num-
bers mapped to each gene. Differential expression was
assessed by DESeq2 in R [11]. The Benjamini—Hochberg
multiple test correction method was enabled. Differen-
tially expressed genes were chosen according to the crite-
ria of fold change>2 and adjusted P-value<0.05.
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Fig. 1 Characterization of macrophage-derived exosomes. Characterization of macrophage-derived exosomes. (@) Morphology of exosomes observed
by transmission electron microscopy. Scale bars: 0.5 pm and 200 nm. (b) Exosome markers CD9 and CD81, nuclear marker histone H3 were detected in
macrophage lysates and exosomes by western blotting. (c) Particle size and distribution analysis of exosomes. (d) Laser confocal microscopy of fluores-
cent dye-labeled exosomes and exosome uptake. Confocal microscopy showed uptake of PKH67-labeled (green) exosomes by mRTECs after treatment

for 24 h (original magnification: x400)

Bioinformatics analysis

Cluster software was used to perform hierarchical cluster
analysis. Gene Ontology (GO) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) analyses were performed to
determine the roles of the differentially expressed RNAs
in Con-exo and HG-exo groups.

The potential biological functions of DEIncRNAs
enriched in the MAPK pathway were analyzed fur-
ther. Pearson correlation coefficient (R) analysis was
performed to evaluate co-expression of differentially
expressed IncRNAs and mRNAs. A statistically signifi-
cant difference was defined as P-value<0.05 and R>0.7.
Motif information collected from JASPAR (http://jas-
par.genereg.net) and HOCOMOCO [12] databases,
and FIMO (Find Individual Motif Occurrence) software
were used to predict transcription factors (TFs) of target
sequences. Additionally the intersection of the results
of the two databases was calculated to obtain candidate
TFs. In accordance with the results, the IncRNA-TF-
mRNA network was constructed by cytoscape software.

Analysis of target LncRNA homology between mice and
humans

The conservation of IncRNAs in humans and mice was
evaluated by the phyloP (genetic p-value) conservation

score. The conservation score of each locus of the
screened IncRNAs was evaluated separately and the mean
value of the conservation score was considered to be the
conservation score of the region.

Statistical analyses

All experiments were repeated three times. Data are
presented as the meanzstandard deviation. Statistical
analysis was carried out using SPSS 22.0 (IBM Corp.,
NY, USA). The t-test was used to evaluate differences
between two groups. P-values of less than 0.05 were con-
sidered statistically significant.

Results

Characterization of exosomes

Electron microscopy showed double membrane-like
structures with a circular shape (Fig. 1a). Next, western
blotting showed that exosome markers CD9 and CD81
were highly expressed, while nuclear marker histone
H3 was not expressed (Fig. 1b). The particles had diam-
eters of 103.3+8.9 nm as measured using ZETAVIEW
(Fig. 1d). These findings confirmed that the exosomes
extracted from macrophages were pure.


http://jaspar.genereg.net
http://jaspar.genereg.net

Yang et al. BMC Nephrology (2023) 24:24

(8]
o & Geif
& N N
a C Con
a-SMA R
fibronectin s s— ——

E-cadherin - —_— e

i
|
|

B
Con d

LG-exo *
EHG-exo

ol 4
o © =

Con

e o9
n o N
r,

ectin, E-cadherin/B-actin

ronec
8 O
w

ib

fi
o
N

HG-exos

-SMA,
o
=

a
5 3
L L

a-SMA fibronectin E-cadherin

Page 5 of 11

E-cadherin

a-SMA

S0um
S0um| S0um|

Fig. 2 Effect of exosomes derived from HG-treated macrophages on tubular epithelial cells. (@) and (b) Expression of EMT-related markers, a-SMA, fibro-
nectin, and E-cadherin detected by western blotting in mRTECs. (c) and (d) Representative fluorescence micrographs of mRTECs cocultured with various
macrophage exosomes. Blue represented the nucleus and red represents the protein distribution. Data are presented as the mean+SD, n=3, *P <0.05,

compared with the Con group

MRTECs internalize macrophage-derived exosomes

We observed uptake of macrophage-derived exosomes
by mRTECs by laser confocal microscopy. PKH fluores-
cent dye-labeled macrophage-derived exosomes were
applied to mRTECs. After 30 min, no fluorescent dye was
found around the nucleus of mRTECs. After 24 h, a large
amount of PKH fluorescent dye was found in the cyto-
plasm of mRTECs (Fig. 1c). These results suggested that
mRTECs effectively absorbed and internalized macro-
phage-derived exosomes.

HG-exos induce mRTEC activation and EMT

We detected the expression of EMT-related markers
including a-SMA, fibronectin, and E-cadherin. Western
blotting showed that HG-exos had markedly upregulated
the expression of a-SMA and fibronectin compared with
the control group (P<0.05), but no significant difference
was found compared with the LG-exo group (Fig. 2a and
b). Moreover, E-cadherin expression was significantly
deceased in the HG-exo group compared with the control
group. Consistent with western blot analyses, RT-PCR
showed that a-SMA and fibronectin mRNA levels were
significantly higher, while the E-cadherin mRNA level
was lower in the HG-exo group compared with the con-
trol group (Fig. 3a and ¢, P<0.05). Immunofluorescence
showed down-regulation of E-cadherin expression and

upregulation of a-SMA expression in mRTECs treated
with HG-exos (Fig. 2c and d). These data indicated that
macrophage-derived exosomes induced a decrease in
proliferation and promoted renal tubular EMT.

Next, mRTEC proliferation was assessed by the CCK-8
assay. As shown in Fig. 3f, mRTEC proliferation was sig-
nificantly decreased to different various after the addition
of various HG-exo concentrations compared with the
control group (P<0.05). The inhibitory effect was more
obvious at high exosome concentrations.

HG-exos induce extracellular matrix overproduction in
MRTECs

To confirm that HG-exos induced extracellular matrix
overproduction in mRTECs, we examined gene expres-
sion levels of some extracellular matrix-related markers.
RT-PCR was performed to detect Collagen IV and Plas-
minogen activator inhibitor 1 (PAI-1) mRNA expression.
As aresult, Collagen IV and PAI-1 expression levels were
significantly upregulated in the HG-exo groups com-
pared with the control group (Fig. 3d and e). These data
suggested that macrophages mediated extracellular
matrix deposition of renal tubular epithelial cells through
exosomes.
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Bioinformatics analyses of gene expression
A volcano plot (Fig. 4) and cluster analysis (Fig. 5)
showed significant DEIncRNA distribution. There were
674 DEmRNAs in HG-exos, of which 229 were upregu-
lated and 445 were downregulated. Additionally, 378
IncRNAs were significantly differentially expressed in
HG-exos, of which 164 were upregulated and 214 were
downregulated (Fig. 6a).

DEIncRNAs were divided into the following catego-
ries in accordance with their predictive functions: 57%

non-IncRNAs, 19% long interspersed ncRNAs, 11% anti-
sense IncRNAs, 10% to be experimentally confirmed, and
approximately 3% other kinds of IncRNAs (Fig. 6b).

The top GO terms associated with biological processes,
cellular components, and molecular functions are pre-
sented in Fig. 6¢ (P<0.05). In the biological processes,
the top five GO terms were peptidyl-lysine modification,
histone modification, regulation of release of cytochrome
¢ from mitochondria, regulation of chromatin organiza-
tion, and negative regulation of the muscle cell apoptotic
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Fig. 5 Cluster analysis of differentially expressed mRNAs (a) and IncRNAs (b) respectively

process. In the cellular components, the top five GO
terms were spindle, chromosomal region, condensed
chromosome kinetochore, fibrillar center, the and telom-
erase holoenzyme complex. In the molecular functions,
the top five GO terms were guanyl-nucleotide exchange
factor activity, S-adenosylmethionine-dependent meth-
yltransferase activity, histone binding, lysine-acetylated
histone binding, and acetylation-dependent protein
binding.

KEGG analysis revealed that the differentially
expressed genes were significantly involved in the Che-
mokine signaling pathway, Prolactin signaling pathway,
MAPK signaling pathway, Peroxisome, C-type lectin
receptor signaling pathway, endocytosis, thyroid hor-
mone signaling pathway, necroptosis, and thyroid cancer
(Fig. 6d).

LncRNA-TF-mRNA network analysis

Next, we focused on the biological functions of IncRNAs
enriched in the MAPK pathway To this end, we con-
structed a IncRNA-TF-mRNA regulatory network
(Fig. 7). In this network, 13 TFs, 27 IncRNAs, and 677
mRNAs were included. In HG-exos, some TFs, includ-
ing HNF1 homeobox B (HNF1B), cAMP responsive ele-
ment binding protein 1 (CREB1), specificity protein 1
(SP1), Runt-related transcription factor 1 (RUNX1), and
E74-like factor 5 (ELF5) have been verified to be closely
related to EMT.

Homology analysis and QPCR validation

Some IncRNAs enriched in the MAPK signaling path-
way may be involved in EMT. Therefore, we performed
homology analysis of target IncRNAs between mice
and humans. The most conserved IncRNAs enriched in

the MAPK pathway were ENSMUST00000181751.1,
XR_001778608.1, and XR_880236.2, which had conser-
vation scores of >0.70. The specific information of these
IncRNAs showed in Table 2.The expression of these
IncRNAs was verified in control and HG-exo groups by
qPCR. As shown in Fig. 8, XR_880236.2 expression was
upregulated significantly, while the other IncRNAs (ENS-
MUST00000181751.1 and XR_001778608.1) showed sig-
nificant downregulation in the HG-exo group compared
with the control group.

Discussion

EMT is characterized by loss of epithelial markers, acqui-
sition of mesenchymal markers, cytoskeleton remodel-
ing, and finally conversion to myofibroblasts [13]. It has
been reported that 36% of myofibroblasts originate from
transdifferentiation of tubular epithelial cells in kidney
fibrosis [14]. Therefore, EMT is considered to be a critical
step of kidney fibrosis.

Macrophages play a major role in RIF pathogenesis
[15, 16]. In the UUO model, RIF severity reduces signifi-
cantly after specific deletion of macrophages [17]. Thus,
macrophages may be a potential target to prevent or
treat DN. In our study, we isolated and verified exosomes
secreted from macrophages stimulated by high glucose.
PKH67-labeled exosomes were dramatically internalized
by tubular epithelial cells. A previous study reported that
exosomes derived from macrophages are taken up by
mesangial cells under hyperglycemia [18]. Therefore, we
determined the biological function of this kind of exo-
some in DN.

We observed that HG-exos significantly inhibited the
proliferation of tubular epithelial cells. With the increase
in exosome concentration, proliferation was decreased
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further. Additionally, exosomes markedly deceased
E-cadherin expression and enhanced a-SMA and fibro-
nectin expression, which strongly suggested that HG-
exos induced EMT of mRTECs. The expression levels
of type IV collagen and PAI-1, which are ECM markers,
were up-regulated after 72 h of treatment. Therefore, it
is reasonable to speculate that these exosomes serve as
external stimuli for tubular epithelial cells by modulation
of the microenvironment.

LncRNAs are expected to become sensitive diagnostic
indicators and have therapeutic applications for various
diseases [19]. We carried out high-throughput sequenc-
ing of exosomes to understand the biological function
of exosomal IncRNAs. In total, 378 IncRNAs were sig-
nificantly differentially expressed between control and
HG-exo groups, of which 164 were upregulated and 214
were downregulated. RT-qPCR supported the reliability
of these findings, suggesting that exosomal IncRNAs are

related to EMT induction in mRTECs.

A functional IncRNA-mRNA regulatory network was
constructed. The IncRNAs were associated with multiple
KEGG pathways among which Chemokine signaling and
MAPK signaling pathways have been widely reported to
be associated with EMT [20]. Therefore, IncRNAs in HG-
exos are likely to affect important EMT-related pathways.

LncRNAs participate in intercellular signaling through
various mechanisms. First, IncRNAs act as modulators
of signaling pathways under various stimuli and partici-
pate in specific signal transduction processes. Another
mechanism of IncRNAs is represented as a molecu-
lar decoy model. For example, IncRNA can act as an
miRNA sponge to interfere with the function of miR-

NAs and further disrupt target genes downstream [21].

LncRNA-mediated transcriptional regulation can affect

transcription, mRNA stability, or translation [22]. Recent

studies have implied aberrantly expressed IncRNA in

DN patients, suggesting that IncRNAs play a role in

the mechanisms of EMT and kidney fibrosis [23, 24].
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Fig. 7 LncRNA-TF-mRNA network analysis. There were 13 TFs, 27 IncRNAs, and 677 mRNAs in the network. Yellow nodes represent TFs, red nodes rep-

resent INCRNAs, Green nodes represent target genes, and the node size is proportional to its outward connection. LncRNA: long non-coding RNA; TF:
transcription factor

Table 2 Information of target transcripts

LncRNA Gene name Coding potential Log,(fold_change) Chromosomal location
transcript name

ENSMUST00000181751.1 ENSMUSG00000097554.1 non-coding -1.36 chrs

XR_001778608.1 Gm39212 non-coding -1.21 chr8

XR_880236.2 Gm39396 non-coding 132 chr11

LncRNA maternally expressed gene 3 is upregulated in  mTOR signaling pathway [26]. Our study revealed some
the serum of diabetic patients. Importantly, knockdown  novel IncRNAs that may be associated with EMT.
of this IncRNA reduces the expression of type IV colla- Network analysis showed that IncRNAs enriched in
gen and fibronectin in kidney tissues, indicating that this MAPK signaling may regulate several EMT-related
IncRNA has a pathological effect on DN [25]. Nuclear- TFs including CREB, Spl, RUNXI1, ELF5, and HNF1B.
enriched transcription-1 is another IncRNA involved in  Transcription factor CREB is involved in inflammation,
DN progression, which targets microRNA to promote oxidative stress, and cellular uptake of uremic toxins.
extracellular matrix accumulation and EMT via the Akt/ A study of osteosarcoma found that CREB promotes
EMT by activating the PI3BK/AKT/mTOR pathway [27].
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groups. Data are the mean+SD, *P <0.05

Additionally, transcription factor Spl binds to the pro-
moter of the E-cadherin-encoding gene and crucially
affects its expression [28]. RUNXI1 belongs to the Runx
family that to interacts with Smads as coactivators. A
recently study has verified that knockdown of RUNX1
attenuates TGF-B-induced EMT of tubular epithelial
cells, indicating that RUNX1 may be a potential target to
prevent renal fibrosis [29]. Our study revealed that some
IncRNAs are associated with the abovementioned TFs
and that these TFs may be involved in EMT induction.

To extend this study to DN patients, we per-
formed homology analysis of IncRNAs. The most con-
served IncRNAs were ENSMUST00000181751.1,
XR_001778608.1, and XR_880236.2, which has conser-
vation scores higher than 70%. Thus, the bioinformat-
ics mining has laid a solid foundation for mechanistic
research and the exact roles of these IncRNAs remain to
be determined.

Conclusion

We found that exosomes from HG-treated macrophages
induce mRTEC activation increase phenotypic conver-
sion marker expression. Additionally, IncRNA expression
profiles in HG-treated macrophage exosomes may pro-
vide potential information to further explore the roles of
macrophages in the pathogenesis of tubular EMT.
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DN diabetic nephropathy

RIF renal interstitial fibrosis

EMT epithelial-mesenchymal transition

INcRNAs long non-coding RNAs

HG-exos high glucose-treated macrophage exosomes
mRTECs mouse renal tubular epithelial cells

oD optical density

DEMRNAs differentially expressed mRNAs
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KEGG Kyoto Encyclopedia of Genes and Genomes
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