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Abstract 

Background  Electron microscopy is important in the diagnosis of renal disease. For immune-mediated renal disease 
diagnosis, whether the electron-dense granule is present in the electron microscope image is of vital importance. 
Deep learning methods perform well at feature extraction and assessment of histologic images. However, few studies 
on deep learning methods for electron microscopy images of renal biopsy have been published. This study aimed to 
develop a deep learning-based multi-model to automatically detect whether the electron-dense granule is present in 
the TEM image of renal biopsy, and then help diagnose immune-mediated renal disease.

Methods  Three deep learning models are trained to classify whether the electron-dense granule is present using 910 
electron microscopy images of renal biopsies. We proposed two novel methods to improve the model accuracy. One 
model uses the pre-trained ResNet convolutional layers for feature extraction with transfer learning which was firstly 
improved with skip architecture, then uses Support Vector Machine as the classifier. We developed a multi-model to 
combine the traditional ResNet model with the improved one to further improve the accuracy.

Results  Deep learning-based multi-model has the highest model accuracy, and the average accuracy is about 88%. 
The improved ReseNet + SVM model performance is much better than the traditional ResNet model. The average 
accuracy of the improved ResNet + SVM model is 83%, while the traditional ResNet model accuracy is only 58%.

Conclusions  This study presents the first models for electron microscopy image classification of Renal Biopsy. Iden-
tifying whether the electron-dense granule is present plays an important role in the diagnosis of immune complex 
nephropathy. This study made it possible for Artificial Intelligence models assist to analyze complex electron micros-
copy images for disease diagnosis.
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Background
Renal disease is very common, and approximately 750 
million people in the world are suffering from it [1]. 
Renal biopsy is the gold standard for diagnosing renal 
disease [2]. Besides, Transmission Electron Microscope 
(TEM) is performed routinely on renal biopsies for its 
value in pathomorphological diagnosis, as it can examine 
the ultra-structure [3, 4]. Especially for immune-medi-
ated renal disease diagnosis, whether the electron-dense 
granules present or not in the electron microscope report 
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are of vital importance. However, electron microscope 
images on renal biopsy are currently assessed by patholo-
gists with visual estimation, and it usually takes a long 
time to get the electron microscope results, which caused 
the problem of electron microscopy reports to lag far 
behind the need for clinicians to shorten the Turnaround 
Time [5] and get electron microscope reports as soon as 
possible. What’s more, the electron microscope requires 
experienced pathologists to perform. Different patholo-
gists have different diagnostic standards and levels. Since 
different pathologists have different working years and 
professional titles, the final judgment results may not be 
the same. Electron Microscopy is expensive to perform. 
Especially when conducting scientific research, for exam-
ple, it is necessary to build an animal model to check the 
effect of the knockout gene on lupus nephritis, and the 
electron microscope is necessary to assess whether the 
lupus nephritis animal model is successfully constructed 
or not [6]. All of the above reasons limit the widespread 
use of electron microscopes.

Deep learning algorithms characterized by Convo-
lutional Neural Networks (CNN) can greatly improve 
the performance of many visual classification problems. 
However, a few studies of deep learning models on renal 
biopsy are reported worldwide. Meyke hermsen et al. [7] 
recently developed a CNN-based model for multiclass 
segmentation of renal tissue stained by periodic acid-
Schiff. Brandon Ginley et al. [8] proposed an RNN-based 
pipeline to classify biopsy samples from 54 patients with 
diabetic nephropathy. To our knowledge, this is the first 
work to train deep learning models on a TEM image 
of renal biopsy. Since the TEM image of renal biopsy is 
greyscale and the PAS image is colorful, the morpho-
logical changes in the greyscale image (TEM) are much 
harder to identify for the computer [9]. What’s more, typ-
ically in most research, it is one model handling all vis-
ual feature conditions. Although a single model may be 
accurate on average, there is still a big chance that a sin-
gle model will miss some important features due to the 
model uncertainty [10]. There’s almost no public research 
on deep learning models on TEM images of renal biopsy. 
Also, in the pathological image classification field, few 
multi-model research is addressed.

The goal of this study was to develop and test a novel 
method that combines improved deep learning mod-
els with multi-model to automatically classify whether 
the electron-dense granule is present in the TEM image 
of renal biopsy. To assist the pathologists to diagnose 
immune-mediated renal disease more quickly and eas-
ily, whether the electron-dense granules present in the 
electron microscope image will be classified by the deep 
learning models and multi-model. In this novel method: 
firstly two single deep learning models were developed 

and trained. One single deep learning model is the con-
ventional ResNet Model. Another single model uses the 
improved ResNet convolutional layers with skip architec-
ture which was firstly proposed in this paper, then uses 
the classical machine learning method Support Vector 
Machine (SVM) as the classifier. Finally, to improve the 
classification accuracy, the multi-model will combine the 
two trained deep learning models into one model with 
Artificial Neural Network algorithms. All three models 
are trained for classifying whether the electron-dense 
granules are present in the TEM image or not.

Methods
Renal biopsy samples description
The 910 images are from 319 renal biopsies during the 
period from August 2017 to June 2019. The renal needle-
core biopsies in this paper are obtained from 319 patients 
from Children’s Hospital of Nanjing Medical University 
in China. All of the patients are children whose ages are 
younger than 18.

We select 319 patients from 1252 patients based on the 
following standard. Firstly, we choose the specimens from 
patients who have been clearly diagnosed as immune-
mediated renal disease, combined with the results of 
renal biopsy and clinical symptoms. Secondly, among the 
electron microscope images of these patients, we select 
the clear images in which meaningful parts are taken, 
such as the electron microscope images that preferably 
contain glomeruli, and electron-dense granule is present 
in the TEM images. These images are labeled as “posi-
tive”. Thirdly, we choose the specimens from patients who 
are not diagnosed with immune-mediated renal disease, 
combined with the results of renal biopsy and clinical 
symptoms. And the electron-dense granule is not present 
in the TEM images. These images are labeled as “Nega-
tive”. According to this standard, 319 renal biopsy speci-
mens were selected from 1252 patients.

The preparation of renal biopsy specimens was done 
according to international standards [11]. We got the 
image under the 2 μm ruler.

The above-mentioned TEM images are diagnosed by 
two experienced renal pathologists. One of the patholo-
gists from the General Hospital of Eastern Theater Com-
mand gave the result, and then the other pathologist from 
the Children’s Hospital of Nanjing Medical University 
reviewed the result again. If the results of the two pathol-
ogists disagreed, our final solution was not to use this 
sample. In this study, the total number of TEM images 
with labels is 910. Of the 910 TEM images, 455 images 
are labeled as “Positive” which means that Electron dense 
granule is present in the TEM image, and the rest of 455 
images are labeled as “Negative” which means Electron 
dense granules are not present in the TEM image.
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All of the renal biopsy samples used in this study have 
passed the ethical review. And the Approval number is 
202008074–1.

Deep learning‑based multi‑model architecture
This novel algorithm is mainly about developing a multi-
model that combines two single deep learning models 
into one model to further improve classification accuracy. 
The first single model is the improved ResNet + SVM 
model, and the second single model is the conventional 
ResNet model.

Conventional ResNet50
The ResNet residual component has two types of blocks. 
One is Identity Block, and the other is Convolutional 
Block.

where x and H(x) are the input and output vectors of the 
layers. F(x, {Wi}) is the residual mapping function. {Wi} 
represents the convolutional layer weights. x is added to 
the result of F by the shortcut connection path.

Figure  1 illustrates the structure and detailed process 
of the Identity Block. Firstly, x is the input vector, and x 
has two paths to go. One is the main path where x will be 
transformed by the residual mapping function F. In the 
main path, F(x,{Wi}) is performed. The main path usually 
consists of two typical weight layers. One weight layer 
is composed of a 2D convolutional layer and a Batch-
Norm layer which will conduct the Normalization of the 

(1)
TheIdentityBlockisdefinedasH(x) = F(x, {Wi})+ x.

channel axis. After the input x multiplied by the weights 
{Wi} in the first layer, the nonlinear activation function 
‘ReLU’ will be used. And then the result will be into the 
next weight layer. At the same time, the input x will be 
fed into the other path called the shortcut path. In the 
shortcut connection, x will be directly added to the result 
from the main path. Finally, the combined result H(x) will 
be applied to the ReLU activation function.

where x and H(x) are the input and output vectors of the 
layers. F(x, {Wi}) is the residual mapping function. Differ-
ent from Identity Block, in the shortcut path, the input x 
will also be transformed by the 2D convolutional layer in 
the Convolutional Block. Ws denotes the weights of the 
convolutional layer in the shortcut path.

Figure 2 shows the structure and process of the Convo-
lutional Block. The only difference from the Fig. 1 is the 
shortcut path. In Identity Block, the input x is directly 
added to the result of the main path. However, the input 
x will be fed into a weight layer then the result is com-
bined with the main path.

Improved ResNet + SVM model with transfer learning
In this paper, the conventional ResNet model is improved 
by adding a skip architecture and replaced with an SVM 
classifier.

ResNet model is the state-of-the-art image classifi-
cation model. The deeper layer can increase the CNN 
model accuracy, but it brings a gradient vanishing 

(2)
The Convolutional Block calculates H(x) = F(x, {Wi}) +Wsx.

Fig. 1  Identity Block Structure
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problem [12]. ResNet model could solve the gradient 
vanishing problem because of residual network design 
[13]. As a result, the residual component and very deep 
layer of ResNet could ensure that the model can extract 
sufficient image features.

Improved Resnet with skip architecture
As our task is the histopathologic classification of TEM 
images, it has higher requirements for feature extrac-
tion function compared with traditional image classi-
fication problems. We improved the feature extraction 
structure of the ResNet model. As addressed in [14], the 
deeper layer net tends to extract the global information 
of an image, since its receptive field is large. Whereas 
the features extracted by the shallow layer net are par-
tial information of an image, and it focuses on more 
detailed geometry information of the partial area of an 

image. In the conventional ResNet50 feature extrac-
tion structure, there are about 49 convolutional layers 
in sequence, so the final extracted features are from the 
very deep layer. As a result, the final features contain 
more global and coarse information about the image. 
However, in our task of classifying electron-dense gran-
ules in the TEM image, pathologists pay much attention 
to partial area information of TEM image by their vis-
ual estimations. This requires the extracted features can 
also contain fine information about the partial area. We 
developed the skip architecture to combine the deep, 
coarse layer information with shallow, fine layer infor-
mation. Figure 3 shows the improved model structure.

(1)	 Firstly, the input image will be resized to 
224 × 224x3, and then passed through the stage1. 

Fig. 2  Convolutional Block Structure

Fig. 3  The structure of the Improved ResNet + SVM Model: In the feature extraction part, it combines fine information and coarse information. In 
the classification part, an SVM classifier is used
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Stage 1 is composed of a 2D Convolution which has 
64 kernels with a shape size of (7 × 7) and stride of 
(2,2), a Batch-Normalization layer, ReLU activation 
function, and a MaxPooling with the kernel size of 
(3X3) and stride of (2,2).

(2)	 Secondly, the result from stage 1 will pass through 
stage2. Stage2 consists of a Convolutional Block 
and two Identity Blocks. For each block, 3 convolu-
tion layers are stacked one over the other where the 
first layer has 64 filters with a kernel size of (1 × 1), 
the second layer has 64 filters with a kernel size of 
(3 × 3), and the last layer has 256 filters with a kernel 
size of (1 × 1). Since the features extracted by stage2 
contain fine and partial information about the 
image, the output of the stage2 will have two paths, 
the first path is into stage 3 and pass-through stage 
4 and stage 5 in sequence, and the second path will 
be combined with the final features from stage5 
which contain coarse and global information of the 
image.

(3)	 Thirdly, for stage 3, stage 4, and stage 5, the model 
structure is similar. Stage 3 has one Convolutional 
Block and three Identity Blocks. Stage 4 has one 
Convolutional Block and five Identity Blocks. Stage 
5 has one Convolutional Block and two Identity 
Blocks. Each block has 3 convolution layers stacked. 
The filter size of the three layers is (1 × 1), (3 × 3), 
(1 × 1) respectively. For stage 3, stage 4 and stage 
5, the filters are corresponding [128,128,512], [256, 
256, 1024] and [512, 512, 2048].

(4)	 Finally, the features from stage 5 and stage2 will be 
concatenated. As a result, the concatenated features 
will contain global information as well as fine infor-
mation of the image and then flatten to one dimen-
sion.

Improved ResNet 50 combined with SVM model
In the improved ResNet 50 model, the Feature extrac-
tion component has been changed to get more accurate 
features. However, in the classification component of the 
conventional ResNet model, one fully connected layer 
with the “softmax” function is used for classification. 
Support Vector Machine is a classical two-binary clas-
sifier. Our task is two binary classification problems, so 
we will try to combine the improved Resnet50 feature 
extraction part with the SVM classifier.

Support Vector Machine (SVM): The goal of SVM is to 
find an optimal hyperplane that best separates two-class 
datasets so that distance from the nearest data points 
in space is maximized. This non-linear optimization 
problem can be transformed into a dual problem by the 
Lagrange method.

where α is the Lagrange multiplier, y is the support vec-
tor, C is the penalty factor, < ϕ(xi) • ϕ(x) > is the nonlin-
ear kernel function, and x is the input dataset.

Multi‑model
Although deep learning models can greatly improve pre-
diction accuracy, they still have errors. Model errors are 
affected by many uncertainties from various sources, 
such as the observation data noise, and model struc-
tural deficiencies [15]. Recently, some works about 
model uncertainty in deep learning have been published 
[16–18]. One way to reduce the model uncertainty is a 
multi-model approach [19]. The multi-model approach is 
to combine predictions from multiple models. This idea 
was explored more than 40 years ago with some studies 
in econometrics and statistics [20–23].

Ajami et  al. [24] proposed a new scheme that seeks 
to obtain a consensus from a combination of multiple 
model predictions, so that one model’s output errors can 
be compensated by others’ in hydrological model pre-
diction. One of the combination techniques is to use the 
deterministic weights to combine multiple model outputs 
[25]. The weighting strategy typically tries to give higher 
weights to the better-performing models. This approach 
can produce consensus predictions that are better than 
those from a single model [26, 27].

However, in the computer vision field, to our knowl-
edge, this is the first work to develop the multi-model 
scheme with ANN weighting strategy to further improve 
the deep learning models’ accuracy.

ANN Based multi‑model scheme
The simulated output from the individual model mostly 
has a nonlinear relationship with the ground truth. While 
Neural Network Method can model complex non-linear 
relationships, particularly in situations where the explicit 
form of the relation between the variables involved is 
unknown. The NNM can integrate information from 
physically different sources.

Figure  4 shows the ANN Based Multi-model algo-
rithm scheme. The original input image will be fed into 
two models respectively. One model is the improved 
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ResNet + SVM model, and the other is the conventional 
model. The input layer has two neurons, the first input is 
the prediction from the improved ResNet + SVM model, 
and the second input neuron is output from the conven-
tional ResNet model. There is one hidden layer and an 
output layer. In the output layer, the neuron means the 
ground-truth label.

Dataset for model
We divided 910 images into a developing cohort and a 
validation cohort in this study. We divided 910 images 
into two cohorts. The developing cohort for the training 
model, and the validation cohort for calculating and com-
paring the model accuracy. The 910 images are divided 
into three parts: one part contains 374 images, another 
part contains 352 images, and the other part contains 184 
images. In the developing cohort, 374 images are used 
for training the improved ResNet + SVM model and the 
traditional ResNet model respectively. In the developing 
cohort, 352 images are used for training the multi-model. 
And the rest 184 images are the validation cohort for cal-
culating and comparing the accuracy of these models.

Model performance evaluation
For the model performance evaluation, since it is a classi-
fication model, we referred to Jake Lever et al. [28] which 
is published in Nature Methods. And in the Artificial 
intelligence industry, Recall score, precision, F1 score, 
and ROC curve are the mainstream evaluation indicators 
for classification problems. In Jake Lever et al., classifiers 
are commonly evaluated using either a numeric metric, 
such as precision, or a graphical representation of perfor-
mance, such as a receiver operating characteristic(ROC) 
curve. Jake et  al. shows that classification metrics are 
calculated from true positives(TPs), false positives(FPs), 
false negatives(FNs), and true negatives(TNs), all of 

which are tabulated in the so-called confusion matrix. A 
confusion matrix is a table that is often used to describe 
the performance of a classification model on test data. In 
the confusion matrix, each column represents the model 
prediction for each category, and each row means the 
actual label for each category.

For this binary classification problem, when one 
instance is predicted by the model, four situations are as 
follows:

(1)	 If the true label of the instance is “Positive” and is 
predicted as a “Positive” class by the model, it is a 
true class, called “True Positive”, and marked as TP;

(2)	 If the true label is “Positive”, while is predicted as 
“Negative” class by the model, called “False Nega-
tive”, and marked as FN;

(3)	 If the true label is “Negative”, while is predicted as a 
“Positive” class by the model, called “False Positive”, 
and marked as FP;

(4)	 If the true label is “Negative”, and the model result is 
also “Negative”, called “True Negative”, and marked 
as TN.

In this paper, “Positive” means Electron dense granules 
are present in the TEM image. And “Negative” means 
Electron dense granules are not present in the TEM 
image.

Recall score
Recall score measures how many “Positive” samples are 
predicted by the model as “Positive”. The recall score 
expresses the model’s ability to find all positive instances 
which are EDD present in the TEM in the dataset. Recall 
score measures whether the model omits the true positive 
instances. The closer the recall score is to 1, the higher the 

Fig. 4  Deep Learning-Based Multi-model Approach Architecture
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accuracy of the model prediction. The formula of the recall 
score is:

Precision
Precision indicates the proportion of “Positive” cases that 
are divided into “Positive”. Precision shows how much 
of the model predicted positive was correct. Precision 
measures the accuracy of the model in determining ‘posi-
tive’. The closer the precision is to 1, the higher the model 
accuracy is.

Precision is calculated as:

F1 Score
The precision and recall score sometimes have contra-
dictions, so they need to be considered comprehensively. 
The most popular classification evaluation is the F1 score, 
and it is the balance between recall and precision. It can 
measure the model prediction accuracy comprehensively. 
The value of the F-score is between 0 and 1. The closer to 
1, the higher the model accuracy is.

The formula of F-Score is:

Considering that the image sample size is very small in 
this study, it is difficult to improve the model accuracy. 
As a result, we think that a 5% model accuracy improve-
ment is significant.

ROC Curve
ROC curve is short for the receiver operating charac-
teristic curve. Each point on the ROC curve reflects the 
susceptibility to the same signal stimulus. The horizontal 
axis of the ROC curve is the specificity of the false posi-
tive rate FPR, and the vertical axis is the sensitivity of the 
true positive rate TPR. AUROC is the area under the 
ROC curve. It is used to evaluate the model’s accuracy. 
And the closer it is to 1, the higher the model accuracy is. 
Among them, the formula for calculating FPR and TPR 
are as follows respectively:

(4)recall =
TP

TP + FN

(5)P =
TP

TP + FP

(6)f1 =
2 • P • recall

P + recall

(7)FPR =
FP

FP + TN

(8)TPR =
TP

TP + FN

Results
Patient characteristics
In the Children’s Hospital of Nanjing Medical University 
from June 2014 to June 2019, 1252 patients were required 
for a renal biopsy. Among them, 319 patients were 
required TEM checks. Among the 319 patients, in clini-
cal diagnosis, 22 cases were suspected of lupus nephritis, 
103 cases of purpura nephritis, 16 cases of IgA nephropa-
thy, and 2 cases of IgM nephropathy. All of these belong 
to immune-mediated renal disease, and these add up to a 
total of 143 cases. As a result, there are 143 cases of clini-
cally suspected immune complex nephritis in total that 
need to be excluded or diagnosed by TEM.

Feature map
For the TEM image, the feature map results from each 
layer in the ResNet50 model are shown in Fig. 6. For bet-
ter visualization, the feature maps are reshaped to 2D pic-
tures. In the training phase, since it is a transfer learning 
task, the learning rate is set at 0.00001, the optimizer is 
“Adam”, and the loss is the cross-entropy and 10 epochs.

Figure  5 shows one original TEM image of a renal 
biopsy from the patient. This image is labeled as “Posi-
tive” which means that the electron-dense granule is 
present in this image. In this picture, the electron-dense 
granules are outlined in red on this image. Then Fig.  5 
will be fed into the model for feature extraction.

Figure  6 shows all the feature maps from the 
improved ReseNet + SVM feature extraction network 
by sequence. The feature map’s size is 3-dimensional 
[height, width, channe]. In Fig. 6, the sub-figure marked 

Fig. 5  Original TEM Image with “Positive” Lable
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as “A” is the feature map from the Convolutional layer 
of stage 1, and its size is [56, 56, 64]. From Fig.  6-A, 
there are 64 small patches, each patch represents the 
feature of the original TEM image, and each patch’s 
size is 56 × 56. The 64 image features are different from 
each other, and they contain different information from 
the original image. For better visualization, the 3D fea-
ture maps are reshaped to 2D, and the channel is the 
number of small patches. Figure 6-B, C, D, E show the 
feature maps from stage 2, stage 3, stage 4 and stage 
5 successively, and the sizes are [56, 56, 256], [28, 28, 
512], [14, 14, 1024] and [7, 7, 2048]. Figure 6-A corre-
sponds to the “Feature-map 1” marked in Fig.  3, and 
Fig. 6-B, C, D, and E corresponds to the “Feature-map 

2”, “Feature-map 3”, “Feature-map 4”, “Feature-map 5” in 
Fig. 3 respectively.

From Fig.  6, it’s obvious that the deeper the network, 
the height and width of a single image patch are smaller, 
and the channel is larger. Besides, the feature map from 
the shallow net focuses on more detailed geometry infor-
mation of the partial area of an image, and the feature 
map contains fine information. While the feature map 
from the deeper net, the feature map focuses on more 
global and coarse information of the image.

Confusion matrix results
Table  1, Table  2, and Table  3 show the performances 
of the conventional Resnet50 model, improved 

Fig. 6  Feature Maps of Deep Learning Model. A Extracted feature map from stage1 of deep learning model. B Extracted feature map from stage 2 
of deep learning model. C Extracted feature map from stage3. D Extracted feature map from stage4. E Extracted feature map from stage5
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Resnet50 + SVM model, and deep learning-based multi-
model respectively. In the confusion matrix, “Positive” 
means Electron dense granules are present in the TEM 
image. And “Negative” means Electron dense granules 
are not present in the TEM image.

For the “True Positive” (TP) and “False Negative” (FN) 
values, the deep learning-based multi-model has the larg-
est values which are 70 and 76 respectively. The “TP” and 
“FN” values of the Improved ResNet50 + SVM model 
are much larger than the conventional ResNet50 model. 
What’s more, for the values of “False Positive” and “False 
Negative”, Multi-model has the best performance, and the 
improved ResNet50 + SVM model is better than the con-
ventional ResNet50 + SVM. From the confusion matrix 
of the three models, it’s obvious that the deep learning-
based multi-model gets the highest accuracy, and the 
improved ResNet50 + SVM model is more accurate than 
the conventional ResNet50 model.

ROC curve
Figure 7 is the ROC curve of the three models. The hori-
zontal axis is the False Positive Rate, and the vertical axis 
is the True Positive Rate. The green curve is the ROC 
curve of the Deep Learning-Based Multi-model. The 
orange curve is the ROC of the Improved ResNet + SVM 
model. And the blue curve is the ROC of the traditional 
ResNet model. The red dashed line is the diagonal line, 

Table 1  Confusion Matrix of Conventional ResNet Model

The top left corner 39 is the number of “TP”, 43 is the “FN”, 26 is the “FP”, and 56 
is the “TN”

Conventional ResNet50 Model
Confusion Matrix

Prediction Result

Positive Negative

Ground Truth Positive 39 43

Negative 26 56

Table 2  Confusion Matrix of Improved ResNet + SVM Model

The top left corner 65 is the number of “TP”, 17 is the “FN”, 10 is the “FP”, and 72 
is the “TN”

Improved ResNet50 + SVM Model
Confusion Matrix

Prediction Result

Positive Negative

Ground Truth Positive 65 17

Negative 10 72

Table 3  Confusion Matrix of Deep Learning Based Multi-model

The top left corner 70 is the number of “TP”, 12 is the “FN”, 6 is the “FP”, and 76 is 
the “TN”

Deep Learning Based Multi-Model 
Confusion Matrix

Prediction Result

Positive Negative

Ground Truth Positive 70 12

Negative 6 76

Fig. 7  ROC Curve of Model Results Comparison
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which corresponds to the “random guessing” model (50% 
possibility of guessing right). The closer the ROC curve 
is to the upper left corner, the better the prediction per-
formance of the model. For the point in the upper left 
corner which is (0, 1), it corresponds to the “ideal model” 
where the FPR = 0 and TPR = 1, which means that the 
model classified all the samples correctly. It can be seen 
from the above figure that the ROC curve of the multi-
model is more skewed to the upper left corner, the model 
accuracy is higher. The ROC curve of the improved 
ResNet + SVM model performs better than the conven-
tional ResNet model.

The traditional ResNet model AUROC is 0.579. And 
the improved ResNet50 + SVM model AUROC is 0.835. 
The deep learning-based multi-model AUROC is 0.890. 
It shows that deep learning-based multi-model has the 
highest model accuracy.

Accuracy
Table  4 shows the precision, recall, and F1 scores of 
the three models respectively. In Table  4, the improved 
ResNet50 + SVM model precision and recall scores are 
87% and 79% respectively, while the ResNet50 model 
precision and recall scores are only 60% and 48%. And 
the proposed improved ResNet50 + SVM model is much 
more accurate than the traditional ResNet50 model, 
which improved about 27% accuracy for precision and 
31% accuracy for recall score. What’s more, deep learn-
ing-based multi-model precision and recall scores are 
92% and 85%, which are about 5% more accurate than the 
improved ResNet50 + SVM single model.

In general, the Deep learning-based multi-model 
first proposed by this paper has the highest model 
accuracy, the F1 score is about 88%. And Improved 
ReseNet50 + SVM model also first proposed by this 
paper performance is much better than the traditional 
ResNet50 model. And the average accuracy of the 
improved ResNet50 + SVM model is 83%, while the tradi-
tional ResNet50 model accuracy is only 53%.

Although the traditional ResNet50 model is the state-
of-the-art image classification model, the improved 
ResNet50 + SVM and multi-model have much better 
performance. What’s more, the multi-model performs 
better than the Improved ResNet + SVM model, which 
improves about 5% accuracy.

Discussion
Transmission Electron Microscope (TEM) is performed 
routinely on renal biopsies.

Especially for immune-mediated renal disease diagno-
sis, whether the electron-dense granule is present in the 
electron microscope report is of vital importance.

When the clinical symptoms are highly suspected of 
immune-mediated nephritis, the renal biopsy specimens 
can be obtained to feed into the model, and model results 
can quickly assist the final diagnosis of immune-medi-
ated nephritis. Immune glomerulonephritis is caused 
by the deposition of immune complexes in the kidney. 
For example, IgA nephropathy is a common primary 
immune glomerulonephritis, which is characterized by 
the deposition of IgA in the glomerular mesangial area. 
At present, the main pathogenesis of the disease is that 
galactose deficient IgA1 and its related anti-sugar anti-
bodies form immune complexes in the kidney, which 
cause IgA nephropathy. IgA nephropathy was judged by 
the presence of an immune complex in the kidney The 
presence of an immune complex in the kidney is one of 
the main pieces of evidence suggestive of IgA nephropa-
thy. Lupus nephritis is one of the common secondary 
immune nephritis, which is mainly caused by the depo-
sition of autoantibodies in the kidney and the activa-
tion of autoimmune response by the combination of 
immune complex and intrinsic renal antigen. There must 
be immune complexes in the kidney of immune-medi-
ated glomerulonephritis, so the presence or absence of 
immune complexes in the electron microscope can assist 
in the diagnosis of immune glomerulonephritis. If the 
disease is mild, there may not be immune complex dep-
osition in the kidney at this time. Since substances with 
a molecular weight of less than 70,000 can flow out with 
urine through the glomerular filtration membrane, in the 
case of mild kidney disease, if there is an immune com-
plex with a molecular weight of less than 70,000, it may 
flow out with urine and cannot be deposited in the kid-
ney. In addition, specimens taken from the renal biopsy 
are random and may not be able to accurately obtain the 
lesion site. At this time, the site of immune complex dep-
osition will be missed. There is no immune complex in 
the electron microscopic specimen of immune nephritis. 
These are the limitations of electron microscopy. There-
fore, the diagnosis of immune complex-mediated nephri-
tis needs to be combined with clinical symptoms, light 
microscopy, electron microscopy, and so on. This is also 
the advantage of this algorithm. It can search the whole 
specimen, find whether the whole specimen has no elec-
tronic dense matter, and even can search more than one 
specimen of the same patient efficiently. Deep learning 
model training takes a long time. But once the model 
has been trained, the model inference process is carried 

Table 4  Precision, Recall and F1 Scores of Three Models

ResNet50 ResNet50 + SVM Multi-model

Precision-score 0.60 0.87 0.92

Recall-score 0.48 0.79 0.85

F1-score 0.53 0.83 0.88
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out for pathological image identification, which is very 
fast. It only often takes 1 s. In this experiment, the model 
inference process takes 1  s. In addition, the computer 
can continuously diagnose and identify. It is difficult for 
humans to work continuously for a very long time with 
no rest. So in general, models will assist pathologists to 
diagnose quicker. At the same time, the algorithm trained 
by more data can distinguish the electron-dense matter 
and the impurity interfering matter which is similar to 
the electron-dense matter better than the human eye.

And the immune complex renal disease can be judged 
by the presentence of electron-dense granules. Electron-
dense granule helps to support the diagnosis of immune-
mediated nephritis, and if the electron-dense granule is 
present, it is helpful to support the clinical suspect of 
immune-mediated nephritis. As a result, the existence 
of an electron-dense granule is crucial. For better TEM 
medical image classification accuracy and efficiency, this 
study improved the conventional image classification 
deep learning models and developed a novel method of 
deep learning-based multi-model.

More recently, there has been a growing number of 
publications focusing on deep learning applications for 
disease diagnosis. Although some papers describing 
the deep learning models on renal biopsy are published 
recently, their tasks are about colorful images such as PAS 
sample images. Previous studies of renal biopsy have not 
dealt with deep learning models on TEM images. Since 
the TEM image is grayscale which contains less pixel 
information compared with colorful images, the mor-
phological changes in greyscale image (TEM) are much 
harder to identify for the computer. What’s more, most 
machine learning methods on renal disease are used for 
segmentation problems, which is a pixel-level classifica-
tion problems. While in our study, it is a whole image 
classification problem, which is image-level classification.

Since TEM images require needling biopsy of the renal, 
which is a traumatic examination and has certain risks, 
the images are scarce. Especially for deep learning model 
training, hundreds of images are too small. Although in 
this study transfer learning is adopted to alleviate the 
problem of lack of data, the small amount of data is still 
the main reason for the low accuracy of the deep learning 
models.

These methods have practical value in real life. For 
the regions which are rich in medical resources with 
experienced pathologists, it could assist the pathologist. 
And for the developing regions which lack good medi-
cal resources and experienced pathologists, deep learn-
ing models could be helpful for the development of renal 
biopsy.

What’s more, the images are from patients who 
are children. The model performance on adult TEM 

images can be explored. This research only focuses 
on the TEM result, in the further study, clinical symp-
toms, light microscopy, and immunofluorescence 
results will be integrated to assist in the clinical diag-
nosis of immune complex-mediated nephritis. Our 
research serves as a pioneer and reference for further 
research on renal biopsy. In further study, seman-
tic segmentation models can be developed to detect 
the location, pattern, and extent of electron-dense 
granules. Future research to make artificial intel-
ligence fully applicable to all renal biopsy images is 
encouraged.

A simple schematicdrawing illustrating the main concept of the work
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