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Abstract 

Background Diabetes mellitus (DM), either preexisting or developing after transplantation, remains a crucial clinical 
problem in kidney transplantation. To obtain insights into the molecular mechanisms underlying PTDM development 
and early glomerular damage before the development of histologically visible diabetic kidney disease, we compara‑
tively analysed the proteome of histologically normal glomeruli from patients with PTDM and normoglycaemic (NG) 
transplant recipients. Moreover, to assess specificities inherent in PTDM, we also comparatively evaluated glomerular 
proteomes from transplant recipients with preexisting type 2 DM (T2DM).

Methods Protocol biopsies were obtained from adult NG, PTDM and T2DM patients one year after kidney transplan‑
tation. Biopsies were formalin‑fixed and embedded in paraffin, and glomerular cross‑sections were microdissected. 
A total of 4 NG, 7 PTDM and 6 T2DM kidney biopsies were used for the analysis. The proteome was determined 
by liquid chromatography‑tandem mass spectrometry. Relative differences in protein abundance and significantly 
dysregulated pathways were analysed.

Results Proteins involved in cell adhesion, immune response, leukocyte transendothelial filtration, and cell localiza‑
tion and organization were less abundant in glomeruli from PTDM patients than in those from NG patients, and pro‑
teins associated with supramolecular fibre organization and protein‑containing complex binding were more abun‑
dant in PTDM patients. Overall, proteins related to adherens and tight junctions and those related to the immune 
system, including leukocyte transendothelial migration, were more abundant in NG patients than in transplanted 
patients with DM, irrespective of the timing of its development. However, proteins included in cell‒cell junc‑
tions and adhesion, insulin resistance, and vesicle‑mediated transport were all less abundant in PTDM patients 
than in T2DM patients.

Conclusions The glomerular proteome profile differentiates PTDM from NG and T2DM, suggesting specific pathoge‑
netic mechanisms. Further studies are warranted to validate these results, potentially leading to an improved under‑
standing of PTDM kidney transplant pathophysiology and to the identification of novel biomarkers.
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Background
Diabetes mellitus (DM) is a major cause of end-stage 
renal disease (ESRD) [1]. Treatment options for patients 
with ESRD include dialysis and transplantation, the lat-
ter being superior in terms of patient survival, quality 
of life, and economic impact [2].

Chronic kidney disease (CKD) affects 20–40% of 
patients with DM [3]. Although its pathophysiology is 
not fully understood, diabetic kidney disease (DKD) is 
thought to originate from a glucose-driven increase in 
glomerular filtration and tubular reabsorption leading 
to an overload of nephron components and their sub-
sequent injury. Posttransplantation diabetes mellitus 
(PTDM) is a common complication in renal transplant 
recipients that promotes the subsequent development 
of other diseases, such as cardiovascular disorders and 
CKD. Risk factors for PTDM include the use of immu-
nosuppressive drugs, posttransplant viral infections 
and genetic predispositions of the kidney recipient [4], 
in addition to the commonly known risk factors for 
type 2 diabetes (T2DM) [5]. Approximately 60% of non-
diabetic patients present hyperglycaemia in the imme-
diate posttransplant phase [6], and 16% to 37% will 
develop PTDM [7, 8].

Typical histopathological findings in DKD include 
thickening of the glomerular basement membrane, 
mesangial matrix expansion, nodular glomerulosclero-
sis, and arteriolar hyalinosis [9]. DM developing after 
transplantation displays similar features but is also 
frequently associated with allograft rejection-induced 
tubulointerstitial and vascular alterations, as well as 
histological features related to viral infection or immu-
nosuppressive drug-related toxicity [10].

DKD is similarly detectable in patients with recur-
rent T2DM and PTDM, with an incidence of 25% and 
30%, respectively, within 6 years following transplanta-
tion [11]. However, the emergence of specific additional 
diabetic complications, occurring after ~ 1.8  years, is 
accelerated in PTDM patients compared to nontrans-
planted T2DM patients [12].

These differences suggest that at least partially dis-
similar mechanisms might be involved in the patho-
physiology of recurrent kidney injury in T2DM patients 
following transplantation and in PTDM patients. 
Indeed, PTDM and its complications are increasingly 
recognized as a unique form of diabetes, and evidence-
based treatment regimens currently used in patients 
with T2DM are not directly transferable to patients 
with PTDM [13, 14].

To date, proteomic studies have mainly been per-
formed on blood and/or urine samples [15]. However, 
tissue biopsies, while more difficult to obtain, might 
provide valuable data that improves the understanding 

of specific tissue characteristics in normal and patho-
logical states [16].

In this pilot study, we isolated glomeruli from forma-
lin-fixed paraffin-embedded (FFPE) kidney biopsies by 
laser caption microdissection (LCM) and performed 
proteomic analysis. By comparing the proteomes of 
histologically normal glomeruli from normoglycaemic 
(NG), T2DM, and PTDM patients one year after kidney 
transplantation, we sought to gain new insights into 
the molecular mechanisms underlying PTDM develop-
ment and early glomerular damage prior to the devel-
opment of histologically visible diabetic kidney disease. 
Similarities and differences detectable in NG, PTDM 
and T2DM glomerular protein profiles could also be 
addressed by data integration, network analysis and 
immunohistochemistry.

To the best of our knowledge, this is the first time that 
proteomics from microdissected glomeruli has been 
investigated in renal allografts of patients with DM.

Methods
Study design and patients
Adult renal transplant recipients underwent an in-
depth investigation, including protocol biopsies, an 
oral glucose tolerance test (OGTT), and a HbA1C test, 
8–10  weeks and one year after transplantation at Rik-
shopitalet, Oslo University Hospital, Oslo, Norway. 
Kidney biopsy samples were collected between 2014 
and 2017. Data were stored in a local registry, and 
biopsies were stored in a diagnostic biobank. Patients 
signed a written informed consent form. The study 
was approved by the regional ethics committee of the 
South-Eastern Norway Regional Health Authority 
(REK sør-øst: 2016/912).

Adult patients with a valid glucose metabolism status 
and a protocol biopsy at 1  year after transplantation, 
stable renal function with < 20% deviation in serum 
creatinine within the last two months, and immuno-
suppressive therapy stable for more than three months 
before protocol biopsy at 1-year examination were 
selected. Immunosuppressive treatment was similar 
in all groups (Table  1). Insulin and other antidiabetics 
were administered to patients with PTDM and T2DM.

Exclusion criteria included an estimated glomerular 
filtration rate (eGFR) < 30 mL/min/1.73  m2 and any clini-
cal and/or histological manifestations of graft rejection. 
Ultrasound-guided renal biopsies were obtained using 
an 18G needle. Tissues were formalin-fixed and paraffin-
embedded (FFPE) for conservation and further analyses.

Three different groups of patients were analysed: 1) 
patients with PTDM (n = 8), 2) patients with T2DM 
(n = 8), and 3) patients with NG (n = 8). To exclude 
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confounding pathologies, glomeruli that fulfilled one or 
more of the following criteria were excluded from fur-
ther analyses: global sclerosis, ischaemia, and periglo-
merular inflammation. In the case of segmental sclerosis, 
only sections that appeared to be healthy were microdis-
sected. Interstitial fibrosis and tubular atrophy in allo-
graft biopsies were classified using the Banff classification 
[17]. All samples showed less than 25% interstitial fibrosis 
and/or tubular atrophy. The total number of glomeruli 
per sample and the percentages of sclerotic glomeruli and 
glomeruli with glomerulonephritis, interstitial fibrosis 
and tubular atrophy are described in Table S1.

Sample preparation and laser capture microdissection
Ten-micrometre-thick FFPE sections were deparaffi-
nized, rehydrated, stained, and scanned with ScanScope 
XT Aperio. Selected FFPE sections were mounted on 
preirradiated polyethylene naphthalate slides (Mem-
braneSlide 1.0 PEN, Carl Zeiss MicroImaging GmbH), 
and a total area of approximately 2 million μm2 dissected 
glomeruli for each sample tissue was isolated using a 
PALM Microbeam System (P.A.L. M, Bernried, Ger-
many) and pressure catapulted into a tube cap (Adhe-
siveCap 500 clear, Zeiss). Microdissected FFPE glomeruli 
were stored at − 20 °C until peptide extraction. Then, they 
were resuspended in 10 μl of lysis buffer (0.1 M Tris pH 8, 
0.1 M dithiothreitol [DTT], 4% sodium dodecyl sulfate). 
A filter-aided sample preparation (FASP) protocol based 
on trypsin digestion was used to extract the proteins [18]. 
Digested peptides were eluted and desalted using Oasis 
HLB µElution plates (Waters, Milford, MA), dried by a 
vacuum centrifuge, and rehydrated in 2% acetonitrile 
(ACN) and 0.1% formic acid (FA). NanoLC-ESI-LTQ 
Orbitrap Elite was used for tandem mass spectrometry.

Immunohistochemistry
Antibodies against the adhesion-related proteins MLLT4 
(RRID:AB_10599291) and CTNND1 (RRID:AB_1846068) 
and the enzyme LHPP (RRID:AB_1079250) from Atlas 
Antibodies (Sigma‒Aldrich) were selected for immu-
nohistochemical verification. These antibodies have 
been validated as described in the Human Protein Atlas 

(https:// www. prote inatl as. org/). Immunohistochemistry 
was performed in accordance with the manufacturers’ 
instructions (Table S2). All immunoreactions were visu-
alized using 3,3’-diaminobenzidine (DAB, Dako), coun-
terstained with haematoxylin (Dako), dehydrated, and 
placed under a cover-slip using a nonaqueous mounting 
medium.

Stained slides were scanned in a ScanScope™ system 
(Aperio, Vista, California, USA) at the Department of 
Pathology at Haukeland University Hospital in Bergen, 
Norway. The generated digital slides were viewed in an 
Imagescope 12 (Leica Biosystems, Nussloch, Germany). 
Glomeruli were annotated in each slide, and quantifi-
cation of IHC staining was carried out using the col-
our deconvolution algorithm version 9.1 (Aperio) after 
adjusting for the default parameters for each staining. 
Visualization data was obtained by dividing the number 
of strong positives by the total number of pixels. Data 
are presented as box plot graphs, and the Mann‒Whit-
ney test was used to assess statistical significance. A 
p value ≤ 0.05 was considered statistically significant. 
Graphs and statistics were generated using SPSS Statis-
tics 27 (IBM).

Statistics and computational analysis
Raw mass spectrometer files were analysed using Max-
Quant v 1.6.1.0 [19]. MS/MS spectra were searched in 
the Andromeda search engine against the forwards and 
reverse Human UniProt database (Swissprot reviewed 
canonical and isoforms 23.04.18). Label-free quantifica-
tion was used to identify the relative amount of proteins 
in each sample. Proteome analysis was performed using 
Perseus (v. 1.5.5.3, RRID:SCR_015753). Briefly, data were 
filtered and transformed (log2 (x)). Rows with < 70% 
valid values in at least one group were excluded. Impu-
tation of missing data was performed by random num-
bers drawn from a normal distribution with a width of 
0.3 and downshift of 1.8 applied to each expression col-
umn separately, and data were normalized using Z score. 
Data are available via ProteomeXchange with identifier  
PXD042188 [20].

SPSS (IBM SPSS Statistics v.25; RRID:SCR_019096) was 
used for general statistics. Proteins were compared to the 
complete human proteome to determine overrepresented 
Gene Ontology (GO) categories. The enrichment analy-
sis was performed using STRING-db (v. 11.5) [21, 22]. 
GO, the ShinyGO v. 0.76 (http:// bioin forma tics. sdsta te. 
edu/ go/), [23, 24] and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) [25] enrichment analyses were used for 
pathway analysis.

The t test was used for data comparisons, and p val-
ues ≤ 0.05 were considered statistically significant.

Table 1 Summary of patients´ treatment

PTDM T2DM NG

Corticosteroids 7/7 (100%) 6/6 (100%) 4/4 (100%)

Mycophenolate 7/7 (100%) 6/6 (100%) 4/4 (100%)

Tacrolimus 7/7 (100%) 6/6 (100%) 4/4 (100%)

Insulin 0/8 (0%) 6/6 (100%) 0/4 (0%)

Other antidiabetics 3/7 (43%) 1/6 (16,6%) 0/4 (0%)

Antihypertensive drugs 6/7 (86%) 6/6 (100%) 4/4 (100%)

https://www.proteinatlas.org/
http://bioinformatics.sdstate.edu/go/)
http://bioinformatics.sdstate.edu/go/)
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Results
Sample selection and analysis
Proteomic analysis was performed on glomeruli iso-
lated from FFPE kidney biopsies sampled one year 
after kidney transplantation. Three groups of adult 
patients were studied: NG patients (n = 8), patients 
with PTDM (n = 8), and patients with pretransplanta-
tion T2DM (n = 8). Following proteomic analysis, two 
samples from the T2DM group, one from the PTDM 
group and four from the NG group were excluded 
because the number of proteins identified was sub-
stantially lower (< 300) than that from the other sam-
ples, or due to paucity of biopsy material and/or not 
normally distributed intensity relative to the base peak. 
Therefore, the final number of samples included in the 
analysis was n = 4 for NG, n = 6 for T2DM and n = 7 
for PTDM. The clinical characteristics of the three 
groups of patients included in the final analyses are 
summarized in Table 2. Patients did not present graft 
dysfunction or micro- or macrovascular complications 
at the time of the biopsy. While T2DM patients were 
diagnosed with DM between 2 and 31 years before the 
surgery (average: 16.8  years), in the PTDM subgroup, 
DM was diagnosed within the first 8 weeks after trans-
plantation in 4 patients and between 8 weeks and one 
year in 3. For NG patients, follow-up 4–5  years after 
biopsy indicated that none of them had developed DM. 
PTDM and NG patients did not present proteinuria 
at the time of biopsy, whereas this was present in 2 
T2DM patients.

Glomerular proteomic profiling and identification 
of differentially abundant proteins
A total of 1329 proteins were detected in the glomerular 
tissue samples. Of these proteins, 1237 could be identi-
fied by at least one unique peptide sequence and were 
used for further analyses. A full list of the identified pro-
teins is provided in Supplementary Table 3.

The molecular mass of the detected proteins ranged 
between 5 and 670  kDa. Initial exploratory assessment 
of the dataset was performed using a two-dimensional 
principal component analysis (PCA) based on ANOVA 
significantly differentially regulated proteins (n = 90). 
A clear separation between the three groups under 
investigation was evident when the samples were plot-
ted on these two axes, with PTDM samples located 
slightly closer to the NG group than the T2DM samples 
(Fig.  1A). These data suggest that variations in the glo-
merular proteomes may allow discrimination among 
these three different groups.

An initial proteome analysis showed that 144, 126 
and 60 glomerular proteins were differentially abun-
dant in NG compared to PTDM, in NG compared to 
T2DM, and in PTDM compared to T2DM, respectively. 
The numbers of shared differentially abundant proteins 
are summarized in Fig.  1B and Table S4. Volcano plots 
comparatively depicting the differential abundance of 
specific proteins in defined glomerular specimens are 
presented in Fig. 1C. A full list of proteins significantly 
differentially abundant in each group is provided in 
Table S3.

Table 2 Clinical characteristics of the final cohort

Abbreviations: BMI Body mass index, pre-tx Pre-treatment, HbA1C Glycated hemoglobin, post-tx Post-treatment, DD Dead donor, LD Living donor

PTDM (n = 7) T2DM (n = 6) NG (n = 4) p-value
PTDM vs T2DM

p-value
PTDM vs NG

p-value
T2DM vs NG

Sex, Male/Female 4/3 5/1 2/2

Age (years), mean (± SD) 60,9 (12.3) 64.3 (12.2) 53 (5.2) 0.620 0.176 0.083

Range 46–76 52–81 48–58

 BMI (kg/m2), mean (± SD) 27.2 (1.6) 30.0 (1.5) 26.2 (2.2) 0.007 0.413 0.010

 Weight gain post‑tx (Kg), mean (± SD) ‑2.7 (5.7) 2.2 (4.6) 0.25 (0.5)

 Fasting glucose‑pre‑tx (mmol/L), mean (± SD) 5.3 (0.7) 11.1 (5.7) 5.6 (0.3) 0.051 0.277 0.065

Range 4.8–6.3 4.9–20.7 5.4–5.9

 HbA1C test, %, mean (± SD) pre‑tx 5.2 (0.4) 6.5 (0.7) 5.3 (0.2) 0.001 0.866 0.006

Range 4.5–5.7 5.8–7.5 5.0–5.5

 HbA1C test, %, mean (± SD) post‑tx 6.7 (0.8) 7.4 (0.8) 5.2 (0.2) 0.123 0.008  < 0.001

Range 5.6–8.0 6.5–8.6 5.0–5.5

 eGFR (mL/min/1.73  m2), mean (± SD) post‑tx 53 (11) 39 (8) 65 (11) 0.026 0.121 0.003

 Hypertension post‑tx % 71 100 75

 Donor (DD/LD) 3/4 5/1 3/1

 Donor age (years), mean (± SD) 47.8 (15.8) 64.2 (15.4) 57.0 (14) 0.076 0.346 0.477
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Fig. 1 NG, PTDM, and T2DM protein profile analysis. A Protein Principal component analysis (PCA) based on protein data from PTDM (blue dots), 
T2DM (red dots), and NG (green dots). Group NG is separated along with principal component 1 (PC1) from both PTDM and T2DM, whereas PTDM 
and T2DM are separated along with component 2 (PC2). B Venn diagram depicting the overlap of proteins differentially expressed in the three 
statistical comparisons obtained using http:// bioin fogp. cnb. csic. es/ tools/ venny. C Proteins up or down represented in each comparison 
with a selection of protein names represented (D) Hierarchical clustering of proteins differentially expressed in glomeruli from patients with PTDM, 
T2DM and NG (average linkage, Pearsons correlation, Z‑score)

http://bioinfogp.cnb.csic.es/tools/venny
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Hierarchical clustering of proteins differentially abun-
dant in the PTDM, T2DM and NG groups was per-
formed to identify specific expression patterns. Notably, 
T2DM, NG and, to a somewhat lower extent, PTDM 
samples clustered with a clear differentiation pattern 
(Fig. 1D).

Differentially abundant proteins in NG and PTDM 
glomeruli
The characteristic feature of patients in the PTDM group 
was that they had developed DM following transplanta-
tion, whereas patients in the NG group had not, which 
may indicate renal transplant-specific effects, including 
immunosuppressive treatment. To obtain insights into 
involved pathways and potential early disease markers, 
we performed category enrichment analysis of proteins 
differentially abundant in NG and PTDM glomeruli.

A large majority of differentially abundant proteins 
(123 of 144) were less abundant in PTDM glomeruli than 
in NG glomeruli (PPI enrichment p value < 1.0e-16). In 

particular, proteins related to adhesion, including the 
nephrin-family proteins SPATN1, SPTBN1, MAGI2, 
IQGAP1 and KIRREL, the immune system, leukocyte 
transendothelial filtration, and cell localization and 
organization were downregulated in glomeruli from 
PTDM patients compared to NG patients (Fig. 2A, B, C).

The 21 less abundant proteins in NG compared 
to PTDM glomeruli also had significant PPI enrich-
ment (p = 0.000765) and were mainly associated with 
supramolecular fibre organization (enrichment FDR: 
6.3 ×  10–5; fold enrichment: 10.6) and protein-contain-
ing complex binding (enrichment FDR: 1.6 ×  10–6; fold 
enrichment: 8.3). In addition, tacrolimus binding protein 
FKBP1A was significantly overrepresented in glomeruli 
from PTDM patients compared to NG patients. The 
results for NG compared to T2DM were largely similar 
to those for NG compared to PTDM (Table S3) glomer-
uli. However, the expression levels of tacrolimus binding 
protein FKBP1A in NG and T2DM glomeruli were simi-
lar (p = 0.72).

Fig. 2 Gene ontology (GO) and KEGG pathway enrichment analysis of proteins underrepresented in PTDM vs. NG. A GO Biological Process; B 
Cellular component; C KEGG. The 20 most enriched pathways are represented. (http:// bioin forma tics. sdsta te. edu/ go/)

http://bioinformatics.sdstate.edu/go/
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Nondiabetic and diabetic glomerular proteomes in kidney 
transplant patients: gene ontology and protein interaction 
analysis
Data generated in our study allowed proteomic profiling 
of glomeruli from transplanted patients with DM, irre-
spective of its preexistence or “de novo” posttransplant 
development. Therefore, we sought to identify proteins 
differentially abundant between NG glomeruli and the 
combination of PTDM and T2DM glomeruli. A category 
enrichment analysis was performed and revealed that, 

overall, these proteins were biologically connected as a 
group (PPI enrichment p = 7.9 ×  10–7).

In particular, a number of proteins were overrepre-
sented in glomeruli from NG patients compared to all 
DM patients (PPI enrichment p = 1.27 ×  10–5). Nota-
bly, proteins included in biological processes related 
to cell‒cell communication, such as adherens junc-
tions (Fig.  3) and tight junctions, and the immune 
system, such as leukocyte transendothelial migra-
tion, were more abundant in NG samples than in all 

Fig. 3 Map of the KEGG pathways “Adherens junction”. Violet: proteins underrepresented in PTDM compared to both, NG and T2DM; Blue: proteins 
underrepresented in PTDM compared T2DM; Red: proteins underrepresented in PTDM compared to NG; Orange: proteins highly represented in NG 
compared to both, PTDM and T2DM; Green: proteins detected by MS in our dataset but not significantly differentially abundant in any comparison.  
Modified from Kyoto Encyclopedia of Genes and Genomes (KEGG)



Page 8 of 15Kipp et al. BMC Nephrology          (2023) 24:254 

DM samples, irrespective of their PTDM and T2DM 
nature (Fig.  4). In contrast, in the group of proteins 
less abundant in NG, no significant PPI enrichment 
was observed, likely due to the low number of pro-
teins included (n = 13).

Taken together, these results reveal alterations in 
transport regulation, cell organization and commu-
nications, and in the immune system, as detected in 
glomeruli from all transplanted patients with DM, 
irrespective of the timing of its development.

The proteomes of the two diabetic groups: gene ontology 
and protein interaction analysis
PTDM is characterized by “de novo” development fol-
lowing transplantation. Although our data consistently 
documented commonalities between PTDM and T2DM 
glomerular proteomic profiles, we addressed the identifi-
cation of the few differentially expressed proteins, poten-
tially suggesting specificities of PTDM development.

Indeed, proteins involved in insulin secretion, such as 
VAMP2, GNAQ and ATP1B1, and cell‒cell junctions and 
adhesion, including RAB10, ESAM, ponsin (SORBS1), 
afadin (MLLT4), and catenin beta (CTNNB1), appeared 
to be downregulated in PTDM compared to T2DM. Von 
Willebrand factor (VWF), whose circulating levels were 
previously reported to be increased in patients with CKD 
and ESRD compared with healthy control individuals, 
was also overrepresented in T2DM glomeruli [26, 27]. 
Furthermore, VAMP2, which belongs to the SNAP recep-
tor protein family (SNARE) and has been associated with 
insulin resistance in T2DM, was underrepresented in 
PTDM [28, 29]. Interestingly, the expression level of the 
tacrolimus binding protein FKBP1A was also slightly, 
although not significantly, lower in PTDM (p = 0.06).

In contrast, proteins overabundant in glomeruli from 
PTDM patients compared to those from T2DM patients 
included CCT4, which is a component of the T-complex 
protein ring that has been proposed as a biomarker of 

Fig. 4 Network representation using KEGG terms of differentially abundant proteins overrepresented in NG compared to PTDM and T2DM. The 20 
most enriched pathways are represented. (http:// bioin forma tics. sdsta te. edu/ go/)

http://bioinformatics.sdstate.edu/go/
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glomerular hyperfiltration [30, 31], and CNDP2, which is 
possibly also associated with diabetic kidney disease [32] 
(Fig. 5A).

In the total analysis of differentially abundant proteins, 
we found a protein‒protein interaction (PPI) enrich-
ment p = 0.0118. Thus, the PPI network contained more 
interactions than expected in a set of similar size, and the 

proteins detected could be considered at least partially 
biologically connected as a group.

GO analysis, focusing on significantly enriched catego-
ries with an FDR < 0.05, indicated that proteins related 
to exocytosis and vesicle lumen and adherens junctions 
were overrepresented in T2DM (FDR ≤  10–4, data not 
shown) (Fig. 5B, C and D).

Fig. 5 PTDM and T2DM protein interaction and pathway enrichment analyses. A Protein–protein Interaction network using proteins 
with significantly different abundance in PTDM and T2DM. The network nodes represent specific proteins. Blue halo refers to protein abundance 
lower in PTDM vs. T2DM; red halo refers to higher abundance in PTDM vs. T2DM. Edges represent protein–protein associations. (http:// www. 
string‑ db. org). B GO Biological Process pathway enrichment analysis of proteins underrepresented in PTDM vs. T2DM. C Cellular component 
pathway enrichment analysis of proteins underrepresented in PTDM vs. T2DM. D KEGG pathway enrichment analysis of proteins underrepresented 
in PTDM vs. T2DM. The 20 most enriched pathways are represented (http:// bioin forma tics. sdsta te. edu/ go/)

http://www.string-db.org
http://www.string-db.org
http://bioinformatics.sdstate.edu/go/
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Taken together, these results show that proteomic 
alterations of cell‒cell and cell-extracellular matrix struc-
tures in PTDM occur early but remain undetectable at 
the histological level since the glomeruli selected for 
microdissection looked normal under the microscope.

Immunohistochemical analysis for the validation 
of differentially abundant proteins
To validate the altered pattern of protein abundance 
observed by proteomic evaluation, MLLT4, CTNND1, 
and LPHH proteins were selected for immunohistochem-
ical (IHC) analysis based on their high degree of dys-
regulation between the groups under investigation and 
the availability of Prestige Antibodies (Sigma‒Aldrich), 
as described in the Human Protein Atlas (https:// www. 
prote inatl as. org/). MLLT4 and CTNND1 are adherens 
junction-related proteins that are also linked to leu-
kocyte transendothelial migration (TEM) and adhe-
sion. In the proteomics data, MLLT4 levels were lower 
in the PTDM group than in both the T2DM and NG 
groups, and CTNND1 levels were significantly lower in 
the group PTDM than in the NG group. Additionally, a 
similar trend was observed between the T2DM and NG 
groups, and this trend was consistent with the disrup-
tion in adherens junctions in PTDM and T2DM that was 
more apparent in PTDM. LHPP, a histidine phosphatase 
that has been proposed as a proliferation marker [33, 34], 
was expressed to lower extents in the PTDM and T2DM 
groups compared to the NG group.

The immunohistochemistry results showed changes 
consistent with the quantitative proteomics results, as 
depicted in Figs.  6A and B. Pixel analysis showed that 
the expression levels of MLLT4 and CTNND1 were sig-
nificantly higher in NG samples than in PTDM samples, 
and MLTT4, CTNND1 and LHPP expression levels were 
lower in T2DM samples than in NG samples. Moreover, 
the expression levels of MLLT4 were significantly lower 
in PTDM samples than in T2DM samples.

Discussion
PTDM is a frequent condition following kidney trans-
plantation and has an adverse impact on clinical out-
come and patient survival. Although previous literature 
indicates that PTDM is a variant of T2DM that might 
need different therapeutic interventions [35, 36], little is 
known about the molecular mechanisms underlying this 
disease. To gain new insights into DM development and 
early glomerular damage in PTDM compared to T2DM 
following transplantation, we combined proteomics on 
glomeruli from kidney transplant biopsies with data inte-
gration and network analysis. In this study, we focused 
on glomeruli, as podocyte dysfunction and glomerular 
enlargement have been described as key characteristics 

of DKD [37, 38]. Growing evidence implicates inflam-
matory cells modulating local immune responses in the 
pathogenesis of diabetic kidney disease [39]. Indeed, 
increased levels of pro-inflammatory cytokines and 
chemokines and an activation state of lymphocytes and 
myeloid cell populations have been described in T2DM 
[39, 40]. Furthermore, persistent complement protein 
activation has not only been associated with insulin 
resistance and complications in DM [41, 42] but also with 
diabetic nephropathy [43]. Thus, it has been proposed as 
a therapeutic target in diabetic kidney disease [44]. These 
features were also found to be associated with increased 
apoptosis of adipocytes and islet cells and tissue fibrosis. 
Moreover, the link between obesity and inflammation is 
also well established [45].

Nevertheless, surprisingly, our data indicate that pro-
teins associated with immune responses are underrep-
resented in glomeruli from transplanted patients with 
PTDM or T2DM compared to NG patients, even if 
immunosuppressive treatment was similar. However, the 
expression of complement proteins C3, C1QS, C1S, C4, 
and C8B was not significantly different between groups. 
However, C5 appeared to be lower in PTDM than in 
T2DM, and C6 was higher in T2DM than in NG. 

Active cell‒cell communication, achieved through 
direct contact or via secreted factors, is required to main-
tain homeostasis in all multicellular organisms. Inter-
estingly, proteins driving cell‒cell communication were 
underrepresented in both the PTDM and T2DM groups 
compared to the NG group.

These underrepresented proteins included the nephrin 
family interaction-related proteins SPTAN1, SPTBN1, 
IQGAP1, KIRREL, and MAGI2 and the transmembrane 
4 superfamily member CD151. CD151 is essential for 
the proper assembly of glomerular and tubular base-
ment membranes in the kidney [46]. Moreover, nephrin 
family interaction-related proteins are closely associated 
with podocytes and kidney filtration, as they all function 
as scaffolds connecting junctional membrane proteins to 
the cytoskeleton in the nephrin–slit diaphragm protein 
complex, which is essential for glomerular ultrafiltration. 
However, in nephrotic syndrome, podocyte architecture 
is lost, with foot process effacement and loss of slit dia-
phragms, leading to proteinuria [47, 48]. Our finding of 
the downregulation of the nephrin family interaction-
related proteins are in accordance with the alterations 
observed in podocytes and glomeruli during DKD devel-
opment [38]. Intriguingly, in a study on microdissected 
glomeruli from kidney autopsies of diabetes patients with 
nephropathy (DN) and patients without diabetes or renal 
disease (ND), nephronectin, a protein also related to 
cell‒cell adhesion, was found to be overexpressed in DN. 
Although we did not find any difference in nephronectin, 

https://www.proteinatlas.org/
https://www.proteinatlas.org/
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probably due to the remodelling of the extracellular 
matrix occurring in transplantation [49], we found that 
other proteins, such as clusterin, laminin gamma and 
collagen, Type VI, alpha, were significantly modified in 
DN. These findings were similar to our current findings 

[50]. Clusterin was especially interesting, as it has been 
proposed as a biomarker of nephrotoxicity [51]. Moreo-
ver, in our study, it was also significantly overexpressed in 
PTDM and T2DM compared to NG.

Fig. 6 Immunohistochemical analysis of proteins of differential abundance as detected by proteomic profiling. A Representative IHC detection 
of MLLT4, CTNDD1 and LHPP in NG, T2DM and PTDM glomeruli (B) Boxplot representing pixel analysis‑based protein quantification for MLLT4, 
CTNND1 and LHPP in NG, T2DM and PTDM. FFPE from six different biopsies from each group were stained with each specific antibody. Statistical 
analysis was performed using the Mann–Whitney test. *p‑value ≤ 0.05; **p‑value ≤ 0.005
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Vesicle-mediated transport of proteins, lipids, nucleic 
acids and other molecules delivers information within 
and between cells. Abnormal extracellular vesicles can 
contribute to the occurrence of and complications asso-
ciated with diabetes by inducing insulin resistance [52]. 
Accordingly, extracellular vesicles from the urine and 
circulation have gained significant interest as potential 
diagnostic biomarkers in renal diseases [53] and DM 
[54]. The STX4 protein facilitates the fusion of glucose 
transporter 4 (GLUT4) vesicles with the plasma mem-
brane, thereby eliminating glucose from the circulation 
[55, 56]. In our study, STX4 was expressed to lower 
extents in T2DM and PTDM than in NG. Thus, differ-
ences in extracellular vesicle-related protein profiles 
could provide therapeutic targets for the treatment and 
prevention of kidney disease in posttransplant patients.

Interestingly, while cell‒cell communication, includ-
ing leukocyte transendothelial migration, appeared to 
be disrupted in glomeruli from both PTDM and T2DM 
patients compared to NG patients, these alterations 
were particularly noticeable in PTDM patients. Indeed, 
the adherens junction-related proteins CTNNB1, 
MLLT4 and SORBS1 were less abundant in PTDM than 
in T2DM, although cadherin and nectin were undetect-
able. The latter is probably because our water-based 
protein extraction method fails to isolate lipophilic 
membrane proteins [57, 58]. Leukocyte transendothe-
lial migration is a multistep process that begins with 
adhesion. This is followed by firm adhesion and ends 
with either transcellular or paracellular passage of the 
leukocyte across the endothelial monolayer [59]. Dif-
ferent types of activated leukocytes play crucial roles 
in the pathogenesis of kidney diseases. Although there 
is growing evidence for inflammatory cells that modu-
late the local response and thus increase inflammation 
in diabetic kidneys, the precise mechanisms are still 
unclear [40].

The differences in inflammation between PTDM and 
T2DM could be influenced by BMI as well as long-term 
DM. However, although the BMI of PTDM patients 
was not significantly different from that of NG patients, 
proteins related to transendothelial migration were still 
expressed to lower extents in PTDM. Overall, these data 
suggest that despite similar immunosuppressive treat-
ment, proteins associated with leukocyte transendothe-
lial migration are overrepresented in the NG group 
compared to both PTDM and T2DM patients.

However, notably, diabetic kidney disease markers, 
such as CCT4 and CNDP2, were more abundant in glo-
meruli from PTDM patients than in those from T2DM 
patients.

Limitations of our work should be acknowledged.

In particular, while age and kidney donor age did not 
significantly differ in PTDM and T2DM patients, higher 
body mass index and lower eGFR in T2DM patients 
could have played a role in the elicitation of the observed 
differential protein profiles. Additionally, all the patients 
in this study were treated with tacrolimus, a drug asso-
ciated with a higher incidence of diabetes mellitus after 
renal transplantation [60], and corticosteroids, promot-
ing increased blood glucose levels and insulin resistance 
[5]. Moreover, the number of patients in each group is 
relatively low, and confounding factors, such as differ-
ences in medication, cannot be dismissed.

Nevertheless, our results suggest that cell‒cell com-
munication and organization are decreased in PTDM 
compared to T2DM and NG. This finding is consist-
ent with a loss of glomerular structure and a faster 
progression of DKD in these patients despite the 
apparently more favourable clinical factors in PTDM 
compared to T2DM. It is also interesting to note that 
the cell adhesion and metabolism-related molecular 
pathways were also similarly disrupted in both PTDM 
and T2DM compared to NG.

Thus, despite patient heterogeneity and the limited 
statistical power of our study, proteome quantitation 
appears to be able to differentiate the three posttrans-
plantation groups of patients by PCA and hierarchical 
clustering analysis.

These results can be considered a first approach to 
improve our understanding of the pathogenesis of glo-
merular filtration barrier alterations in transplantation 
and DM development. Future studies are warranted 
to address the reproducibility of these results in other 
cohorts.

Conclusions
Proteomics studies in kidney disease have mainly been 
performed using blood and/or urine samples [15] due to 
the difficultly in accessing posttransplant tissue biopsies. 
However, these specimens, while more difficult to obtain, 
might provide valuable data to clarify specific tissue char-
acteristics in normal and pathological states [16]. This 
is the first pilot study to perform proteomics analysis of 
microdissected glomeruli from posttransplant PTDM, 
T2DM, and NG patients.

By revealing differential molecular profiles in glomeruli 
from PTDM, T2DM and NG patients, these results con-
tribute to an improved understanding of the early impact of 
PTDM in the kidney glomerulus prior to the development 
of histologically visible diabetic kidney disease and pave 
the way towards the identification of novel biomarkers dis-
tinguishing PTDM from T2DM with the ultimate goal of 
developing more effective patient-specific treatments.
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