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Introduction
Acute kidney injury (AKI) among hospitalized patients is 
characterized by a sudden decline in renal function and is 
associated with poor long-term and short-term outcomes 
[1]. The overall incidence of AKI in hospital patients 
ranges between 7 and 22%, and it ranges from 20 to 50% 
in Intensive Care Unit (ICU) patients [2, 3]. Increasing 
incidences of AKI have been reported, especially among 
low- to middle-income countries [4], and this is likely due 
to an increasingly complex patient population. Moreover, 
it has been shown that when sepsis is present at ICU 
admission, the prevalence of AKI is greater than 40% [5].

The definition of AKI has changed over the years. In 
2012, the Kidney Disease: Improving Global Outcomes 
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Abstract
Background Acute Kidney Injury (AKI) is frequently seen in hospitalized and critically ill patients. Studies have shown 
that AKI is a risk factor for the development of acute kidney disease (AKD), chronic kidney disease (CKD), and mortality.

Methods A systematic review is performed on validated risk prediction models for developing poor renal outcomes 
after AKI scenarios. Medline, EMBASE, Cochrane, and Web of Science were searched for articles that developed or 
validated a prediction model. Moreover, studies that report prediction models for recovery after AKI also have been 
included. This review was registered with PROSPERO (CRD42022303197).

Result We screened 25,812 potentially relevant abstracts. Among the 149 remaining articles in the first selection, 
eight met the inclusion criteria. All of the included models developed more than one prediction model with different 
variables. The models included between 3 and 28 independent variables and c-statistics ranged from 0.55 to 1.

Conclusion Few validated risk prediction models targeting the development of renal insufficiency after experiencing 
AKI have been developed, most of which are based on simple statistical or machine learning models. While some 
of these models have been externally validated, none of these models are available in a way that can be used or 
evaluated in a clinical setting.
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(KDIGO) unified the previous definitions (RIFLE and 
AKIN) [6]. By KDIGO definition, AKI is diagnosed by an 
absolute increase in SCr, at least 0.3 mg/dL (26.5µmol/L) 
within 48  h or by a 50% increase in SCr from baseline 
within 7 days, or a urine volume of less than 0.5mL/
kg/h for at least 6 h. Although KDIGO is now the most 
accepted and used AKI criteria, recently Sparrow et al. 
[7] evaluated the impact of further sub-categorizing the 
KDIGO-defined AKI stage 1 into two stages based on SCr 
criteria: stage 1a (an absolute increase of SCr of 0.3 mg/
dL within 48  h) and stage 1b (a 50% relative increase 
in SCr within 7 days) and therefore creating a 4-stage 
KDIGO classification which they named KDIGO-4. In a 
separate study, Nateghi Haredasht et al. [8] showed that 
within the KDIGO AKI stage 1, there are indeed two sub-
populations with different clinical outcomes.

Traditionally, two functional biomarkers, serum creati-
nine (SCr) and urine output have been used to diagnose 
AKI. The sensitivity and specificity of these biomarkers 
are limited, however, due to delayed changes following 
kidney injury. Cystatin C (CysC), another kidney bio-
marker, has gained a great deal of attention in the past 
few years for its use in calculating GFR. There have been 
multiple studies that show that CysC is a more reliable 
indicator of kidney function than SCr [9–11]. In addition 
to Cystatin C, NGAL has also gained significant atten-
tion as a reliable biomarker for the early detection and 
diagnosis of AKI. NGAL can detect kidney injury much 
earlier than SCr and urine output, which can delay the 
diagnosis of AKI. NGAL has also shown good correlation 
with AKI severity and can predict the risk of AKI pro-
gression and poor outcomes. Therefore, NGAL is con-
sidered a valuable tool for improving AKI diagnosis and 
treatment [12–14].

AKI contributes to adverse short-term and long-term 
outcomes. Different studies have linked AKI to the devel-
opment of acute kidney disease (AKD), chronic kidney 
disease (CKD), end-stage kidney disease, longer hospi-
talization time, cardiovascular disease (CVD), and other 
complications, suggesting that even a short episode of 
acute kidney injury might lead to long term morbidity 
[15] and mortality [16, 17]. Among the 19,249 hospital-
izations included in a study in which the incidence of AKI 
was 22.7%, Wang et al. [2] reported the mortality rate was 
10.8%, compared to 1.5% for cases without AKI. More-
over, it has been reported that critically ill patients with 
dialysis-requiring AKI experience mortality rates above 
50% [18]. The mortality rate of this sudden kidney failure 
in ICU is approximately 30–50% depending on the medi-
cal record of the patient and the stage of AKI [19, 20].

Traditionally, most studies of severe AKI have concen-
trated on short-term outcomes often evaluated at hos-
pital discharge. However, AKI may exhibit important 
independent effects on the outcome that may extend well 

beyond discharge from the hospital [21]. Figure 1 shows 
the potential long-term outcomes of AKI. As a result of 
an episode of AKI, patients may recover, be discharged 
without recovery of renal function, or die. Patients who 
seem to recover may also later develop CKD or CVD.

In recent years, it has become clear that AKI is not a 
completely reversible syndrome. It is possible that the 
injury that occurs may result in permanent kidney dam-
age (e.g., CKD) and even damage to other organs. This 
caused a shift from AKI being a life-threatening and 
acute situation to a situation with a larger population in 
need of chronic follow-up to prevent further deteriora-
tion of their kidney function [22].

While AKI and CKD have been associated, confound-
ing factors and bias can explain this, thus questioning 
their causal significance [23]. Nevertheless, in light of the 
association and the increasing number of patients with 
AKI (so-called AKI survivors), and CKD, the prediction 
of CKD after an AKI episode has become increasingly 
crucial in order to allocate the necessary amount of fol-
low-up to the right patients.

Currently, follow-up of AKI survivors is often lacking 
and not regulated [24]: follow-up of kidney function by 
a nephrologist in patients surviving an episode of AKI 
treated with renal replacement therapy (RRT) is stated in 
nearly one-third of the patients [26]. Close follow-up and 
interventions aimed at preserving kidney function may 
positively impact long-term outcomes as major adverse 

Fig. 1 Possible outcomes following AKI. As a result of an episode of AKI, pa-
tients may recover, be discharged without recovery of renal function, or die. 
Patients who seem to recover may also later develop CKD or CVD (dashed 
lines)- modified from reference [27]
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kidney events have been reported that are common in 
AKI survivors [23]. However, this is costly and time-con-
suming. As a result, instead of monitoring all the patients 
experiencing AKI, it would be useful to identify those 
subgroups of patients who are at higher risk of develop-
ing CKD and only follow up with those patients. In order 
to do so, we need to collect data to be able to develop a 
prediction model to output a risk score for developing 
CKD for patients who experienced AKI.

Lately, with the help of technology, e.g., electronic 
health records (EHR), collecting clinical and biochemi-
cal data is much more straightforward than before [28]. 
As a result, the resulting data could be analyzed, and 
prediction models could be constructed. Recently, there 
have been several studies using machine learning tech-
nology for outcome prediction using EHR data [29, 30]. 
One of the main tasks considered in machine learning 
is the development of a model by learning from a set of 
observed data in order to predict outcomes or events 
for future data [31]. Although the traditional statistical 
approaches appear to be more appropriate when a large 
number of cases exceed the number of variables under 
study and significant a priori knowledge of the subject 
area is available, machine learning algorithms can handle 
a large amount of data with high-dimensional variables. 
In addition, interpretable machine learning models make 
it possible for healthcare experts to make individualized 
decisions that will eventually lead to a higher standard of 
care.

Objective
In this systematic review with meta-synthesis, we inves-
tigate the use of validated predictive models (machine 
learning or statistical models) for predicting the develop-
ment of renal insufficiency in the short-term and long-
term after AKI scenarios in the hospital/ICU. The term 
renal insufficiency describes poor kidney function and 
CKD is the permanent and progressive state of renal 
insufficiency.

Since it is essential to assess the degree to which a 
model generalizes, we focused specifically on models 
that have been validated either externally (e.g., separate 
cohort) or internally (e.g., cross-validation). Validating 
a prediction model plays a particularly important role 
in the healthcare domain since the ultimate purpose of 
developing a model is to use it in clinical settings, and 
providing a validated mode enhances its reliability.

Materials and methods
Published guidance (CHARMS, TRIPOD, and Preferred 
Reporting Items for Systematic Review and Meta-Anal-
ysis (PRISMA)) helped frame the review question, data 
extraction, reporting, and appraisal. The protocol of 
our systematic review has been previously registered 

at the PROSPERO International Prospective Regis-
ter of Systematic Reviews website (under the reference 
CRD42022303197).

Search strategy
We searched Medline, EMBASE, Cochrane, and Web of 
Science for review articles and regular research articles, 
from January 1st, 2011 to January 12th, 2022. Due to the 
lack of a unified definition for AKI prior to the introduc-
tion of KDIGO AKI criteria in 2012, we investigated stud-
ies published after 2011. Apart from restricting English 
language articles, no further restrictions were applied. 
Three search themes were used in the query: ”acute 
kidney injury”, ”outcome of AKI”, and ”artificial intelli-
gence”. We also adapted these keywords to Medical Sub-
ject Heading (MeSH) terms according to the CHARMS 
guideline. To ensure consistency in the searches for all 
databases, first, we set up the search in Pubmed, then the 
query was translated to EMBASE, Cochrane, and Web 
of Science. A systematic search for grey literature was 
not carried out as it was deemed that searching across 
four databases would be sufficient. During the literature 
review of relevant studies, only one study was identified 
that did not surface through the search query. Table  1 
shows our search strategy with every keyword and detail.

Selection criteria
The purpose of this section is to discuss our criteria for 
including and excluding articles, and the steps taken by 
the reviewers to determine which articles were included 
or excluded.

Inclusion
Two independent reviewers (FNH and LV) screened all 
titles and abstracts identified by querying the databases 
using the search strategy detailed above. Articles identi-
fied as potentially relevant by either reviewer were sub-
sequently read in full. Full-text articles were included if 
they (i) developed a machine learning-based or statistical 
prediction model for predicting renal insufficiency after 
an episode of AKI, and (ii) assessed the impact of the pre-
dictive model for renal insufficiency after an episode of 
AKI that was implemented in a clinical setting.

Exclusion
In this phase of the selection, articles were excluded 
based on the following criteria: (i) not a prediction model 
study, (ii) renal insufficiency is not the outcome, (iii) no 
validation of the model (neither internal nor external).

Data extraction
The same two reviewers extracted data from the articles 
using a meticulously composed data extraction form that 
was designed in advance. The acquired data consists of: 
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(i) the study setting, (ii) derivation and validation cohort 
descriptions, (iii) modeling approach, (iv) validation 
method, (v) model performance statistics, and (vi) final 
prediction tool design. We allowed details of external 
validation to be included in the extracted data when they 
were part of a preceding or sequential publication.

Model performance
We gathered information concerning model discrimi-
nation and calibration using multiple units or by a 
combined measure, in order to evaluate the models’ per-
formance. Calibration refers to the agreement between 
observed outcomes and predictions meaning that in 
this context if a model predicts a 40% risk of developing 
renal insufficiency for an AKI patient, the observed fre-
quency of renal insufficiency should be approximately 40 
out of 100 AKI patients with such a prediction [32]. The 
assessment of calibration consists of evaluating whether 

predicted probabilities and observed probabilities agree, 
including goodness-of-fit tests [for example, Hosmer–
Lemeshow (HL) tests], table or graphical comparisons 
of predicted versus observed values within groups of 
predicted risks, or calibration plots. Poor calibration 
is indicated by an HL statistic with a small, significant 
p-value. Accordingly, discrimination is defined as the 
ability to distinguish between patients who are likely to 
develop renal insufficiencies such as acute kidney dis-
ease (AKD), which is a condition that falls between AKI 
and chronic kidney disease (CKD), and patients who are 
likely to develop CKD following an episode of AKI. Dis-
criminating power was assessed using the area under the 
receiver operating characteristic (AUROC)/c-statistics 
[33]. Any information about the matching of model-
predicted probabilities and observed probabilities was 
also included in the assessment of model performance, 
for example, the goodness-of-fit test, Hosmer-Lemeshow 
test [34], or table/graphical visualization of prediction 
versus observation values/performance.

Study quality assessment
An assessment of quality criteria was conducted based on 
the Transparent Reporting of a multivariable prediction 
model for individual prognosis or diagnosis (TRIPOD 
statement) [35]. There is no standardized mechanism 
to assess the quality of impact analysis studies for risk 
prediction models. Therefore, quality criteria have been 
adapted from published articles that address the valid-
ity of prediction models in clinical implementation and 
impact analysis phases [36, 37].

Results
Characteristics of the included studies
We identified 33,746 potentially relevant abstracts from 
the searches over all of the databases. We also found one 
study from other sources and references. After the dupli-
cate removal, as well as 25,812 title/abstract screening, 
149 studies were assessed for full-text review. After full 
article screening, eight articles were identified for infor-
mation extraction. As a result, we reviewed eight studies 
that reported prediction models.

Figure 2 shows the flow of articles based on our search 
strategy. A summary of the predictive variables included 
in the models is found in Table 2.

Summary of the included studies
Chawla et al. [25] conducted a prospective single-center 
cohort study in which they developed three prediction 
models to identify patients who survive AKI and are at 
higher risk for progression to stage 4 CKD. First, a model 
using all variables was developed, then a stepwise for-
ward selection procedure with a threshold of P < 0.1 was 
used for feature selection. Then a second model was 

Table 1 Search strategy: keywords and MeSH terms for 
systematic literature review in Pubmed
Concept Keywords * MeSH terms
1. Acute Kid-
ney Injury

”acute kidney injur*”, ”acute renal injur*, 
”acute renal insufficienc*, ”acute kidney 
insufficienc*,“acute kidney failure*”, ”acute 
renal failure*”, ”renal insufficienc*”, ”kidney 
insufficienc*”, ”kidney dialys*”, ”renal 
dialys*”, ”hemodialys*”, ”hemodiafiltration”

”acute 
kidney 
injury”, ”renal 
insufficiency”

2. Outcome 
of AKI

”chronic renal insufficienc*”,
”chronic kidney insufficienc*”, ”chronic 
kidney disease*”, ”chronic renal disease*”, 
”end-stage kidney disease*”, ”end-stage 
renal disease*”, ”end-stage kidney 
failure*”, ”chronic kidney failure”, ”chronic 
renal failure”,
“ESRD”, ”follow-up stud*”, ”cohort stud*”, 
”cohort analys*, ”follow-up”, ”long-term 
outcome*”

”renal 
insufficiency, 
chronic”, 
”kidney fail-
ure, chronic”, 
”follow-up 
studies”, ”co-
hort studies”,

3. AI/
machine 
learning

”artificial intelligence”, ”machine intel-
ligence”, ”computational intelligence”, 
”statistical model*”, ”probabilistic model*”, 
”decision support technique*”, ”decision 
support model*”, ”decision support sys-
tem*”, ”decision analys*”, ”decision model”, 
”predict model*”, ”prediction model*”, 
”predict rule*”, ”predict score”, ”prediction 
score*”, ”prognostic model*”, ”decision 
rule”, ”risk model*”, ”risk algorithm*”, 
”validation”,
”risk index”, ”risk predict*”, ”clinical model*” 
”survival analysis”, ”proportional hazard 
model*”, ”Kaplan-Meier survival curve”,
”cox model*, ”time-to-event analysis”, 
”machine learning”, ”transfer learning”,
”deep learning”, ”supervised machine 
learning”, ”learning from labeled data”, 
”logistic model*”

”artificial 
intelligence”, 
”models, 
statistical”, 
”decision 
support 
techniques”, 
”survival 
analysis”,
”risk”

* Throughout the table, * is truncation symbol.

Searches combined with AND: 1 AND 2 AND 3. The same search query has been 
adapted to be used in Web of Science, Cochrane, and Embase.
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developed using the most heavily weighted factors from 
the first model. Following that, a third model was devel-
oped, called the ’bedside’ model, which is based on sen-
tinel clinical events. Although model calibration was not 
reported for the study, in the model validation on the 
test set (separate validation cohort), models 1, 2, and 3 
were all statistically significant in predicting progression 
to stage 4 CKD with c-statistics of 0.82, 0.81, and 0.77, 
respectively (P < 0.05 was the level of significance).

Itenov et al. [38] performed a multi-center prospective 
study on a cohort of adult critically ill patients admitted 
to the ICU for at least 24 hours and with AKI defined by 
KDIGO. The main outcome of this study was a recovery 

of kidney function within 28 days in which recovery is 
defined as living for five consecutive days with no renal 
replacement therapy and with creatinine levels below 1.5 
times the baseline value (measured before ICU admis-
sion). The two developed models were validated on a sep-
arate validation cohort showing that 59.1% of the patients 
recovered, meaning that almost 40.9% of the patients 
developed any kind of renal insufficiency (e.g., different 
stages of CKD). In addition, 9.0% had a predicted chance 
of recovery of less than 25%, and their observed rate of 
recovery was 21.5%. The AUROC curve (or equivalently, 
the c-statistic) for predicting a recovery in the valida-
tion cohort was 73.1% (95% CI, 65.4–80.8%). Finally, 

Fig. 2 The flow of articles using our search strategy
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Variable Chawla et al. [25] Itenov et 
al. [38]

James et al. [39] Lee et 
al. [40]

Demographics
Age ✔ ✔ ✔ ✔
Gender/Sex Male/Female Female Male ✘

African American/Hispanic/

Race Caucasian/Other ✘ ✘ ✘
Laboratory data
Baseline serum creatinine, mg/dL ✘ ✘ ✔ ✘
Serum creatinine, mg/dL ✔ ✘ ✘ ✘
Discharge serum creatinine, mg/dL ✘ ✘ ✔ ✘
Delta creatinine, mg/dL ✘ ✔ ✘ ✘
Urinary output, mL/kg/h ✘ ✔ ✘ ✘
Delta urinary output, mL/kg/h ✘ ✘ ✘ ✘
Baseline eGFR, mL/min/1.73m2 ✔ ✘ ✘ ✘
Interleukin-8 ✘ ✘ ✘ ✘
Interleukin-16 ✘ ✘ ✘ ✘
AKI stage ✘ ✘ 1/2/3 ✘
Albuminuria ✘ ✘ Normal/Mild/Heavy/Unmeasured ✘
Baseline serum albumin (Alb) ✔ ✘ ✘ ✘
Serum albumin (Alb) ✔ ✘ ✘ ✘
Baseline serum hemoglobin (Hgb) ✔ ✘ ✘ ✔
Serum hemoglobin (Hgb) ✔ ✘ ✘ ✘
Total bilirubin ✘ ✘ ✘ ✘
Maximum urea before the first AKI-3 ✘ ✘ ✘ ✘
Maximum white blood cell count before first AKI-3 ✘ ✘ ✘ ✘
Preadmission platelet count, ×103/µl ✘ ✘ ✘ ✘
Comorbidities
Apache II score ✘ ✘ ✘ ✘
Oliguria ✘ ✘ ✘ ✘
Mechanical ventilation ✘ ✘ ✘ ✘
Diabetes mellitus (DM) Yes/No ✘ ✘ ✘

Never/During hospitalization/

Dialysis Post hospitalization ✘ ✘ ✘
Chronic liver disease ✘ ✘ ✘ Yes/No

Renal replacement therapy (RRT) ✔ ✘ ✘ ✘
Arterial pH (Z-score) ✘ ✘ ✘ ✘
Platelets ✘ ✘ ✘ ✘
Mean arterial pressure ✘ ✘ ✘ ✘
Acute tubular necrosis Yes/No ✘ ✘ ✘
Time at risk (years)1 Yes/No ✘ ✘ ✘
Hospital complexity 1 A/1B/1 C/2/3 ✘ ✘ ✘
Residency slots ✔ ✘ ✘ ✘
Teaching hospital2 Yes/No ✘ ✘ ✘
Sepsis ✘ ✘ ✘ ✘
Mechanical ventilation ✘ ✘ ✘ ✘
Chronic obstructive pulmonary disease ✘ ✘ ✘ ✘
APS III score ✘ ✘ ✘ ✘
Diabetes ✘ ✘ ✘ ✘
Congestive heart failure ✘ ✘ ✘ ✘
Moderate or severe liver disease ✘ ✘ ✘ ✘
SAPS II score ✘ ✘ ✘ ✘
SOFA score ✘ ✘ ✘ ✘

Table 2 Predictive variables included in the models. In the table, (✔) and (✘) indicate whether the variable has been used or not in 
the models, respectively
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Variable Chawla et al. [25] Itenov et 
al. [38]

James et al. [39] Lee et 
al. [40]

RRT on the first AKI-3 day in ICU ✘ ✘ ✘ ✘
Hypertension ✘ ✘ ✘ ✘
Surgery/trauma ✘ ✘ ✘ ✘
Diuretic ✘ ✘ ✘ ✘
Renal toxic drugs ✘ ✘ ✘ ✘
Charlson Comorbidity Index ✘ ✘ ✘ ✘
Emergency department ✘ ✘ ✘ ✘
Variable Chen et al. [41] He et al. 

[42]
Huang et al. [43] Pike et 

al. [44]
Demographics
Age ✘ ✔ ✔ ✔
Gender/Sex ✘ ✔ ✘ ✘
BMI, kg/m2 ✘ ✔ ✘ ✘
Laboratory data
Baseline serum creatinine, mg/dL ✘ ✔ ✘ ✘
Serum creatinine, mg/dL ✘ ✔ ✘ ✘
Delta creatinine, mg/dL ✔ ✔ ✘ ✘
Urinary output, mL/kg/h ✘ ✔ ✘ ✘
Delta urinary output, mL/kg/h ✘ ✔ ✘ ✘
Baseline eGFR, mL/min/1.73m2 ✘ ✘ ✘ ✘
Interleukin-8 ✔ ✘ ✘ ✔
Interleukin-16 ✔ ✘ ✘ ✘
AKI stage ✘ 1/2/3 ✘ ✘
Albuminuria ✘ ✘ ✘ ✘
Baseline serum albumin (Alb) ✘ ✘ ✘ ✘
Serum albumin (Alb) ✘ ✘ ✘ ✘
Baseline serum hemoglobin (Hgb) ✘ ✘ ✘ ✘
Serum hemoglobin (Hgb) ✘ ✘ ✘ ✘
Total bilirubin ✘ ✘ ✘ ✔
Maximum urea before first AKI-3 ✘ ✘ ✔ ✘
Maximum white blood cell count before first AKI-3 ✘ ✘ ✔ ✘
Preadmission platelet count, ×103/µl ✘ ✘ ✔ ✘
Comorbidities
Apache II score ✘ ✘ ✘ ✔
Oliguria ✘ ✘ ✘ ✔
Mechanical ventilation ✘ ✘ ✘ ✔
Diabetes mellitus (DM) ✘ ✘ ✘ ✘
Dialysis ✘ ✘ ✘ ✘
Chronic liver disease ✘ ✘ ✘ ✘
Renal replacement therapy (RRT) ✘ ✘ ✘ ✘
Arterial pH (Z-score) ✘ ✘ ✘ ✔
Platelets ✘ ✘ ✘ ✔
Mean arterial pressure ✘ ✘ ✘ ✔
Acute tubular necrosis ✘ ✘ ✘ ✘
Time at risk (years) ✘ ✘ ✘ ✘
Hospital complexity ✘ ✘ ✘ ✘
Residency slots ✘ ✘ ✘ ✘
Teaching hospital ✘ ✘ ✘ ✘
Sepsis ✘ ✘ Yes/No ✘
Mechanical ventilation ✘ ✔ ✘ ✘
Chronic obstructive pulmonary disease ✘ ✔ ✘ ✘

Table 2 (continued) 
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calibration was described as nicely calibrated based 
on a graphical analysis of observed versus predicted 
probabilities.

James et al. [39] performed a multi-center prospec-
tive study in which they derived and internally as well as 
externally validated five different predictive models for 
the progression of AKI to advanced chronic kidney dis-
ease. Candidate predictor variables were selected based 
on previous studies. Then, stepwise backward variable 
selection with a significance level of P < 0.05 was used for 
the feature selection procedure. Five models with differ-
ent variables were developed and out of all models, the 
first model (6-variable model) had the highest c-statistic 
of 0.87 (95% CI, 0.84–0.90) and 0.81 (95% CI, 0.75–0.86) 
in the internal and external validation cohort, respec-
tively. Model calibration was described as well calibrated 
and was assessed by the calibration intercept, calibra-
tion slope, and graphically by locally weighted scatterplot 
smoothing (LOESS) plots of observed vs predicted prob-
abilities of the outcome.

Lee et al. [40] published a multi-center retrospective 
cohort study on a cohort of dialysis-requiring adult acute 
kidney injury (AKI-D) patients who had predicted inpa-
tient mortality of < 20%. The study aimed to develop and 
validate a prediction model for the probability of recov-
ery in these patients. Different candidate predictors were 
used to develop two models using logistic regression 
and classification and regression tree (CART). Predicted 
recovery probabilities ranged from 9–22% in the lowest 
decile to 58–66% in the highest decile for logistic regres-
sion, and from 25.6–52.7% for the CART approach. The 
c-statistic was 0.64 and 0.61 for logistic regression and 
CART techniques, respectively. Based on a graphical 

comparison of observed probability to predicted prob-
ability, calibration was reported as excellent.

A separate study conducted by Chen et al. [41] ana-
lyzed 32 immunoinflammatory cytokines in the blood 
of patients with cardiac surgery-associated acute kidney 
injury (CSA-AKI) and then employed machine learning 
methods to develop a simple and effective blood marker-
based model for predicting poor in-hospital outcomes. 
CSA-AKI, defined as abrupt renal dysfunction that 
occurs in patients following cardiac surgery, is a preva-
lent complication affecting approximately 5 percent to 
42 percent of patients undergoing cardiac surgery [45]. 
Using both the Least Absolute Shrinkage and Selection 
Operator (LASSO) and random forest predictor selection 
methods, they showed a logistic regression-based pre-
dictive model incorporating IL-8, IL-16, and a change in 
SCr assists in accurately predicting poor in-hospital out-
comes. Their prediction model was effective at predicting 
composite outcomes, reporting AUROC of 0.947 (95% 
CI, 0.895–0.998) and 0.971 (95% CI, 0.932-1.000) for 
internal and external validation, respectively. Model cali-
bration was assessed by Brier score and Hosmer–Lem-
eshow test for external validation and reported as good 
calibration (Brier score 0.094, HL test P value = 0.103).

In a separate study that studied the outcome in criti-
cally ill patients with sepsis-associated AKI, He et al. 
(2021) [42] developed and validated machine learn-
ing models to predict the occurrence of AKD. AKD was 
defined as the presentation of at least KDIGO Stage 1 
criteria for > 7 days after an AKI-initiating event [46]. To 
determine the most useful predictive variables, LASSO 
has been used and 28 variables (listed in Table  2) have 
been selected for inclusion in the predictive models. The 

Variable Chawla et al. [25] Itenov et 
al. [38]

James et al. [39] Lee et 
al. [40]

APS III score ✘ ✔ ✘ ✘
Diabetes ✘ ✔ ✘ ✘
Congestive heart failure ✘ Yes/No ✘ ✘
Moderate or severe liver disease ✘ Yes/No ✘ ✘
SAPS II score ✘ ✔ ✘ ✘
SOFA score ✘ ✔ ✘ ✘
RRT on the first AKI-3 day in ICU ✘ ✘ ✔ ✘
Hypertension ✘ Yes/No ✘ ✘
Surgery/trauma ✘ Yes/No ✔ ✘
Diuretic ✘ Yes/No ✘ ✘
Renal toxic drugs ✘ ✔ ✘ ✘
Charlson Comorbidity Index ✘ ✔ ✘ ✘
Emergency department ✘ ✔ ✘ ✘
Renal toxic drugs ✘ ✘ ✘ ✘
Charlson Comorbidity Index ✘ ✘ ✘ ✘
Emergency department ✘ ✘ ✘ ✘
1 Years from the diagnosis date to either the end of the data collection period or the date of death, whichever came first.
2 Teaching hospital was coded yes when the number of Medical Residents was ≥ 5.

Table 2 (continued) 
Variable Chen et al. [41] He et al. 

[42]
Huang et al. [43] Pike et 

al. [44]
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results of three different models, including recurrent 
neural network-long short-term memory (RNN-LSTM), 
decision tree, and logistic regression, were compared on 
two separate training and validation (MIMIC III) datas-
ets. In the validation dataset, the RNN-LSTM algorithm 
showed the highest performance with an AUROC of 
1.000, followed by the decision trees with an AUROC of 
0.872. Logistic regression had the least predictive accu-
racy, with an AUROC of 0.717. The calibration curve was 
provided and reported as being well-calibrated.

Recently, Huang et al. [47] developed and validated 
prediction models for AKI recovery in critically ill 
patients at hospital discharge with ICU-acquired AKI 
stage 3 (AKI-3). After internal (10-fold cross-validation) 
and external validation the prediction LASSO model for 
complete or partial recovery based on age, need for RRT, 
platelet count, urea, and white blood cell count had the 
highest AUROC of 0.61. Moreover, calibration was eval-
uated visually with a calibration slope of 0.27 and 0.32, 
and calibration in the large of -0.07 and zero for com-
plete recovery prediction and complete or partial recov-
ery prediction models, respectively. Models that are well 
calibrated will have calibration plots close to the diagonal 
axis, a calibration slope close to one, and a calibration in 
the large close to zero.

Finally, Pike et al. [44], reported a multi-center pro-
spective cohort study aiming to develop a biomarker-
enhanced risk pre- diction model for critically ill patients 
receiving RRT with AKI. They investigate whether 
plasma inflammatory and apoptosis biomarkers increase 
risk prediction of renal recovery and mortality compared 
with clinical models in which the primary outcomes of 
interest were renal recovery and mortality at day 60. Four 
different models were developed using multivariate logis-
tic regression in which each model uses a different set of 
variables (see Table 3). The c-statistic for all biomarkers 
for recovery and mortality were 0.66 and 0.71, respec-
tively. The results show that a simple four-variable clinical 
model including age, mean arterial pressure, mechanical 
ventilation, and bilirubin, together with IL-8, increases 
prediction quality (AUROC, 0.76; 95% CI, 0.71–0.81) for 
renal recovery at day 60 and could potentially be benefi-
cial at the bedside for clinicians. Calibration performance 
was assessed using the Hosmer–Lemeshow (HL) good-
ness-of-fit test and reported as good calibration (P value 
range, 0.08–0.45).

A comparative summary of all clinical prediction mod-
els is shown in Table 3 and a summary of their method-
ological quality is provided in Fig. 3.

Quality assessment summary
Table 4 shows the quality assessment of model develop-
ment of the included studies. “As a whole, the quality 
measures reflected by the studies are rather average or 

below average, for example, only 40% of quality criteria 
are met by all the studies. All studies except the ones by 
Chawla et al. [25] and He et al. [42] described the ratio-
nale for including predictive variables. However, only 
three studies by Chawla et al. [25], Huang et al. [43], 
and Pike et al. [44] discussed handling missing data. The 
number of events per variable was < 10 for the study con-
ducted by He et al. [42], and four of the eight models 
were validated externally.

Discussion
In this systematic review, we aimed to find prediction 
models for the development of renal insufficiency (or 
recoveries) in patients who experienced AKI. We iden-
tified eight studies in which multiple prediction models 
were built and validated in heterogeneous cohorts of 
patients. The quality of the studies and the models devel-
oped are rather average in general.

AKI was defined using the KDIGO criteria in four 
studies [38, 39, 42, 48], and one study used the RIFLE 
criteria [25], the other three studies did not mention the 
used AKI criteria [40, 41, 44]. Our systematic review 
found some limitations in the derivation and validation 
of all published studies. For a model to be generalizable 
beyond a sample population, validation is an essential 
step. Although all the models underwent some inter-
nal validation and reported model calibration (except 
Chawla et al. [25]), not all of them were externally vali-
dated. In addition, internal validation in one of the stud-
ies was performed in a random split of the dataset [44], 
which is not a perfect method for data splitting in that 
it generates quite similar development and validation set. 
While some studies did not mention how missing values 
were handled, of those that did, the majority relied on 
relatively simple methods, such as complete case analy-
sis and single imputation using mean for continuous data 
and the mode for categorical data. Only one study used 
a regression-based algorithm [44]. Multiple imputation 
methods have proven to be more effective than single 
imputation methods at restoring the natural variability 
of missing values and retaining more useful information 
than complete case analysis methods [49].

Moreover, three of the studies selected risk factors 
using LASSO for variable selection [41, 42, 44]. How-
ever, four of the eight models used statistical approaches 
of forward selection or backward elimination [25, 39, 
40, 44], and one used correlation-based techniques [48]. 
Studies conducted using stepwise regression techniques 
have demonstrated wide variation in models selected 
from a list of candidate predictors. By bootstrapping 
for predictor selection, model developers can take into 
account this variability since the final candidate predic-
tors are those selected by a predetermined majority of 
bootstrap samples. Only one model was developed using 
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Chawla et al. [25] Itenov et al. [38] James et al. [39] Lee et al. [40]
Model development
Sample of patients Patients who survive AKI Patients admitted to the ICU 

for at least 24 h and with AKI
patients with a prehospitaliza-
tion eGFR of
more than 45 mL/min/1.73m2 
and who had survived hospital-
ization with AKI

Adult (age > 18 years) who 
developed dialysis-requiring 
AKI (AKI-D)

Study design Prospective cohort study Prospective cohort study Prospective cohort study Retrospective cohort study

Number of centers 1 center 9 academic ICUs Multicenter (population-based 
repository)

21 hospitals

AKI definition RIFLE KDIGO KDIGO RRT + SCr > 50% rise

Derivation cohort 
sample size

5351 568 9973 2214

Derivation time period October 1999 - Decem-
ber 2005

2006–2010 April 2004 - March 2014, with 
follow-up
to March 2015

January 2009 - September 
2015

The outcome of interest Risk for progression to 
CKD stage 4

Recovery after AKI within 
28 days

Progression of AKI to advanced 
CKD

Recovery after dialysis-requir-
ing AKI
within 90 days

Number of prediction 
models

Three logistic regression 
models

Two cause-specific Cox 
regression models:
one for the hazard of 
recovery and one for death 
without recovery

Five multivariate logistic 
regression

Two models: Logistic regres-
sion and classification and 
regression tree (CART)

Predictor selection 
method (e.g.full model 
approach, backward 
elimination)

Model1: stepwise logistic 
regression,
Model2: based on the 
most heavily weighted 
factors from model1, 
Model3: based on senti-
nel clinical
events

Model1: most likely predic-
tors, Model2: full model

Stepwise backward logistic 
regression at P < 0.05 with boot-
strap selection (1000 samples)

Stepwise logistic regression 
with bootstrap selection (1000 
samples)

Incidence of outcome 13.6% entered CKD4 15.1% risk of not recovering 2.7% developed advanced CKD 59.1% not recovered after 
AKI-D

Validation method

Validation cohort sam-
ple (e.g. split sample,
bootstrap)

Separate cohort Separate cohort Internal (one-third of derivation 
cohort)
and separate cohort

Internal validation (10-fold
cross-validation)

Validation cohort 
sample size

11,589 766 2761 (external cohort) -

Validation time period October 1999 - Decem-
ber 2005

1 January 2012–31 Decem-
ber 2013

June 2004 - March 2012, with a 
follow-up to
March 2013

January 2009 - September 
2015

Incidence of outcome 8.5% entered CKD4 10% risk of not recovering 2.2% developed advanced CKD 59.1% not recovered after 
AKI-D

Performance statistics c − statistics = 0.81–0.82 AUROC = 73.1% for predict-
ing recovery

c − statistic = 0.87 Logistic regression: 
c − index = 0.645,
CART: c − index = 0.61

Model performance 
statistics:
calibration

Not reported The calibration plot used, 
noted as nicely
calibrated

P (slope) =
0.92, 0.88, 0.8, 0.89, 0.67

The calibration plot used, 
noted as excellent
calibration

Chen et al. [41] He et al. [42] Pike et al. [44] Huang et al. [43]
Model development
Sample of patients Patients diagnosed with 

cardiac
surgery-associated AKI 
(CSA-AKI)

Patients with sepsis-associ-
ated AKI

Critically ill patients receiving 
RRT with
AKI

ICU patients with AKI-3

Study design Prospective cohort study Prospective cohort study Prospective cohort study Prospective cohort study

Number of centers 1 center 1 center Multicenter Multicenter (seven ICUs)

Table 3 AKI-outcome prediction models
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a full model approach. In addition, three of the studies 
only focused on one particular center [25, 41, 42]. Using 
a single-center cohort may not be representative of other 
populations. While half of the models had only average 
to poor predictive power with AUROC values below 80%, 
good results were obtained in studies involving selected 
cohorts (cardiac surgery, sepsis). In addition, the majority 
of the studies used small derived and validated cohorts, 
and in all studies, all models were validated in cohorts 
from the same region, so generalizability to patients from 
other regions was not examined. Moreover, all studies 
excluded patients with preexisting CKD, therefore these 
prediction models may not be accurate in that popula-
tion. In the included studies, conventional statistical 
models or simple machine learning techniques such as 

CART, RNN, and logistic regression were the meth-
ods employed in this area. Rajula et al. [50] showed the 
traditional statistical method seems more useful than 
machine learning models when the number of cases is 
greater than the number of variables when applied to the 
medical field. However, in scenarios where the number 
of variables is large, traditional statistical models might 
run into problems. EHRs are capable of storing a large 
number and variety of variables enabling high-quality 
and trustworthy prediction models [51], and machine 
learning offers the techniques to handle large amounts 
of high-dimensional data where the number of variables 
is huge which is common in healthcare settings. Besides, 
these machine learning models are capable of captur-
ing complex interactions between the variables in the 

AKI definition Not mentioned KDIGO Not mentioned KDIGO

Derivation cohort 
sample size

196 209 1124 229

Derivation time period not mentioned January 2015 - December 
2020

November 2003 - July 2007 August 2007 - November 2010

The outcome of interest Postoperative AKI requir-
ing RRT or in-hospital 
death

Predict the occurrence of 
acute kidney
disease (AKD) in patients 
with sepsis-associated AKI

Renal recovery and mortality for 
ill patients with AKI requiring 
RRT at day 60

Two outcomes: 1) complete 
recovery and
2) complete or partial recov-
ery at hospital discharge

Number of prediction 
models

Five logistic regression 
models with different 
combinations of the 3 
selected predictors

Three models: Recurrent 
Neural
Network-Long Short-Term 
Memory (RNN-LSTM), 
decision trees, and logistic 
regression

Four logistic regression models 
(ATN
clinical model, reduced ATN 
model, LASSO model, stepwise-
selected model, and parsimoni-
ous model)

Multiple Least absolute shrink-
age and selection operator 
(LASSO) models

Predictor selection 
method (e.g. full model 
approach, backward 
elimination)

LASSO logistic regression 
and random forests

LASSO Model1: reduced ATN model, 
Model2: LASSO,
Model3: stepwise logistic 
regression,
Model4: routinely available 
predictors

Correlation-based feature se-
lection (n = 4) and one feature 
added based on the literature

Incidence of outcome 16.3% 55.5% 36.5% 37.55% (complete recovery)

Validation method

Validation cohort sam-
ple (e.g. split sample,
bootstrap)

Internal validation (boot-
strap) and separate
cohort

Separate cohort (MIMIC III 
database)

Internal validation (2-fold split) Internal validation (stratified 
10-fold
cross-validation) and a sepa-
rate cohort

Validation cohort 
sample size

52 509 562 244

Validation time period Not mentioned 2008–2014 November 2003 - July 2007 August 2007 - November 2010

Incidence of outcome 21.1% 46.4% - 33.20% (complete recovery)

Performance statistics ROC-AUC = 97.1% AUROC for LSTM = 1.00
AUROC for decision 
trees = 0.872
AUROC for logistic 
regression = 0.717

Renal recovery using model 4: 
AUROC = 0.76%

Complete recovery: 
AUROC = 0.53%,
complete or partial recovery: 
AUROC = 0.61%

Model performance 
statistics:
calibration

Calibration score as-
sessed by Brier score and 
HL test
and noted as good

The calibration plot used, 
noted as nicely
calibrated

HL: P = 0.08–0.45 Calibration plot used

Table 3 (continued) 
Chen et al. [41] He et al. [42] Pike et al. [44] Huang et al. [43]
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Fig. 3 Percentage of studies meeting quality criteria

 

datasets, resulting in more precise and reliable models. 
However, statistical models that leverage the diversity 
and abundance of EHR-derived data are still limited. Fur-
thermore, many machine learning models like random 
forest [52] are able to handle missing values (one of the 
main challenges when developing EHR-based models) 
naturally, without the need to include a data imputation 
step. Also, the interpretability of model predictions is an 
important consideration when implementing and utiliz-
ing them by clinical providers and other healthcare deci-
sion-makers, and some machine learning models such 
as decision trees and random forests can be more easily 
interpreted. Despite many advantages, most machine 
learning models (e.g., deep learning) are computationally 
expensive and need more time for training. Despite the 
fact that hyperparameter selection can greatly influence 
the performance of a model, hyperparameter selection 
is often neglected in these studies [53]. It is our under-
standing that there are no guidelines regarding how to 
report the hyperparameter tuning results/procedure for 
machine learning as clinical prediction models. Another 
important issue is the limited amount of follow-up data. 
Based on the results of included papers, the need for early 
detection and prevention of AKI is important. However, 
currently, after discharge from the hospital, the follow-up 
of AKI survivors is considerably challenging mainly due 
to two reasons. First, the process is time-consuming and 
costly, and second, drop-out is frequently observed [54]. 

As a result, when developing machine learning-based 
CKD risk prediction models for such patients, we are 
typically confronted with a small, labeled training set. For 
future research, we propose organizing longer follow-
up studies of AKI patients, utilizing advanced machine 
learning methods to take into account as many variables 
as possible, and employing techniques of semi-super-
vised learning to deal with probable dropouts [55].

It is important to note that this systematic review has 
both strengths and limitations. This is the first system-
atic review to examine both the reporting quality and the 
development of machine learning models that predict 
outcomes of AKI. Although we used standard search fil-
ters for AKI, outcomes of AKI, and machine learning, we 
may not have found all relevant studies in the databases 
that we have looked into or studies that are not included 
in these databases and not published in English, result-
ing in only 8 studies included in the systematic review. In 
addition, although all studies provide prediction models 
to predict renal insufficiency outcomes in AKI patients, 
heterogeneous outcomes (progression to CKD, progres-
sion to AKD, renal recovery, and requiring RRT) are pro-
vided in these studies. Moreover, it was not possible to 
perform a meta-analysis of the studies because access 
to individual participant data was not available. Finally, 
an individual model cannot be recommended or imple-
mented due to the limited number of externally validated 
models and the absence of an impact analysis.
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Conclusion
In recent years, few validated clinical models have been 
developed that can predict the outcomes of acute kidney 
injury in critically ill or hospitalized patients. The exis-
tence and use of such models, in addition to highlighting 
increased renal insufficiency, morbidity, and mortality 
following AKI, have significant implications for the future 
care needs of survivors. Future studies using machine 
learning prediction algorithms may improve the model 
design that can be better used in the clinical setting.
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