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Abstract 

Diabetic kidney disease (DKD) is the most common complication of diabetes mellitus and a leading cause of kidney 
failure worldwide. Despite its prevalence, the mechanisms underlying early kidney damage in DKD remain poorly 
understood. In this study, we used single nucleus RNA-seq to construct gene regulatory networks (GRNs) in the 
kidney cortex of patients with early DKD. By comparing these networks with those of healthy controls, we identify cell 
type-specific changes in genetic regulation associated with diabetic status. The regulon activities of FXR (NR1H4) and 
CREB5 were found to be upregulated in kidney proximal convoluted tubule epithelial cells (PCTs), which were vali-
dated using immunofluorescence staining in kidney biopsies from DKD patients. In vitro experiments using cultured 
HK2 cells showed that FXR and CREB5 protected cells from apoptosis and epithelial–mesenchymal transition. Our 
findings suggest that FXR and CREB5 may be promising targets for early intervention in patients with DKD.
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Introduction
Diabetic kidney disease (DKD) develops in approximately 
40% of diabetic patients and has become the most com-
mon cause of chronic kidney disease worldwide [1]. Early 
intervention is critical in preventing progression toward 
kidney failure. DKD manifests early pathological changes 
in both glomerulus and tubulointerstitium, but the reg-
ulatory mechanism remains poorly understood. Single 
cell/nucleus transcriptomics of the kidney has emerged 

in recent years, which has provided an opportunity to 
investigate the cell type specific mechanisms of kidney 
disease.

We used the single nucleus RNA-seq data and Single-
Cell rEgulatory Network Inference and Clustering (SCE-
NIC) method to construct a gene regulatory network 
in the kidneys of patients with early DKD. SCENIC is a 
powerful tool for simultaneous reconstruction of gene 
regulatory networks and identifying cell states [2]. It 
incorporates transcription factor information into gene 
coexpression modules and quantifies the activity of sub-
networks in each cell, allowing for the comparison of 
cell-specific networks among different cell types and cell 
states.

We identified prominent activated regulons in proxi-
mal tubular epithelial cells (PCTs), collecting duct princi-
pal cells (CD-PCs) and glomerular endothelial cells. Since 
PCTs play a crucial role in the pathogenesis and progres-
sion of DKD [3, 4], we focused on farnesoid X receptor 
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(FXR) and cAMP response element-binding protein 5 
(CREB5), which are specifically activated in diabetic 
PCTs. We validated their expression in PCTs of early 
DKD patients and determined their role in apoptosis and 
epithelial–mesenchymal transition (EMT) in the human 
PCT cell line HK2.

Materials and methods
Single nucleus RNA‑seq data preprocessing
We used the single nucleus RNA-seq dataset GSE131882 
[5] from the NCBI GEO database. This dataset includes 
3 early human diabetic kidney samples and 3 controls. 
Quality control (QC) filters were applied using the fol-
lowing parameters: (1) genes detected in < 3 cells were 
excluded; (2) cells with < 500 or > 10,000 genes were 
excluded; (3) cells with > 15% mitochondrial RNA reads 
were excluded; (4) mitochondrial RNAs were excluded; 
and (5) 243 doublet artifacts were removed with scD-
blFinder [6]. After the QC filters, a total of 21,785 cells 
and 36,480 genes were retained. Seurat v4.0.1 was used 
for single nucleus data analysis [7]: The raw read counts 
were normalized per cell using the "NormalizeData" 
function by dividing the total number of reads in that 
cell, then multiplying by a scale factor of 10,000 and tak-
ing natural log transformed values. We selected 2000 
highly variable genes based on the average expression 
and dispersion per gene using the "FindVariableFeatures" 
function with parameters. Then, we selected features that 
are repeatedly variable across datasets, identified anchors 
using the "FindIntegrationAnchors" function, and used 
these anchors to integrate the 6 samples together with 
the "IntegrateData" function.

Unsupervised clustering and cell type identification
After data scaling, principal component analysis was 
performed on the highly variable genes using the Run-
PCA function. The top 30 principal components were 
chosen for cell clustering, and the Uniform Manifold 
Approximation and Projection (UMAP) plot is shown. 
Cells were clustered using the "FindClusters" function 
(Leiden algorithm) with resolution = 0.5. Each cluster 
was screened for marker genes by differential expression 
analysis (DEA) between cells inside and outside the clus-
ter using the "FindAllMarkers" function with parameters 
min.pct = 0.25 (genes expressed in at least 25% of cells 
either inside or outside of a cluster) and test.use = “wil-
cox” (Wilcoxon rank sum test), and only positive makers 
were retained. Compared with canonic cell type mark-
ers in published papers [7, 8], the 22 cell clusters were 
identified to 15 cell types. Differentially expressed (DE) 
genes in each type of cell between the diabetic and con-
trol patients were chosen satisfying the following crite-
ria: (1) adjusted p-value < 0.05; (2) log fold change > 0.25; 
and (3) the percentage of cells that expressed the gene in 
either of the two populations > 25%.

Gene regulatory network construction
SCENIC analysis (pyscenic version 0.10.3) was performed 
on all single cells to build a transcriptional regulatory net-
work [9]. First, coexpression modules are inferred using a 
regression per-target approach (GRNBoost2). Next, the 
indirect targets are pruned from these modules using cis-
regulatory motif discovery (cisTarget). Finally, the activ-
ity of these regulons is quantified via an enrichment score 
for their target genes (AUCell). The differentially activated 

Table 1 Cell types and their numbers

Index Abbr Cell type Cell number

1 PODO Podocytes 630

2 MES Mesangial cells 238

3 ENDO1 Glomerular endothelial cells 1033

4 ENDO2 Endothelial cells type 2 31

5 PEC Parietal epithelial cells 718

6 IMM Immune cells 336

7 PCT1 Proximal convoluted tubule epithelial cells type 1 4404

8 PCT2 Proximal convoluted tubule epithelial cells type 2 1039

9 TAL Thick ascending limb cells 3687

10 CNT Connecting tubule cells 1289

11 DCT Distal convoluted tubule cells 2688

12 CD-PC Collecting duct principal cells 568

13 CD-ICA Collecting duct intercalated cells type A 1667

14 CD-ICB Collecting duct intercalated cells type B 568

15 INT Interstitial cells 250
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regulations were calculated using the Wilcoxon rank 
sum test and filtered using the following parameters: (1) 
adjusted p value < 0.01; (2) difference in activity score > 0.02. 
Only regulons specifically activated in at least one cell type 
and significantly upregulated or downregulated in early 
diabetic kidneys were involved in further analysis.

Patient enrollment and immunofluorescence staining
All DKD cases were diagnosed based on kidney biopsies 
performed at the National Clinical Research Center of 
Kidney Diseases, Medical School of Nanjing University. 
Kidney biopsies from 5 DKD patients and 6 MCD patients, 
were obtained from this center’s kidney biorepository. 
The frozen sections were prepared by cutting the tissue 
into 5  μm sections with a cryostat (Leica, CM1950) and 
kept at –80  °C until use. For staining, the sections were 

Fig. 1 Highly variable genes and SCENIC UMAP plots with cell type classifications. A UMAP visualization of cells using the same principal 
components as input to the clustering analysis; B Dot plot of selected marker genes within each cell type. The size of the dot encodes the 
percentage of cells within a cell type, while the color encodes the average expression level across all cells within a cell type; C UMAP visualization 
of cells using the SCENIC regulon activity matrix. PODO, podocytes; MES, mesangial cells; ENDO1, glomerular endothelial cells; ENDO2, endothelia 
cells type 2; PEC, parietal epithelial cells; IMM, immune cells; PCT1, proximal tubule epithelial cells type 1; PCT2, proximal tubule epithelial cells type 
2; TAL, thick ascending limb cells; CNT, connecting tubule cells; DCT, distal convoluted tubule cells; CD-PC, collecting duct principal cells; CD-ICA, 
collecting duct intercalated cells type A; CD-ICB, collecting duct intercalated cells type B; INT, interstitial cells
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washed 3 times in PBS at room temperature followed by 
blocking buffer (5% BSA) for 30  min at room tempera-
ture. Primary antibodies for FXR (Proteintech, 25,055–1-
AP) and CREB5(Bioss, bs-14053R) were diluted in PBS 
and applied to the section followed by incubation at 4 °C 
overnight. The next day, the slides were washed 3 times for 
10 min with TBST, and then a secondary antibody solution 
was applied and incubated for 1  h at room temperature, 
washed 3 times for 10  min with TBST. Then slides were 
stained with DAPI for 10  min at room temperature and 
washed 3 times for 10 min with TBST and briefly washed 
with water before mounting (Dako, S3023). The staining 
images were taken using identical imaging parameters 
with a confocal laser microscope (Zeiss). Staining inten-
sities and the distribution patterns were compared under 
the same conditions.

In vitro study
HK2 cells, a cell line derived from human proximal tubu-
lar cells, were purchased from the American Type Cul-
ture Collection (ATCC®CRL-2190™). The cells were 
cultured in DMEM containing 10% fetal bovine serum 
and 1% penicillin–streptomycin (100 U/ml of each) 
(Biosharp, BL505A) and grown at 37 °C. After subcultur-
ing and growth to 50–60% confluence, siRNA targeting 
FXR or CREB5 was transferred into HK2 cells by Lipo-
fectamine® RNAiMAX reagent according to the manu-
facturer’s instructions. The medium was changed after 
12  h, and the cells were treated with AGE (Bioss, bs-
1158P) or palmitic acids (Kunchuang Biotech, KT002). 
All groups of cells were harvested 24 or 36 h after trans-
fection or at the indicated time. The siRNA sequences of 
FXR and CREB5 are listed in Supplemental Table 1. For 

Fig. 2 RSS panel plot with all cell types. The top 5 regulons from each cell type are marked in red and annotated. PODO, podocytes; MES, mesangial 
cells; ENDO1, glomerular endothelial cells; ENDO2, endothelia cells type 2; PEC, parietal epithelial cells; IMM, immune cells; PCT1, proximal tubule 
epithelial cells type 1; PCT2, proximal tubule epithelial cells type 2; TAL, thick ascending limb cells; CNT, connecting tubule cells; DCT, distal 
convoluted tubule cells; CD-PC, collecting duct principal cells; CD-ICA, collecting duct intercalated cells type A; CD-ICB, collecting duct intercalated 
cells type B; INT, interstitial cells
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western blotting, HK2 cells in 6-well plates were washed 
with cold PBS and then lysed with 150 μl of RIPA buffer 
per well  (BOSTER, AR0102-100) containing proteinase 
inhibitor cocktail (Roche, 04693116001) and phosphatase 
inhibitors (Roche, 04906837001). The antibodies used for 
western blotting included FXR (proteintech, 25055-1-
AP), CREB5 (Bioss, bs-14053R), cleaved  caspase-3 (Cell 
signaling, 05/2016), cleaved PARP1 (Proteintech, 66520-
1-Ig), fibronectin (Proteintech, 66042-1-Ig), vimentin 
(Proteintech,10366-1-AP), E-cadherin (Proteintech, 

20874-1-AP), GAPDH (Proteintech, 60004-1-Ig), and 
beta-tubulin (Bioworld, AP0064).

Statistical analysis
The obtained data from each experiment were expressed 
as the mean ± SEM. Statistical comparisons between the 
groups were performed using Student’s t-test, and statis-
tical significance was set at p < 0.05.

Fig. 3 A The regulon activity changes in kidney proximal convoluted tubule epithelial cell type 1 in diabetic patients; PCT1, proximal convoluted 
tubule epithelial cell type 1; B The regulon activities of FXR (NR1H4) across kidney cell types; C The regulon activities of CREB5 across kidney cell 
types; D mRNA expression of FXR and CREB5 across kidney cell types in diabetic and control conditions; E Gene regulatory network of the TFs FXR 
(NR1H4) and CREB5 and their target genes. The pink color of a shade indicates that the gene was upregulated in diabetic PCT cells, and the intensity 
of shade denotes the relative change across genes
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Results
Cell type identification
Single nucleus transcriptome data GSE131882 from 
human kidney cortex samples (including 3 early DKD 
samples and 3 healthy control samples) were down-
loaded from the NCBI GEO database. After data clean-
ing, quality control, exclusion of mitochondrial genes, 
and doublet removal, a total of 21,785 cells and 36,480 
genes were retained (Materials and Methods). A total of 
21,785 cells were divided into 22 clusters using the Lei-
den algorithm [10]. By canonical cell type markers, the 
22 cell clusters were identified as 15 cell types (Table 1, 
Fig. 1A). By sorting the fold changes of genes expressed 
inside and outside the cell types in descending order, the 
top four differentially expressed (DE) genes were selected 
as marker genes for each cell type (Fig. 1B).

Construction of gene regulatory networks
To construct the gene regulatory networks for all major 
kidney cell types, we applied the SCENIC pipeline. The 
main outcomes include a regulon activity matrix, in which 
the columns represent the cells, and the rows represent the 
regulons (each representing a TF along with a set of coex-
pressed and motif significantly enriched target genes). The 
UMAP plot of the regulon activity matrix (Fig. 1C) shows 
that the different types of kidney cells were well separated, 
and the distribution of cell types was in accordance with 
the anatomic location. To identify critical regulators for 
each cell type, we evaluated each regulon’s activities asso-
ciated with all 15 cell types, which were defined as regulon 
specificity scores (RSSs) [11, 12]. The top five regulators 
for the maintenance of cell identity are shown in Fig. 2.

Disease related regulons
We further compared the difference in regulon activ-
ity values in each type of cell between the diabetic and 
control conditions. This is important because the differ-
entially activated TFs and their target genes might play 
important roles in DKD. The regulon activities of FXR 
and CREB5 were increased in the proximal tubule epi-
thelial cells (PCT1 and PCT2) of DKD patients compared 
with the control group (Fig. 3A-C, Supplemental Fig. 1). 
Consistently, the mRNA levels of FXR and CREB5 were 
relatively high in the PCT cells and upregulated in the 
diabetic group (Fig. 3D). The gene regulatory network of 
FXR and CREB5 is shown in Fig. 3E. The regulon activi-
ties of CREM and FOSL2 were upregulated in the dia-
betic CD-PC cells compared with the control group 
(Supplemental Fig.  2A-C), and the mRNA expressions 
of CREM and FOSL2 were also upregulated accordingly 
(Supplemental Fig.  2D). The gene regulatory network of 
CREM and FOSL2 and their target genes are shown in 
Supplemental Fig.  2E. The regulon activity and mRNA 

expression of TCF4 were specifically upregulated in the 
diabetic endothelial cells compared with the control 
group (Supplemental Fig.  3A-B), and the mRNA levels 
of TCF4 were relatively high in the endothelial cells and 
upregulated in the diabetic group (Supplemental Fig. 3C). 
The gene regulatory network of TCF4 is shown in Supple-
mental Fig. 3D.

Immunostaining confirmed increased proteins of FXR 
and CREB5 in PCT cells of diabetic patients
To validate the results of single nucleus RNA-seq and 
bioinformatic analysis in PCT cells, immunofluores-
cence staining was performed to examine the protein 
levels of FXR and CREB5 in kidney biopsies from 5 
DKD patients and 6 MCD patients. MCD patients do 
not manifest overt tubular lesions and therefore serve 
as controls for the expression of FXR and CREB5. Com-
pared with MCD samples, FXR staining intensity was 
markedly increased and exhibited nuclear accumu-
lation in the PCT cells of the DKD samples (Fig.  4A). 
CREB5 staining was also increased and accumulated in 
the nuclei of PCT cells in the DKD samples (Fig. 4B).

Fig. 4 Representative images of FXR (A) and CREB5 
(B) immunostaining (green) in the cortex region of the kidney 
from DKD and MCD patients. The white arrows denote the nuclear 
localization of FXR or CREB5



Page 7 of 11Shi et al. BMC Nephrology          (2023) 24:180  

FXR and CREB5 protect PCT cells from injury in vitro
To investigate the functional role of increased FXR and 
CREB5 in PCT cell injury in diabetes, we performed a 
study in cultured HK2 cells, a cell line derived from human 
proximal tubular cells. We found that in the treatment with 
palmitic acid (PA) and advanced glycation end products 
(AGEs), which are commonly used in vitro models of DKD, 
the protein levels of FXR and CREB5 were significantly 
upregulated in the HK2 cells (Supplemental Fig.  4), sug-
gesting that these two models are suitable for our purposes.

The efficiency of siFXR (Fig.  5A) and siCREB5 
(Fig.  6A) was tested and found to achieve ~ 80% 
and ~ 50% reduction of corresponding proteins in 
HK2 cells 48 h after transfection. In HK2 cells treated 
with AGEs, knockdown of FXR (Fig.  5B) or CREB5 
(Fig.  6B) markedly increased AGE-induced caspase-3 
cleavage. Consistently, the substrate of activated cas-
pase-3, PARP1, was accordingly cleaved particularly in 
the AGE-treated cells that were pretreated with siFXR 
(Fig. 5B) or siCREB5 (Fig. 6B), suggesting that FXR and 

CREB5 protect HK2 cells against AGE-induced apop-
tosis. In Fig. 5B, we used FXR agonist GW4064 to test 
whether increasing FXR activity would further reduce 
AGE-induced caspase-3 activation (compared with Scr 
control), but we did not see this effect, suggesting that 
FXR is required but not sufficient to prevent AGEs-
induced tubular cell apoptosis, at least, under the par-
ticular condition.

Since tubular cell injury is characterized by EMT, 
we wondered whether FXR and CREB5 are involved 
in EMT in HK2 cells. We performed immunoblot-
ting to examine the change of EMT markers. As 
shown in Fig.  7, AGE treatment induced upregulation 
of fibronectin and vimentin while downregulation of 
E-cadherin in the HK2 cells (Fig.  7A, B), indicating 
that EMT was induced by AGE. In the cells treated 
with siFXR or siCREB5, the change of the fibronectin, 
vimentin, and E-cadherin became greater (Fig. 7A, B), 
demonstrating that FXR and CREB5 functioned to pre-
vent EMT in the HK2 cells treated with AGE.

Fig. 5 Knockdown of FXR sensitized HK2 cells to AGE-induced apoptosis. A Immunoblotting showed that siFXR effectively knocked down FXR in 
HK2 cells. B FXR knockdown aggravated AGE-induced activation of caspase-3 and PARP-1, as shown by an increase in their cleaved forms. All the 
results represent the data from three independent experiments. *p < 0.05; **p < 0.01; ##p < 0.01, statistical significance
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Discussion
Previous beliefs held that DKD was primarily a glomeru-
lar disease, with kidney tubular injury being a secondary 
effect of the glomerular lesions. However, recent evi-
dence suggests that proximal tubular injury is an early 
stage of DKD and may even play a role in promoting its 
progression [13]. Proximal tubular injury is characterized 
by hypoxia, mitochondrial dysfunction, abnormalities in 
fatty acid metabolism, impaired autophagy, inflamma-
tion, and EMT [14].

Through the construction of gene regulatory networks 
using single nucleus transcriptomes from kidney cortex 
samples of patients with early DKD and comparison of 
regulon activities between the DKD group and the con-
trol group, we discovered significant activation of FXR 
and CREB5 regulons in proximal tubule epithelial cells of 
diabetic patients.

FXR expression is mainly found in liver and intestine 
and is involved in the regulation of bile acid homeostasis, 
cholesterol, and carbohydrate metabolism [15-18]. In the 
kidney, FXR is expressed at moderate levels in proximal 

tubular epithelial cells. In kidney diseases such as DKD, 
FXR has been shown to protect tubular cells through its 
anti-inflammatory, antifibrotic, antilipogenic, and anti-
oxidant effects [19-22].

CREB proteins belong to a large gene family that con-
sists of 6 subfamilies (CREB, B-ATF, ATF2, ATF3, ATF4 
and ATF6) [23]. The CREB/CREB1 subfamily has been 
extensively studied. It is widely expressed and plays a 
crucial role in numerous important cellular signal-
ing pathways, including cellular metabolism, cell cycle 
progression, survival, and responses to extracellular 
stimuli [24-28]. CREB5, a member of the ATF2 subfam-
ily, has not been studied in the kidney except for one 
report indicating its potential involvement in mediating 
fibronectin deposition in kidney fibrosis [29].

The activation of FXR and CREB5 in kidney PCT cells 
from DKD patients was further validated with immu-
nofluorescence staining. This study is the first to show 
the specific activation of CREB5 in proximal tubular 
cells in early DKD. In cultured HK2 cells, we confirmed 
the protective role of FXR by demonstrating that FXR 

Fig. 6 Knockdown of CREB5 sensitized HK2 cells to AGE-induced apoptosis. A Immunoblotting showed that siCREB5 significantly reduced CREB5 
protein in HK2 cells. B CREB5 knockdown markedly enhanced the AGE-induced activation of caspase-3 and PARP1. All the results represent the data 
from three independent experiments. *p < 0.05; **p < 0.01; #p < 0.05, statistical significance
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knockdown aggravated AGE-induced apoptosis. We 
also suggest that the activation of CREB5 in response 
to diabetic conditions serves as a protective mechanism 
in proximal tubular cells, with an antiapoptotic effect, 
similar to CREB1.

We also investigated the effect of FXR and CREB5 on 
EMT in HK2 cells treated with AGEs. EMT has been 
observed in tubular epithelial cells in various kidney 
diseases and is thought to contribute to kidney fibro-
sis through the generation of fibroblasts from tubular 
cells [30]. EMT is a survival strategy employed by can-
cer cells to avoid cell death, including apoptosis [31]. 
TGF-beta-induced apoptosis and EMT in tubular cells 
are two distinct pathways [32]. We found that FXR and 
CREB5 ameliorated EMT in HK2 cells treated with 
AGEs, indicating that the anti-EMT effect is an addi-
tional mechanism underlying the protective effect of 
FXR and CREB5 on tubular epithelial cells in DKD.

Hyperglycemia is the primary cause of DN, but it alone 
is not sufficient to cause DN because more than half of 
diabetic patients do not develop diabetic nephropathy 
and some others whose blood glucose is well controlled 
still have worsening DN, demonstrating that some fac-
tors that may be associated with genetic susceptibility to 
DN are also required for DN development. In the early 
stage of DN, AGEs and fatty acids, which are known to 
be harmful to tubular and other cells in the kidney, are 
already elevated as the consequence of hyperglycemia. 

In the present study, we observed that high glucose is 
not able to induce FXR and CREB5 in HK2 cells (Sup-
plemental Fig.  5) in contrast with AGEs and PA, sug-
gesting that hyperglycemia, AGEs, and fatty acids have 
distinct impacts on kidney cells in early DN. There-
fore, the role of hyperglycemia in the early stage of DN 
includes not only the direct damage on kidney cells but 
also the induction of AGEs, fatty acids, RAS, hemody-
namic change, etc., all of which act concertedly to pro-
mote DN development.

In conclusion, our study identified several cell type-
specific regulons in kidney tissue from patients with 
early-stage DKD. Some of these regulons, such as FXR 
and CREB5 in PCT cells, may offer potential targets for 
early intervention in DKD.
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