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Abstract
Background  Hyperkalemia is a common complication of chronic kidney disease (CKD). Hyperkalemia is associated 
with mortality, CKD progression, hospitalization, and high healthcare costs in patients with CKD. We developed a 
machine learning model to predict hyperkalemia in patients with advanced CKD at an outpatient clinic.

Methods  This retrospective study included 1,965 advanced CKD patients between January 1, 2010, and December 
31, 2020 in Taiwan. We randomly divided all patients into the training (75%) and testing (25%) datasets. The primary 
outcome was to predict hyperkalemia (K+ > 5.5 mEq/L) in the next clinic vist. Two nephrologists were enrolled 
in a human-machine competition. The area under the receiver operating characteristic curves (AUCs), sensitivity, 
specificity, and accuracy were used to evaluate the performance of XGBoost and conventional logistic regression 
models with that of these physicians.

Results  In a human-machine competition of hyperkalemia prediction, the AUC, PPV, and accuracy of the XGBoost 
model were 0.867 (95% confidence interval: 0.840–0.894), 0.700, and 0.933, which was significantly better than that of 
our clinicians. There were four variables that were chosen as high-ranking variables in XGBoost and logistic regression 
models, including hemoglobin, the serum potassium level in the previous visit, angiotensin receptor blocker use, and 
calcium polystyrene sulfonate use.

Conclusions  The XGBoost model provided better predictive performance for hyperkalemia than physicians at the 
outpatient clinic.
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Introduction
Hyperkalemia is a common complication of chronic kid-
ney disease (CKD). The prevalence rate of hyperkale-
mia is approximately 9% in CKD patients and one-third 
of non-dialysis CKD patients under nephrology care [1, 
2]. The risk factors for hyperkalemia in CKD patients 
are congestive heart failure, diabetes, old age, a high 
potassium diet, and medications like renin-angiotensin-
aldosterone system inhibitors, beta-blockers, and others 
[3–5]. Hyperkalemia is associated with mortality, CKD 
progression, hospitalization, and high healthcare costs [1, 
3].

There were some studies about predicting hyperka-
lemia. A claim study conducted in the U.S. successfully 
predicted hyperkalemia in CKD patients using logis-
tic regression [6]. Several deep-learning models were 
performed well to predict hyperkalemia using electro-
cardiography in CKD patients and at the emergency 
department [7, 8].

Recently, machine learning have been developed to 
handle complex and high-dimensional data and increas-
ingly applied in clinical medicine. The eXtreme Gradient 
Boost (XGBoost) algorithm developed by Chen et al. [9], 
one of the state-of-the-art gradient boosting machine 
learning algorithms, performed excellently in a number 
of medical problems [10–12]. In this study, we aimed to 
develop a machine learning model using the XGBoost 
algorithm and then assess the model performance in pre-
dicting hyperkalemia in patients with advanced CKD at 
the outpatient clinic in comparison to conventional logis-
tic regression models and two nephrologists.

Materials and methods
Data source
This retrospective study used data retrieved from the 
pre-end-stage renal disease (pre-ESRD) program every 
3 months that was initiated by Taiwan’s National Health 
Insurance Administration (NHIA) and performed in 
most of the hospitals in Taiwan to provide high-quality 

care for patients with CKD of stages 3b, 4, and 5 [13]. 
From January 1, 2010, to December 31, 2020, we used 
data collected in a single medical center in central Tai-
wan. This study was approved by the Institutional Review 
Board of Changhua Christian Hospital (IRB num-
ber-210423). All the data were measured in the labora-
tory that had been accredited by the College of American 
Pathologists’ Laboratory Accreditation Program.

Study population
Eligible patients were enrolled to have had at least two 
outpatient visits in three months between January 1, 
2010, and December 31, 2020. We excluded patients who 
were aged ≤ 20 years and whose estimated glomerular fil-
tration rates (eGFRs) were ≥ 30 mL/min/1.73 m2 because 
advanced CKD patients with hyperkalemia had higher 
medical expenses and mortality rates [14, 15]. We also 
excluded patients who did not have serum potassium val-
ues in the t-th clinic visit or the t + 1-th clinic visit. The 
t-th clinic visit refers to the time when the lab tests were 
conducted for the development of the prediction mod-
els. We randomly divided the study participants into the 
training (~ 75%) and testing (~ 25%) datasets by patient 
identification to make sure that the data were totally dif-
ferent between the training and testing datasets.

Model development
Predictors
Figure 1 shows how to generate parameters used for 
model development and prediction. The variables for our 
model consisted of demographics, laboratory tests, medi-
cal history based on ICD-9 and ICD-10 (Supplementary 
Table S1), and medications (Supplementary Table S2). 
For laboratory tests, missing values were imputed sepa-
rately for the training and testing sets. We imputed the 
missing values using the K-Nearest Neighbors approach 
[16].

The primary outcome of our study was to predict 
whether or not hyperkalemia (K > 5.5 mEq/L) would 
occur during the t + 1-th visit.

Prediction machine learning algorithms
We built a binary prediction model using XGBoost and 
used a grid search with tenfold cross-validation to find 
the best hyperparameters. XGBoost is one of the ensem-
ble decision-tree-based learning algorithms based on a 
gradient descent-boosting process. The core concept of 
gradient boosting decision tree algorithm is that it itera-
tively generates many weak classifiers and combines them 
to obtain a strong classifier, which is implemented by each 
new decision-tree learning from the errors of the previ-
ous decision-tree sequentially [17]. Other advantages 
of XGBoost are tuning hyperparameters, controlling 

Fig. 1  Model development and prediction of a single visit
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overfitting, and parallel computation to reduce process-
ing time [9, 12].

Human-machine competition
Two nephrologists participated in our study. They pre-
dicted whether or not hyperkalemia would occur in the 
t + 1-th clinic visit using the data of the t-th clinic visit. 
We assessed their performance using the testing dataset 
and compared their results with those of XGBoost and 
the logistic regression model.

Statistical analyses
We compared baseline characteristics between training 
and testing datasets. Categorical variables were presented 
as proportions and continuous variables were presented 
as mean values with standard deviations. Numerical vari-
ables of clinical characteristics were compared using Stu-
dent’s t-test. The chi-squared test was used to compare 
differences in categorical variables.

We conducted multivariable logistic regression analy-
ses as a reference model. The overall performance of the 
models in the testing dataset was assessed by calculating 
the area under the receiver operating characteristic curve 
(AUC) and the associated 95% confidence interval (CI). 
The AUC values were compared using the DeLong test. 
The net benefit of the XGBoost model was assessed using 
the decision curve analysis (DCA) and then further using 
clinical impact curves (CIC) to assess the clinical practi-
cability [18, 19]. Sensitivity, specificity, positive predictive 
value (PPV), negative predictive value (NPV), and accu-
racy were calculated to evaluate the model performance. 
Finally, we used the SHAP (SHapley Additive exPlana-
tions) framework to evaluate the impact of features in 
our model [20].

Machine learning algorithms and statistical analyses 
were performed using Python version 3.9.12, scikit-learn 
version 1.0.2, and R version 4.2.0.

Results
General demographics
The 1,526 patients (6,949 visit numbers) in the train-
ing dataset and 439 patients (2,054 visit numbers) in the 
testing dataset met our inclusion criteria (Fig.  2). Base-
line patient characteristics are presented in Table 1. The 
mean patient age was 69.39 years and 49.2% were female. 
Patients in the testing dataset were older and more likely 
to be female, have diabetes, cardiovascular disease, can-
cer, hypertension, hyperlipidemia, and dementia. Patients 
in the testing dataset had a higher proportion of prescrip-
tions for angiotensin receptor blocker and lower propor-
tion of calcium polystyrene sulfonate use. The prevalence 
of hyperkalemia (K > 5.5 mEq/L) during the t + 1-th visit 
was 6.6% in the training dataset and 6.8% in the testing 
dataset.

Development of the XGBoost Model and comparison of 
human-machine competition
The detailed results of the human-machine competition 
are shown in Table 2 and Fig. 3. In detecting hyperkale-
mia, the XGBoost model had the highest AUC, PPV, and 
accuracy in the human-machine competition. In terms 
of the AUC, the performance of the XGBoost model was 
significantly better than that of the two clinicians (0.867, 
95% CI 0.840–0.894, vs. 0.745, 95% CI 0.704–0.789, 
and 0.741, 95% CI 0.700–0.783, respectively); however, 
its performance did not differ significantly from that of 
logistic regression. The net benefit for the XGBoost and 
logistic regression models was better than that of the 
two clinicians based on DCA (Fig. 4a). Figure 4b shows 

Fig. 2  Participant flow diagram. Abbreviations: OPD, outpatient department

 



Page 4 of 8Chang et al. BMC Nephrology          (2023) 24:169 

Table 1  Baseline characteristics in the training and testing datasets
All Training set Testing set P 

value
N (total visit numbers) 9003 6949 2054

Age (year) 69.39 ± 12.99 68.24 ± 13.02 73.26 ± 12.14 < 0.001

Gender (female) 4430 (49.2%) 3229 (46.5%) 1201 (58.5%) < 0.001

Laboratory data

Hemoglobin (g/dL) 10.47 ± 1.75 10.49 ± 1.76 10.38 ± 1.73 0.012

Albumin (g/dL) 3.66 ± 0.42 3.67 ± 0.43 3.65 ± 0.40 0.153

Creatinine (mg/dL) 4.15 ± 2.33 4.24 ± 2.38 3.83 ± 2.13 < 0.001

BUN (mg/dL) 53.17 ± 25.71 54.01 ± 26.14 50.33 ± 24.00 < 0.001

Uric acid (mg/dL) 6.66 ± 1.82 6.66 ± 1.83 6.63 ± 1.76 0.459

Sodium (mEq/L) 137.57 ± 13.02 137.45 ± 3.75 137.98 ± 26.37 0.109

Potassium (mEq/L) 4.52 ± 0.63 4.52 ± 0.63 4.51 ± 0.63 0.544

Calcium (mg/dL) 8.99 ± 0.61 8.98 ± 0.60 9.03 ± 0.63 0.003

Phosphate (mg/dL) 4.27 ± 0.96 4.29 ± 0.97 4.19 ± 0.92 < 0.001

Comorbidity

CAD 1837 (20.4%) 1326 (19.1%) 511 (24.9%) < 0.001

Cancer 1182 (13.1%) 883 (12.7%) 299 (14.6%) 0.032

CHF 4968 (55.2%) 3838 (55.2%) 1130 (55.0%) 0.882

CVA 1379 (15.3%) 949 (13.7%) 430 (20.9%) < 0.001

Dementia 321 (3.6%) 211 (3.0%) 110 (5.4%) < 0.001

Diabetes 4467 (49.6%) 3365 (48.4%) 1102 (53.7%) < 0.001

Dyslipidemia 4947 (54.9%) 3694 (53.2%) 1253 (61.0%) < 0.001

Hypertension 7198 (80.0%) 5504 (79.2%) 1694 (82.5%) 0.001

Medications

ACEi 350 (3.9%) 260 (3.7%) 90 (4.4%) 0.21

ARB 4484 (49.8%) 3388 (48.8%) 1096 (53.4%) < 0.001

CCB 5444 (60.5%) 4168 (60.0%) 1276 (62.1%) 0.086

Beta-blocker 2259 (25.1%) 1736 (25.0%) 523 (25.5%) 0.68

Alpha-/beta-blocker 1020 (11.3%) 775 (11.2%) 245 (11.9%) 0.35

Direct vasodilator 125 (1.4%) 100 (1.4%) 25 (1.2%) 0.517

Potassium-sparing diuretic 176 (2.0%) 143 (2.1%) 33 (1.6%) 0.227

Loop diuretic 2466 (27.4%) 1891 (27.2%) 575 (28.0%) 0.503

Corticosterioid 1046 (11.6%) 816 (11.7%) 230 (11.2%) 0.523

Anticoagulant 163 (1.8%) 133 (1.9%) 30 (1.5%) 0.208

Antiplatelet 2019 (22.4%) 1510 (21.7%) 509 (24.8%) 0.004

ESA 2646 (29.4%) 2063 (29.7%) 583 (28.4%) 0.266

CPS 1105 (12.3%) 889 (12.8%) 216 (10.5%) 0.006

NSAID 274 (3.0%) 188 (2.7%) 86 (4.2%) 0.001

Proton-pump inhibitor 1126 (12.5%) 851 (12.2%) 275 (13.4%) 0.181

Statins 3776 (41.9%) 2886 (41.5%) 890 (43.3%) 0.154

Oral hypoglycemic 2916 (32.4%) 2225 (32.0%) 691 (33.6%) 0.176

Insulin 1522 (16.9%) 1178 (17.0%) 344 (16.7%) 0.854

Xanthine oxidase inhibitor 4588 (51.0%) 3485 (50.2%) 1103 (53.7%) 0.005

Hyperkalemia episode (K > 5.5 mEq/L) in the t + 1-th clinic visit 601 (6.6%) 460 (6.6%) 141 (6.8%) 0.733
Abbreviations: CHF, congestive heart failure; CAD, coronary artery disease; CVA, Cerebrovascular accident; ACEi, Angiotensin-converting enzyme inhibitors; ARB, 
Angiotensin receptor blocker; CCB, Calcium channel blocker; ESA, Erythropoiesis stimulating agent; CPS, Calcium polystyrene sulfonate; NSAID, Nonsteroidal anti-
inflammatory drug
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the XGBoost model also had a better clinical net ben-
efit within a wide range of threshold probabilities and 
impacted patient outcomes.

Important features of the XGBoost model and results of 
multivariable logistic regression
As shown in Fig.  5, the top 5 features of the XGBoost 
model were the potassium level during the t-th visit, 
blood urea nitrogen, calcium polystyrene sulfonate, 

angiotensin receptor blocker use, and hemoglobin, in 
that order. Supplementary Table  3 shows the results of 
univariate and multivariate logistic regression analysis. 
In the multivariate logistic regression analysis, the top 
5 significant variables by P value for hyperkalemia were 
potassium level during the t-th visit (OR, 6.96; 95% CI, 
6.05–8.02; P < 0.001), ARB (OR, 1.40; 95% CI, 1.19–1.64; 
P < 0.001), hemoglobin (odds ratio [OR], 0.92; 95% [CI], 
0.87–0.97; P = 0.001), CHF (OR, 0.8; 95% CI, 0.68–0.95; 
P = 0.008), and calcium polystyrene sulfonate (OR, 1.29; 
95% CI, 1.06–1.56; P = 0.009) (Table 3).

Discussion
In the present study, we developed the XGBoost model 
to predict hyperkalemia in advanced CKD patients using 
data from an outpatient clinic. The XGBoost model dem-
onstrated better performance in comparison with two 
nephrologists; however, the difference in AUC between 
XGBoost and the logistic models was not statistically 
significant.

The prevalence and incidence rates of ESRD in Tai-
wan are the highest in the world [21, 22]. Taiwan’s NHIA 
developed the pre-ESRD program to reduce the magni-
tude of the problem of CKD in 2006; as such, nephrolo-
gists may often need to attend to more than 20 CKD 
patients at a clinic. Clinical decision-making tools could 
help physicians make better decisions in properly caring 
for patients in Taiwan, especially when they face many 
CKD patients at a clinic. Hyperkalemia is a frequent 
complication of CKD due to its limited ability to increase 
potassium excretion [4, 23]. Hyperkalemia is associated 
with not only muscle weakness and fatal arrhythmia but 
also high insurance costs in CKD patients [1, 24]. Thus, 
we investigated whether the XGBoost model improved 
hyperkalemia prediction for CKD patients. The XGBoost 
model performed best in human-machine competition 
using evaluation metrics such as the AUC, accuracy, 
NPV, and PPV in this study. In addition, the XGBoost 
model had a higher bet benefit than the logistic regres-
sion model, which would lead to the better clinical out-
comes [25].

XGBoost is an efficient and flexible gradient boosting 
machine learning algorithm and make prediction well 
in clinical problems. XGBoost achieved a high accuracy 
in predicting COVID-19 severity in US, excellently pre-
dicted kidney outcome in immunoglobulin A nephropa-
thy, and outperformed 2-year dementia risk [11, 26, 
27]. In this study, The XGBoost model performed best. 
However, the differences in evaluation metrics between 
the XGBoost and logistic regression model were not 
statistically significant. Evidence has revealed that logis-
tic regression was not inferior to machine learning for 
clinical prediction models [28]. The possible reason why 
machine learning does not perform better in clinical 

Table 2  Performance comparison between XGBoost model, 
logistic regression model, and nephrologists in the training and 
testing datasets
Training dataset
Model XGBoost LR

AUC (10-fold) 0.827 0.816

95% CI of AUC 0.808–0.845 0.798–
0.835

Sensitivity 0.041 0.013

Specificity 0.996 0.996

PPV 0.441 0.222

NPV 0.936 0.934

ACC 0.933 0.931

Testing dataset

Model XGBoost LR Nephrol-
ogist 1

Ne-
phrol-
ogist 
2

AUC 0.867 0.856 0.745 0.741

95% CI of AUC 0.840–0.894 0.828–
0.885

0.704–
0.789

0.700-
0.783

Sensitivity 0.049 0.014 0.602 0.567

Specificity 0.998 0.998 0.888 0.916

PPV 0.700 0.500 0.285 0.333

NPV 0.934 0.932 0.968 0.966

ACC 0.933 0.931 0.869 0.892
Abbreviations: LR, logistic regression, PPV, positive predicted value; NPV, 
negative predicted value; ACC, accuracy

Fig. 3  Area under operating characteristic (ROC) curves for XGBoost, lo-
gistic regression models, and nephrologists in the testing dataset

 



Page 6 of 8Chang et al. BMC Nephrology          (2023) 24:169 

problems is the fact that clinical predictions have a poor 
signal-to-noise ratio, low-dimensional data, and a small 
sample size [28, 29].

Machine learning and logistic regression usually use 
different variables with divergent ranks to develop pre-
diction models [29]. In addition, machine learning mod-
els are regarded as black-box models so that physicians 
may doubt the results [30]. In this study, we attempted to 

explore if the XGBoost could use reasonable variables to 
develop a prediction model. We used SHAP to visualize 
the five most important features in the XGBoost model 
and compared the results to that of the logistic regres-
sion model. In both models, there were four variables 
that were chosen as high-ranking variables, including 
hemoglobin, the serum potassium value during the t-th 
visit, angiotensin receptor blocker use, and calcium poly-
styrene sulfonate use. A high potassium value during the 
t-th visit and calcium polystyrene sulfonate use implies 
that the baseline potassium level of patients is high. 
Angiotensin receptor blocker use induced hyperkalemia 
due to the decline in the serum aldosterone level and 
decrease in the renal blood flow [31, 32]. Lower hemoglo-
bin levels were associated with hyperkalemia, and pos-
sible risk factors include iron-deficiency anemia, sickle 
cell anemia [33], and gastrointestinal bleeding [34]. From 
the above results, we believe that the XGBoost algorithm 
developed a reliable prediction model using the variables 
that have clinical significance in this study.

We may develop a clinical decision support system 
which has reasonable clinical performance to help physi-
cians identify high-risk patients with hyperkalemia. The 
system would alarm the CKD team that patients are in 
danger of hyperkalemia so that they can prescribe medi-
cations to prevent hyperkalemia and inform patients of 
going back to the clinic for follow-up earlier under the 
care of multidisciplinary teams. Nevertheless, there are 
some limitations to the present study. First, this is a sin-
gle-center study and it may not be able to apply to other 
hospitals directly (absent external validation). Second, 
this dataset did not include vital signs, blood gas data, 
oral sodium bicarbonate, body weights, other nutritional 
parameters, lifestyles, and physical statuses, all of which 
may affect the potassium level. Third, the data of the pre-
ESRD program in Taiwan were collected every 3 months. 

Table 3  The top 5 significant variables by P value in the 
multivariate logistic regression model
Significant variables Odds Ratio (95% 

CI)
P 
value

Potassium level in the t-th visit 6.96 (6.05–8.02) <0.001

ARB 1.40 (1.19–1.64) < 0.001

Hemoglobin 0.92 (0.87–0.97) 0.001

CHF 0.80 (0.68–0.95) 0.008

Calcium polystyrene sulfonate 1.29 (1.06–1.56) 0.009
Abbreviations: ARB, Angiotensin receptor blocker; CHF, congestive heart failure

Fig. 5  Top 5 important features of the XGBoost model by SHAP value

 

Fig. 4  A. Decision curve analysis (DCA) of the XGBoost, logistic regression (LR) models and nephrologists. XGBoost and LR models demonstrated a larger 
net benefit compared to nephrologists for the threshold probabilities. B. Clinical impact curve (CIC) of the XGBoost model
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We are not able to retrieve the data if patients have data 
between 2 clinic visits within 3 months. Finally, there 
were missing values in this dataset; thus, a prospective 
study in which complete data can be collected is recom-
mended to verify our findings.

In conclusion, the XGBoost model had a better predic-
tive performance for hyperkalemia than physicians in an 
outpatient clinic. The results indicate that this model may 
be a decision-making tool to help physicians take better 
care of patients. Further prospective studies are needed 
to validate our findings.
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