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Abstract 

Ubiquitin-specific proteases (USPs) are closely related to protein fate and cellular processes through various molecular 
signalling pathways, including DNA damage repair, p53, and transforming growth factor-β (TGF-β) pathways. In recent 
years, increasing evidence has revealed the pivotal role of ubiquitination in tumorigenesis of KIRC. However, USPs’ 
molecular mechanism and clinical relevance in kidney cancer still need further exploration. Our study first determined 
prognosis-related ubiquitin-specific proteases (PRUSPs) in KIRC. We found these genes co-expressed with each other 
and might regulate different substrates. Based on the USPs’ expression, the PRUSPs risk signature was constructed 
to predict the survival probability of KIRC patients. The patients in high-PRUSPs-risk group showed a low survival 
rate. ROC and calibration curve indicated a discriminate capacity of the signature, and uni-/multi-variate Cox regres-
sion analysis revealed that the PRUSPs score is an independent prognostic factor. In different KIRC clinical subgroups 
and external validation cohorts (including E-MTAB-1980 and TCGA-KIRP cohorts), the PRUSPs risk signature showed 
strong robustness and practicability. Further analysis found that high-risk group showed activation of immune-related 
pathways and high PD-1/CTLA4 expression, revealing that high-risk patients might be sensitive to immunotherapy. In 
summary, we constructed the USPs risk signature to predict kidney cancer prognosis, which provided the theoretical 
foundation for further clinical or pre-clinical experiments.
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Introduction
Renal cell carcinoma (RCC) is one of the most frequently 
diagnosed cancer in human beings [1], including several 
pathological subtypes. KIRC accounts for about 70% [2, 
3]. Although KIRC could be successfully treated by sur-
gery or ablative strategies, some patients will develop 
recurrence or metastases [4]. For recurrent or metastatic 

KIRC patients, medication (including chemotherapy, 
targeted therapy, and immunotherapy) is the primary 
approach. However, the clinical effect of these therapeu-
tic methods was frustrating, as several targeted drugs 
(such as cytokines-high dose interleukin 2) showed a low 
response in clinical to treat KIRC patients [4]. Therefore, 
the clinical treatment of advanced KIRC still is one of 
the most challenging problem.

Under physiological circumstances, ubiquitylation 
and deubiquitylation are reversible processes of protein 
post-translation modification involving protein degrada-
tion regulation [5]. Balance dysfunction of the protein 
modification is closely related to tumorigenesis and other 
pathologies such as infection, inflammatory disorders, 
autoimmunity, etc. [6]. A series of proteases can remove 
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ubiquitin modification, called deubiquitinases (DUBs). 
Ubiquitin-specific-processing proteases (USPs) are the 
largest subfamily of DUBs, which include 54 USPs so far 
[7]. Studies have shown that USPs are involved in mul-
tiple cancer-related pathways, such as protein kinase B 
(Akt), G protein-coupled receptor (GPCR), P53 path-
ways, DNA damage repair, etc. [8–14]. USPs are consid-
ered to play an important role in renal carcinoma. USP53 
could regulate NF-kB pathway and inhibit KIRC prolifer-
ation and metastasis [15]. USP13 mediates the deubiquit-
ination of ZHX2 and promotes tumorigenesis [16]. USP7 
altered cell cycle G1/S phases and regulated renal cancer 
cell proliferation by targeting ARMC5 [17]. Several USPs 
have been used to develop inhibitors for cancer ther-
apy [18]. However, whether these USPs could give rise 
to the potential therapeutic targets in KIRC or not still 
need further deeply exploration. Our research aimed to 
explore the concrete function and mechanism of USPs in 
KIRC and provide the theoretical foundation for further 
novel therapeutic targets exploration, pre-clinical trials, 
or clinical trials.

In this study, we first identified the differential expres-
sion genes and further determined the USPs correlated 
with the prognosis of KIRC patients, called PRUSPs. 
Then we constructed the PRUSPs risk signature, and 
the risk signature could independently predict the sur-
vival outcome of KIRC patients. The high PRUSPs risk 
group showed a worse outcome than the low PRUSPs 
risk group. We used the external validation cohort 
(E-MTAB-1980 and TCGA-KIRP) to perform the valida-
tion further. The results showed that the risk signature 
is practical in predicting RCC patients’ prognosis. In 
addition, we found immune-related pathways and bio-
logical progress showed a higher enrichment in the high 
PRUSPs risk group. The mRNA expression of immune 
checkpoint (PD1 and CTLA4) was also up-regulated in 
the high PRUSPs risk group, indicating that the patients 
in high-risk group may be immune-activated, and the 
PRUSPs risk signature could identify a hot tumor. We 
also analyzed the potential targeting drugs between the 
high-/low-PRUSPs-risk group. The results showed that 
the patients in the high-PRUSPs-risk group might be 
sensitive to GDC-0449, SB590885, Embelin, AZD6244, 
Midostaurin, and sunitinib. Our study revealed the 
importance of PRUSPs in KIRC and identified the differ-
ent clinical subgroups to identify hot/cold tumors and 
targeting drugs, which provided the theoretical basis for 
further targeting and immune therapy.

Methods
Public data acquisition
Based on the previous literature, 54 ubiquitin-specific pro-
teases (USPs) were identified [7] (Supplementary Table 1). 

The mRNA expression profile (TCGA-KIRC, TCGA-
KIRP, and E-MTAB-1980) datasets were downloaded 
from the public database (https:// xena. ucsc. edu/; https:// 
www. ebi. ac. uk/ array expre ss). The normalized mRNA data 
of GSE11151 was downloaded from the GEO database 
(https:// www. ncbi. nlm. nih. gov/ gds). The mRNA expres-
sion levels of the TCGA-KIRC and TCGA-KIRP datasets 
were normalized and transformed into LCPM units using 
the edgeR package. The human protein atlas (HPA) web-
site (http:// www. prote inatl as. org/), including the immuno-
histochemistry data, was used for validation.

Differential expression analysis
The limma R package downloaded from the Biocon-
ductor (https:// www. bioco nduct or. org/) was applied to 
screen DEGs. The p-value was adjusted by the method—
Benjamini Hochberg. A filtering threshold of the DEGs 
was absoluted Log2(Fold change) > 0.5 and adjusted 
p-value < 0.05.

Correlation between PRUSPs
The corAndPvalue function from the WGCNA R-pack-
age was used to calculate the Pearson correlation coef-
ficient  (PCC) between PRUSPs in mRNA levels. The 
P-value was adjusted by the FDR method. Then we 
applied the string website (https:// string- db. org/) to 
analyze the protein–protein interaction  (PPI) of these 
PRUSPs.

Construction of PRUSPs risk signature
Through the “createDataPartition” R-function, the 
KIRC patients were evenly separated into two cohorts 
(including training and testing cohorts) at a ratio 
of 1:1. Basing on the glmnet R-package, the training 
cohort was used to construct a prognostic risk signa-
ture utilizing the Lasso-penalized Cox regression anal-
ysis. Then we constructed a PRUSPs risk score, and 
the risk score was applied to validate using testing and 
external validation cohort.

Nomogram construction
The variables (including gender, PRUSPs risk score, age, 
grade, and stage) were matched with clinical outcomes to 
conduct univariate Cox regression. Then the prognosis-
related variables were subjected to the multivariate Cox 
regression analysis to explore the dependent prognos-
tic variables. Then the stepwise regression method was 
applied to screen variables further based on the mini-
mum of the Akaike information criterion (AIC). A nomo-
gram was constructed to estimate the survival probability 
of 3, 5, and 7  years. ROC curve, calibration curve, and 
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decision curve analysis (DCA) were used to estimate the 
clinical benefits and discriminative accuracy of the nom-
ogram model.

Mechanisms, drug predictions, and immune infiltration 
analysis
Based on the median value of the PRUSPs risk score, 
the patients were divided into high-/low-risk groups. 
Then the DEGs (|LogFC|> 0.5 and adjusted.  P.
value < 0.05) between high/low-risk groups were sub-
jected to the clusterProfiler R package. The top 5 terms 
of KEGG pathways [19–21], cell components (CC), 
molecular functions (MF), and biological progressions 
(BP) are shown. Then the DEGs were subjected to the 
public drug prediction website—designN (https:// 
design- v2. cance rrese arch. my/ query). Potential predic-
tion inhibitors are generated. The connectivity score 
was calculated to demonstrate drug sensitivity. A 
score closer to 1 suggests that the drug is more effec-
tive for the patients in high-risk groups. Furthermore, 
the 24 immune cell gene sets were acquired from the 
published research [22] to calculate the immune infil-
tration levels by utilizing the single-sample gene set 
enrichment (ssGSEA) method of the GSVA R-pack-
age. Appling CIBERSORT methods calculated the 22 
immune cells’ proportion.

Statistical analysis
We used the unpaired t-test to analyze the median value 
difference between the two groups. The univariate and 
multivariate Cox regression analyses were used to screen 
the independent prognostic factors. The log-rank test 
was used to examine the significance of the uni-/multi-
variate Cox regression analysis. The Pearson method was 
used to assess the correlation between the expression 
value of two genes.

Results
Expression alteration of USPs in KIRC
The workflow of our study is shown in Fig. 1. To deter-
mine the differential expression USPs, we first calcu-
lated the differential expression genes (DEGs) between 
TCGA-KIRC and adjacent normal tissues (Fig.  2A). 
16,061 DEGs were determined. Among these, 14 USPs 
showed differential expression in KIRC and could dis-
tinguish tumor and normal tissues well (Fig.  2B-C). 
PAN2 showed up-regulation, USP2, USP11, USP13, 
USP19, USP24, USP15, USP34, USP43, USP44, USP46, 
USP51, USP53, and USP54 represented down-regula-
tion in KIRC (Fig.  2D). We used the external dataset 
(GSE11151) to conduct differential expression verifi-
cation; the expression alteration of USPs was consist-
ent with TCGA-KIRC except for USP43 (Fig.  2E). In 

Fig. 1 Flow chart of the study
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the HPA database, we found that the protein levels of 
USP2, USP46, USP53, USP11, USP24, USP25, USP34, 
and USP51 were higher in normal tissues compared to 
tumor tissues. The protein levels of USP13 and USP43 
showed a medium staining intensity in tubules but 
were not detected or low staining intensity in tumor 

tissues. However, other genes were not found in the 
HPA database (Fig. 2F).

Clinical relevance and cross‑talk of USPs
We performed the univariate Cox regression analy-
sis to determine the prognosis-related USPs (PRUSPs). 

Fig. 2 Expression alteration of USPs family. A The volcano plot showed the DEGs of KIRC. B The Venn diagram showed the overlapping genes 
between USPs and DEGs. C The heatmap showed differential expression USPs in KIRC-tumor and normal tissues. D The boxplots show the mRNA 
expression of 14 USPs in the TCGA-KIRC tumor and normal tissues. The significance level between the tumor and normal tissues was analyzed 
by t-test. E The bar plot showed the expression alteration of 14 USPs in GSE11151-KIRC. F Immunohistochemistry of the USPs in KIRC and normal 
tissues. *P-value < 0.05, **P-value < 0.01, ***P-value < 0.001, ****P-value < 0.0001
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10 USPs were correlated with the survival of the KIRC 
patients, including PAN2 (HR = 1.328, P-value = 0.015), 
USP19 (HR = 0.588, P-value < 0.001), USP2 (HR = 0.772, 
P-value < 0.001), USP24 (HR = 0.632, P-value = 0.001), 
USP25 (HR = 0.620, P-value = 0.001), USP34 (HR = 0.746, 
P-value < 0.001), USP44 (HR = 0.846, P-value = 0.033), 
USP46 (HR = 0.693, P-value = 0.008), USP51 (HR = 0.549, 

P-value < 0.001), and USP53 (HR = 0.574, P-value < 0.001) 
(Fig.  3A). High PAN2 expression showed a worse out-
come. Other USPs (including USP2, USP19, USP24, 
USP25, USP34, USP44, USP46, USP51, and USP53) 
represent the protective factors for KIRC patients’ out-
comes. In the low expression group of these USPs, the 
KIRC patients showed poor outcomes (Fig.  3B). In 

Fig. 3 Clinical relevance and co-expression analysis of USPs. A The prognosis-related USPs were determined by univariate Cox regression analysis 
and demonstrated using the forest plots. B The Kaplan–Meier survival curves showed prognosis of high-/low-USPs expression groups of TCGA-KIRC. 
The log-rank test was used to estimate the significance. C Co-expression analysis of prognosis-related USPs. D, Protein–protein interaction network 
of prognosis-related USPs
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addition, we found that PAN2 showed a negative cor-
relation or no correlation with other PRUSPs in mRNA 
expression level, and other PRUSPs showed a positive 
correlation with each other, indicating that PAN2 might 
play a different biological function in KIRC (Fig. 3C). We 
further analyzed the protein–protein interaction (PPI) 
for PRUSPs. We observed that some PRUSPs directly 
interacted with the same proteins, such as USP46 and 
USP2,  interacted with PHLPP1, UBB, and UBC. USP44 
and USP53 interacted with ATCN7L3. PAN2, USP53, 
USP24, and USP19, did not show the same protein inter-
action with other PRUSPs (Fig. 3D). These results reveal 
that they might play different roles by regulating different 
substrates in KIRC.

Construction of PRUSPs risk signature
To further determine the contribution of these PRUSPs 
to KIRC patients, we constructed a PRUSPs signature 
utilizing LASSO Cox regression analysis. The training 
cohort was used to construct the risk signature for OS 
of KIRC patients based on the mRNA expression of 10 
PRUSPs (Fig.  4A-B). 8 PRUSPs signature were finally 
determined (Fig. 4C). The equation of the risk score was 
determined as follows:

Then the training cohort was divided into two groups 
(high PRUSPs-risk group and low PRUSPs-risk group) 
according to the median value. We found that the patients 
in the high PRUSPs-risk group showed a worse progno-
sis than those in the low PRUSPs-risk group (Fig.  4D). 
The time-dependent AUC showed a discriminative 
accuracy in 3-/5-/7-years survival (3  years = 0.6676, 
5  years = 0.7008, and 7  years = 0.7339). In addition, the 
number of dead patients increased accompanied by the 
increasing PRUSPs risk score. Interestingly, we found 
PAN2 showed a higher expression in the high PRUSPs 
risk group. In contrast, other PRUSPs, showed a higher 
expression in low PRUSPs risk groups. We conducted the 
same analysis in the KIRC testing and external validation 
cohorts (E-MTAB-1980 and TCGA-KIRP). The results 
represent a feasible prediction capacity of the PRUSPs 
risk signature (Fig. 4E, Fig. S1A-B).

Robustness analysis and nomogram construction
In the whole KIRC cohort, PAN2 expression was higher, 
and other PRUSPs’ expressions were lower in the high 
PRUSPs-risk cohort (Fig.  5A). The time-dependent 
AUC showed a discriminative accuracy based on the 

Riskscore = 0.22739298 ∗ PAN2 − 0.15106386 ∗ USP19

− 0.16540585 ∗ USP2 − 0.41409702 ∗ USP24

− 0.05350950 ∗ USP25 − 0.01392374 ∗ USP44

− 0.27152405 ∗ USP51 − 0.09273768 ∗ USP53

ROC analysis (3  years = 0.6747, 5  years = 0.7109, and 
7  years = 0.7147) (Fig.  5B). The tumor grade and stage 
gradually increased with increasing risk, indicating that 
the risk score could predict tumor progression (Fig.  5C). 
Furthermore, the patients with higher PRUSPs risk showed 
a worse outcome in different clinical subgroups. These 
results showed that the PRUSPs risk signature possesses 
stronger robustness for predicting KIRC patients (Fig. 5D). 
We further explore whether the PRUSPs risk signature was 
affected by other clinical signatures, such as age, gender, 
grade, and stage. In the univariate Cox regression analysis, 
the PRUSPs risk signature (HR = 3.310, P-value < 0.001), 
age (HR = 1.029, P-value < 0.001), histological grade 
(HR = 2.304, P-value < 0.001), and pathological stage 
(HR = 1.884, P-value < 0.001) significantly affect the prog-
nosis of the KIRC patients (Fig.  6A). We further utilized 
these four variables to perform the multivariate Cox 
regression analysis. These results showed that these four 
variables were also correlated with the patient’s prognosis 
(For riskscore: HR = 2.325, P-value < 0.001; age: HR = 1.030, 
P-value < 0.001; Grade: HR = 1.386, P-value = 0.005; Stage: 
HR = 1.609, P-value < 0.001), indicating that these four var-
iables were the independent prognostic factors for KIRC 
patients. Subsequently, a nomogram model based on these 
four variables was constructed to predict the survival 
probability of 3-/5-/7-years of KIRC patients (Fig. 6B). The 
calibration curve and time-dependent AUC indicated that 
the model possesses a discriminative accuracy for predict-
ing 3-/5-/7-years overall survival (Fig. 6C and D). Moreo-
ver, The model showed the best clinical application value 
compared with other variables based on the DCA plots 
(Fig. S2). Overall, our PRUSPs risk signature possesses 
stronger robustness and independently predicts the prog-
nosis of KIRC patients.

Mechanisms, drug prediction, and immune infiltration 
in high‑/low risk groups
The differential clinical outcomes in high-/low-PRUSPs 
risk groups drive us to explore the potential mechanisms. 
We subjected the DEGs between high-/low-PRUSPs risk 
groups to clusterProfiler R-package and analyzed the 
enrichment situation of the KEGG pathways and gene 
ontology, including cell components (CC), biological pro-
gressions (BP), and molecular functions (MF). We found 
several terms of CCs (including high-density lipoprotein 
particle, immunoglobulin complex, circulating, ribo-
somal subunit, ribosome, and T cell receptor complex), 
MFs(including chemokine activity, chemokine receptor 
binding, immunoglobulin receptor binding, protein self-
association, and structural constituent of the ribosome), 
BPs (antibacterial humoral response, antimicrobial 
humoral response, lymphocyte chemotaxis, regulation 
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of defense response to virus, and spindle assembly), and 
KEGG (chemokine signaling pathway, IL-17 signaling 
pathway, NF-kappa-B signaling pathway, TNF signal-
ing pathway, and viral protein interaction with cytokine 
and cytokine receptor) differentially enriched in high-/

low-PRUSPs risk groups, indicating that immune system 
dysfunction influences the prognosis of KIRC patients 
(Fig. 7A). We further investigated the expression of three 
immune checkpoints in high-/low-PRUSPs risk groups. 
CTLA4 and PD1 showed a higher expression in high-risk 

Fig. 4 Construction of USPs risk signature. A and B The progressions of lasso-cox regression analyses progression. C The lasso-cox regression 
coefficients of USPs are shown by bar plot. D and E The Kaplan–Meier curves of high-/low-PRUSPs-risk groups in the TCGA-KIRC training/testing 
cohort; AUC value of time-dependent ROC curves demonstrate the prognostic predicted capacity of PRUSPs risk signature. The dot-plot was 
depicted to represent the OS, OS status, and risk score in the TCGA-KIRC training/testing cohort; the heatmap showed the expression of PRUSPs in 
high and low-risk groups of the training/testing cohort
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groups than in low-risk groups (Fig.  7B). In addition, 
multiple immune cell activity was higher in high PRUSPs 
risk groups, such as NK cells, B cells, cytotoxic cells, T 
cells, Treg cells, etc. (Fig.  7C). These results suggest 
that the patients in high PRUSPs risk groups might be 

sensitive to immune therapy based on anti-PD1. Moreo-
ver, targeted therapy is also one of the treatment methods 
for metastatic renal cell carcinoma. We further subjected 
the DEGs between high and low PRUSPs risk groups to 
the public website—designN to predict the potential 

Fig. 5 Prediction capacity analysis. A and B The expression heatmap of PRUSPs and ROC curve based on the PRUSPs risk signature. C Correlation of 
PRUSPs risk score, pathological stage and histological grades. D The Kaplan–Meier survival analysis validates the PRUSPs-risk signature in different 
clinical subgroups of TCGA-KIRC. *P-value < 0.05, **P-value < 0.01, ***P-value < 0.001, ****P-value < 0.0001
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targeting drugs. The results showed that the patients in 
the high-PRUSPs-risk group might be sensitive to the 
GDC-0449, SB590885, Embelin, AZD6244, midostau-
rin, and sunitinib (Fig. 7D). All in all, our research feasi-
bly stratified the KIRC patients into different subgroups 
based on the expression of USPs and predicted patient 
outcomes and potential treatment modalities.

Discussion
For recurrent or advanced KIRC, medicine is the pri-
mary approach in clinical treatment, such as immuno-
therapy, targeted therapy, and chemotherapy [4]. The 
surgical approaches are generally curative when the 

tumor is confined to the kidney. However, one-third of 
KIRC might present in metastases or recurrence, and 
patients treated with traditional medicine showed a low 
survival probability [23]. Therefore, novel treatments 
for metastatic KIRC still need to develop and explore. 
Studies have indicated that USPs are pivotal for cancer 
progression, and several USPs have been utilized as tar-
gets to develop inhibitors for cancer prevention [18, 24, 
25]. ML364 is a small molecule inhibitor of the deubiq-
uitinase USP2, which could degrade CCND1 and pre-
vent cancer cell cycle progression in colorectal cancer 
[26]; USP7 could induce apoptosis in multiple myeloma 
cells resistant to conventional and bortezomib therapies 

Fig. 6 Nomogram model construction. A Univariate/multivariate cox regression analysis showed the prognosis-related variables, including risk 
score, age, gender, grade, and stage. B Nomogram construction is based on clinical variables, including age, grade, stage, and PRUSPs-risk score. 
C and D Calibration and ROC curve assess the prediction capacity of PRUSPs risk signature. *P-value < 0.05, **P-value < 0.01, ***P-value < 0.001, 
****P-value < 0.0001
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[27]; Developing the medicines based on the USPs are 
considered as a potential new treatment for cancer. 
Research have been reported on the role of USPs in 

KIRC progression [15–17, 28]. USP13 mediates the deu-
biquitination of ZHX2 and promotes tumorigenesis in 
kidney cancer [29]. The silencing of USP39 could block 

Fig. 7 Functional enrichment analysis and drug prediction. A GSEA enrichment analysis between high-/low-PRUSPs-risk groups. B The mRNA 
expression of immune checkpoint in high-/low-risk groups. C The immune infiltration levels between the high-/low-risk group. D Targeted drug 
prediction between high-/low-PRUSPs-risk groups. *P-value < 0.05, **P-value < 0.01, ***P-value < 0.001, ****P-value < 0.0001
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the activation of Akt signaling pathways and markedly 
suppress RCC cell proliferation and invasion [30]. USP7 
altered cell cycle G1/S phases and regulated renal can-
cer cell proliferation by targeting ARMC5 [17]. How-
ever, as a large subfamily of DUBs, many mechanisms 
or unknown functions of USPs in KIRC need to be 
explored. Of note, due to different responses to current 
medicine, it is necessary to construct a feasible stratifica-
tion of KIRC patients to determine the subgroups which 
might benefit from one or some drugs.

Our study retrospectively analyzed the mRNA expres-
sion profile and clinical data from the TCGA, GEO, and 
Arrayexpress databases. We first screened the USPs 
which might play an essential role in KIRC. Among 
these, PAN2 is up-regulated and acts as a risk factor 
in KIRC overall survival (OS). Other USPs, including 
USP19, USP2, USP24, USP25, USP34, USP44, USP46, 
USP51, and USP53, are down-regulated and act as pro-
tective factors for KIRC OS. Of note, these analyses only 
showed the association between genes and prognosis, 
but not a causal relationship. USP19, USP44, USP46, 
and USP53 has been revealed as potential tumor sup-
pressor in KIRC in the previous study [15, 31–33]. 
Interestingly, these USPs were down-regulated in KIRC 
and prevented patients from dying. Recovery from the 
expression of these USPs might play a role in tumor 
suppression. However, few reports about the function 
of other USPs, exploring the potential function of these 
USPs in KIRC is also necessary.

An eight-USPs risk signature was constructed by 
the LASSO-Cox regression analysis. In the TCGA-
KIRC dataset, the patients with high-PRUSPs-risk 
signatures showed a worse prognosis than that with 
low-PRUSPs-risk signatures. We used two external 
validation (E-MTAB-1980 and TCGA-KIRP) data-
sets to verify the risk signature’s practicability further, 
and the results showed that the risk signature pos-
sesses a discriminate capacity. For kidney cancer, the 
most common type is KIRC, which represents up to 
70%, and KIRP, which represents up to 15% [34, 35]. 
Therefore, our risk signature might be suitable for 
KIRC and could be extended to predict the prognosis 
of KIRP simultaneously. In addition, we found that the 
PRUSPs-risk signature is an independent prognostic 
factor, indicating that the risk signature is not affected 
by other clinical variables.

A previous study indicated that the patients’ dif-
ferent responses to medicine were due to differ-
ent subtypes [36]. Therefore, we are trying to explore 
potential treatments by mining molecular mecha-
nisms. Through the functional enrichment analysis, 
we observed that multiple immune-related pathways 
showed high enrichment in high-risk group, such as 

the T cell receptor complex, TNF signaling pathway, 
and chemokine receptor. T cell receptor-based cancer 
immunotherapy is an emerging efficacy [37], which 
provide many advantages to other immune therapy 
because it can target the vast repertoire of mutated and 
cancer-associated protein found in all location of sub-
cellular. TNF also is an important immunotherapeutic 
target [38]. Researchers indicated that removing solu-
ble TNF-alpha receptors local enhancement of endog-
enous TNF-alpha activity may provide for enhanced 
tumor cell death. Chemokines and chemokine recep-
tors are expressed by both tumor cells and leukocyte 
infiltrate. It is reported that targeting the overexpressed 
chemokine receptors could kill tumor cells [39]. These 
findings suggested that the patients in high-risk group 
might benefit from the different immunotherapy-based 
therapeutic targets. Further analysis revealed that the 
patients in high PRUSPs risk group showed a higher 
expression of PD-1 and CTLA-4. For some kidney can-
cer patients, anti-PD1 therapy demonstrated durable 
tumor control [40]. Recent research even indicated 
that the combination of PD-1 and CTLA-4 blockade 
was more effective than either agent alone in mela-
noma, highlighting the need for biomarkers for combi-
nation regimens [41]. On the basis of the successes of 
antibodies targeting CTLA4 and PD1, multiple novel 
immunotherapies are now in clinical development for 
RCC patients [42]. Therefore, we speculated that the 
high-PRUSP risk group’s patients could benefit from 
the combination of PD-1 and CTLA-4 blockade, which 
needs further clinical experiment validation. Currently, 
sunitinib is a commonly used first-line target drug for 
mRCC [43–45], which could prolong the progression-
free survival (PFS) of mRCC patients. However, many 
patients develop progression after sunitinib treatment 
and cannot help changing other medicines [46]. There-
fore, not all patients respond to target drugs; specific 
patients need to treat for specific drugs, which is relied 
on the specific subtypes based on the biomarker. In our 
research, we predicted that the patients in the high-
PRUSPs-risk group might be sensitive to sunitinib. 
Therefore, this type of patient might benefit from suni-
tinib treatment, whereas for the patients in the low-
PRUSPs-risk group, the treatment strategy should be 
transformed based on the treatment effect. In addition, 
we found that other drugs might be used to treat the 
patients in high-PRUSPs-risk groups, such as GDC-
0449, SB590885, Embelin, AZD6244, and Midostaurin. 
This result provides the treatment chosen for the con-
dition of failure of the treatment of the first line. What’s 
more, we noticed that only PAN2 was highly expressed 
in high-PRUSPs-risk group. A previous study reported 
that the deletion of PAN2 could sensitize cells to PARP 
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inhibition in  vitro and in  vivo [47]. PAN2 silencing or 
developing correspondent inhibitors combined with 
sunitinib may have more significant clinical benefits 
for the patients in high-PRUSPs-risk group. Recovering 
the expression of the tumor suppressor, such as USP19, 
USP44, and USP53, also might reach the tumor-inhib-
ited effect for this type of patient.

In conclusion, our study revealed several USPs that 
might play important roles in KIRC and established the 
novel USPs risk signature to predict the prognosis of 
KIRC patients. Of note, there are still some limitations 
that need to the discussion. The function of several USPs 
that have not been reported still needs verification by 
subsequent experiments. Moreover, whether the USPs 
risk signature is applicable for predicting clinical out-
comes requires prospective studies for validation.
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