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Abstract 

Aims We aimed to investigate the potential association between weight-adjusted-waist index (WWI) and chronic 
kidney disease (CKD).

Design and methods This research examined data collected from the National Health and Nutrition Examina-
tion Survey (NHANES) spanning from 1999 to 2020. CKD was defined as the low estimated glomerular filtration rate 
(eGFR) or the existence of albuminuria (urinary albumin-to-creatinine ratio (ACR) ≥ 30mg/g). Low-eGFR was described 
as eGFR < 60 mL/min/1.73m2. The associations between WWI with CKD, albuminuria, and low-eGFR were examined 
using generalized additive models and weighted multivariable logistic regression models. We also analyzed the asso-
ciations of other obesity indicators with CKD, albuminuria, and low-eGFR, including body mass index (BMI), waist-to-
height ratio (WHtR), waist circumference(WC), height, and weight. The receiver operating characteristic (ROC) curves 
were used to assess and compare their diagnostic abilities.

Results Males made up 48.26% of the total 40,421 individuals that were recruited. The prevalences of CKD, albumi-
nuria, and low-eGFR were 16.71%, 10.97%, and 7.63%, respectively. WWI was found to be positively linked with CKD 
(OR = 1.42; 95% CI: 1.26, 1.60). A nonlinear connection between WWI and CKD was found using smooth curve fitting. 
Additionally, a higher prevalence of albuminuria is linked to a higher level of WWI (OR = 1.60; 95% CI: 1.40, 1.82). Differ-
ent stratifications did not substantially influence the connection between WWI and CKD, albuminuria, and low-eGFR, 
according to subgroup analysis and interaction tests. We observed higher height was related to higher low-eGFR 
prevalence (OR = 1.05; 95% CI: 1.03, 1.06). ROC analysis revealed that WWI had the best discrimination and accuracy 
for predicting CKD and albuminuria compared to other obesity indicators (BMI, WHTR, WC, height and weight). In 
addition, height had the highest area under the curve (AUC) value for predicting low-eGFR.

Conclusion WWI is the best obesity indicator to predict CKD and albuminuria compared to other obesity indicators 
(BMI, WHTR, WC, height, and weight). WWI and CKD and albuminuria were found to be positively correlated. Further-
more, height had the strongest ability to predict low-eGFR. Therefore, the importance of WWI and height in assessing 
kidney health in US adults should be emphasized.
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Introduction
A major contributor to morbidity and death globally 
is chronic kidney disease (CKD), which is character-
ized by structural or functional abnormalities of the 
kidneys brought on by a number of factors. CKD was 
defined as the low estimated glomerular filtration rate 
(eGFR) or the existence of albuminuria. Low-eGFR was 
described as eGFR < 60 mL/min/1.73m2, while albumi-
nuria was defined as urinary albumin-to-creatinine ratio 
(ACR) ≥ 30 mg/g [1]. There were 697.5 million people 
with CKD worldwide in 2017, which led to 1.2 million 
fatalities and 35.8 million disability-adjusted life years 
(DALYs) [2]. As a result, healthcare practice should place 
high importance on kidney health. CKD is at risk of being 
caused by cardiovascular disease, hypertension, diabetes, 
and obesity. An increasingly prominent risk factor that 
is modifiable is obesity [3]. Exploring possible modifi-
able risk factors for CKD is therefore becoming more 
and more crucial and may present fresh opportunities for 
prevention.

Obesity has become a significant problem for public 
health on a global scale. Both domestically and inter-
nationally, obesity has increased in prevalence over the 
last few decades [4]. By 2030, it is anticipated that nearly 
half of US adults would be obese [5]. In 2018, Park et al. 
proposed weight-adjusted-waist index (WWI) as a new 
obesity metric [6]. It is an anthropometric indicator of 
central obesity that takes into consideration both mus-
cle and fat mass and is derived from the formula waist 
circumference (WC) divided by the square root of body 
weight [7, 8]. The prevalences of newly diagnosed hyper-
tension, diabetes, cardiovascular disease, and even all-
cause and cardiovascular death have all been shown to be 
strongly linked with WWI [6, 9, 10]. However, previous 
literature examining WWI and kidney function is sparse, 
with only Zheng et al. demonstrating a positive connec-
tion between WWI and albuminuria [11]. As far as we 
are aware, no research has examined the link between 
WWI and CKD.

Consequently, using information from the National 
Health and Nutrition Examination Survey (NHANES), 
this study intends to examine the connection between 
WWI and CKD.

Materials and methods
Survey description
NHANES provided cross-sectional data. The National 
Center for Health Statistics (NCHS) conducts NHANES 
surveys to gauge the nutritional and physical health of 
the non-institutionalized population in the United States 
[12]. The NHANES survey data is being updated while it 
is still in its 2-year repeat cycle. The stratified multi-stage 

probabilistic strategy utilized in the NHANES study 
design results in a relatively large representation among 
the enrolled participants. The NCHS research eth-
ics review committee gave its approval to all NHANES 
survey procedures, and each study participant signed 
informed consent. Please visit the official NHANES web-
site for further details on the planning and execution.

Study population
We drew participants for our study from the NHANES 
1999–2020. After removing patients who were < 20 years 
old (n = 48,975), having cancer (n = 1,285) and pregnant 
(n = 220), missing ACR (n = 8,506), eGFR (n = 16,013), 
and WWI (n = 1,125) from the study, we were left with 
40,421 eligible subjects (Fig. 1).

Definition of WWI and CKD
WWI was regarded as an exposure variable. WWI is an 
anthropometric index that estimates the degree of obesity 

Fig. 1 Flowchart of the sample selection from NHANES 1999–2020



Page 3 of 16Li et al. BMC Nephrology          (2023) 24:266  

by combining data on WC and body weight. The WC of 
each participant was divided by the square root of their 
body weight, and the result was rounded to two decimal 
places. Higher WWI scores are indicative of higher levels 
of obesity. Trained medical technicians gathered anthro-
pometric information on WC and body weight at the 
mobile examination center (MEC). The weight was meas-
ured with a digital weight scale to the nearest 0.1 kg. Each 
subject was weighed while clad in the MEC examina-
tion attire, standing in the center of the digital scale, his 
hands by his sides, and his eyes focused straight ahead. 
A retractable steel tape measure was used to compute 
WC. The right iliac crest was palpated on both sides, and 
a horizontal line was then drawn above its most superior 
lateral border. The next step was to draw a line across 
the right midaxillary. The intersection of the two lines 
is where the tape measure is located on the horizontal 
plane. The measurements will be obtained and rounded 
to the nearest 0.1  cm when the person’s normal expira-
tion ends. To more fully assess the association between 
WWI and CKD, we similarly evaluated the association 
of other obesity indicators with renal function, including 
body mass index (BMI)(BMI = weight (kg)/height2  (m)), 
waist-to-height ratio (WHtR)(WHtR = WC (cm)/height 
(cm)), WC, height and weight.

Albuminuria or the eGFR of less than 60 mL/min/1.73 
 m2 is required for the diagnosis of CKD [1]. The Chronic 
Kidney Disease Epidemiology Collaboration (CKD-
EPI) equation for standardized creatinine was used 
to calculate eGFR [13]. Albuminuria was defined as 
ACR ≥ 30  mg/g. For the sake of discussion, we consider 
eGFR, low-eGFR, and CKD in this study to represent 
eGFR(CKD-EPI), low-eGFR(CKD-EPI), and CKD (CKD-
EPI)(all calculated by the CKD-EPI equation for stand-
ardized creatinine). This research mainly focused on 
low-eGFR, CKD, and albuminuria as outcome variables. 
We also assessed the association of different obesity indi-
cators with CKD (EKFC) and low-eGFR (EKFC) in the 
Supplementary Materials. We calculated eGFR (EKFC) 
using the European Kidney Function Consortium (EKFC) 
formula [14]. CKD (EKFC) was diagnosed by albuminuria 
or eGFR (EKFC) < 60 mL/min/1.73  m2.

Selection of covariates
Our study controlled for several demographic covariates, 
including sex (male/female), age (year), race (Mexican 
American/other Hispanic/non-Hispanic White/non-His-
panic Black/other races), and education level (less than 
high school/high school or general educational develop-
ment (GED)/above high school/others). In addition, we 
also included several self-reported daily behaviors and 
laboratory covariates, such as smoking status (≥ 100 ciga-
rettes lifetime/ < 100 cigarettes lifetime), serum uric acid 

(mg/dL), total cholesterol (TC) (mg/dL), high-density 
lipoprotein cholesterol (HDL-C) (mg/dL), low-density 
lipoprotein cholesterol (LDL-C) (mg/dL), triglycerides 
(mg/dL) and serum total calcium (mg/dL).

We also included health status differences, such as 
hypertension and diabetes, as covariates in our analysis. 
The definition of hypertension used in this study com-
prises three parts. The first part includes a self-report of 
hypertension based on the questionnaire item "Ever told 
you you had hypertension." Measuring mean systolic or 
mean diastolic blood pressure above 130 or 80 mmHg is 
part of the second Sect [15]. The third part involves iden-
tifying hypertensive participants based on the item "tak-
ing hypertension prescription" program. In the case of 
diabetes, the definition used involved three parts as well. 
Self-reported diabetes made up the first section, while 
the usage of insulin or diabetes medications made up the 
second. The final component entailed identifying patients 
with diabetes using fasting glucose (mmol/l) ≥ 7.0 and 
glycohemoglobin or hemoglobin A1c (HbA1c) (%) > 6.5. 
You may get all the information about these variables on 
the internet at www. cdc. gov/ nchs/ nhanes/.

Statistical analysis
Following the recommendations of the U.S. Centers for 
Disease Control and Prevention (CDC), the complicated 
sample design of a multi-stage cluster survey was taken 
into account in all statistical analyses [16]. The mean 
and standard deviation of continuous variables were dis-
played, whilst percentages were used to display categori-
cal variables. Differences across groups of WWI (tertiles) 
were examined for categorical or continuous variables 
using weighted t-tests or weighted chi-square tests. 
The associations between WWI and CKD, albuminu-
ria, and low-eGFR was investigated in Models 1–3 using 
weighted multivariable regression models. No covari-
ate was adjusted in Model 1 at all. Model 2 adjusted for 
sex, age, and race. Model 3 was adjusted to account for 
factors such as sex, age, race, education level, smoking 
status, serum uric acid, TC, LDL-C, HDL-C, triglycer-
ides, serum total calcium, hypertension, and diabetes 
status. Model 4 was adjusted for albuminuria, sex, age, 
race, education level, smoking status, serum uric acid, 
TC, LDL-C, HDL-Cl, triglycerides, total serum calcium, 
hypertension, and diabetes status. We also investigated 
the relationship between WWI and GFR in Models 1,3 
and 4. WWI was converted from a continuous variable 
to a categorical variable (tertiles) for sensitivity analy-
sis to evaluate its robustness. Non-linear problems were 
addressed using smooth curve fitting and generalized 
additive models (GAM). When non-linear correlations 
were seen, the threshold effect was calculated by fit-
ting each interval with a two-segment linear regression 

http://www.cdc.gov/nchs/nhanes/
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model (segmented regression model). The log-likelihood 
ratio test was used to compare the one-line model (non-
segmented) with the two-piecewise linear regression 
model to see if a threshold exists. A two-step recursive 
method was used to further identify the breakpoint (K). 
The connections between WWI with CKD, albuminuria, 
and low-eGFR was also examined using subgroup analy-
sis utilizing stratified multivariable logistic regression 
models, stratified by sex, age, smoking status, hyperten-
sion, and diabetes. In order to evaluate the heterogene-
ity of correlations among subgroups, these stratification 
characteristics were also taken into account as previ-
ously mentioned potential impact modifiers. Finally, we 
analyzed the ability of WWI and other obesity indicators 
(BMI, WHTR, WC, height and weight) to predict CKD, 
albuminuria, and low-eGFR by the receiver operating 
characteristic (ROC) curves and compared areas under 
the curve (AUC) values. For missing values in categori-
cal variables based on existing data, mode imputation 
was employed, whereas median imputation was utilized 
for missing values in continuous variables. R version 4.1.3 
and the Empower software package (www. empow ersta ts. 
com) was used for all statistical analyses. Statistical sig-
nificance was set at a two-tailed p-value < 0.05.

Results
Participants characteristics at baseline
Our analysis included 40,421 participants, with a mean 
age of 48.75 ± 18.13 years, 48.26% men and 51.74% 
women. The prevalences of CKD, albuminuria, and low-
eGFR were 16.71%, 10.97%, and 7.63%, respectively, with 
a mean WWI of 10.81 ± 0.93 cm/kg. Among participants 
in the lowest WWI tertile, 13.97% had CKD and 8.82% 
had albuminuria. In the middle WWI tertile, 13.55% had 
CKD and 8.50% had albuminuria. The highest tertile of 
patients had the highest prevalences of albuminuria 
(15.58%) and CKD (22.61%). Participants in the higher 
WWI tertiles had higher prevalences of low-eGFR (Ter-
tile 1: 5.52%; Tertile 2: 6.29%; Tertile 3: 11.08%; p < 0.001) 
(Table 1). The prevalences of CKD (EKFC) and low-eGFR 
(EKFC) were 18.97% and 10.12%, respectively.

Age, smoking status, hypertension, diabetes, TC, HDL-
C, LDL-C, triglycerides, ACR, eGFR, eGFR (EKFC), BMI, 
WHTR, WC, height and weight all differed significantly 
between tertiles (all p < 0.05). There were no appreciable 
variations in the tertiles of WWI, though, in terms of sex, 
race, education level, serum uric acid, or serum total cal-
cium (all p > 0.05) (Table 1).

Association between WWI and CKD
Table 2 shows the associations of WWI and other obe-
sity indicators with CKD. We found positive associa-
tions between WWI and other obesity indicators with 

CKD in both Model 1 and Model 2. In Model 3, WWI, 
WHTR, and WC were still positively associated with 
CKD (WWI: OR = 1.42; 95% CI: 1.26, 1.60; WHTR: 
OR = 7.00; 95% CI: 2.41, 20.36; WC: OR = 1.01; 95% 
CI: 1.00, 1.02). We also conducted sensitivity analysis 
by converting WWI and other obesity indicators from 
continuous variables to categorical variables (tertiles). 
In Model 3, participants in the highest WWI, WHTR, 
and WC tertiles had an 87%, 67%, and 39% higher prev-
alence of CKD than those in the lowest tertiles (WWI: 
OR = 1.87; 95% CI: 1.42, 2.46; WHTR: OR = 1.67; 95% 
CI: 1.26, 2.21; WC: OR = 1.39; 95% CI: 1.04, 1.85) (all p 
for trend < 0.05). We also found similar associations 
between WWI and other obesity indicators with CKD 
(EKFC) (Supplementary Table S1).

We detected nonlinear relationships of WWI, WHTR, 
WC, BMI, and weight with CKD by GAM and smooth 
curve fitting (Fig.  2). In Model 3, the breakpoints were 
9.81, 0.49, 79, 20.6 and 67.7, respectively. WWI was posi-
tively related to the prevalence of CKD when WWI > 9.81 
(OR = 1.52, 95% CI: 1.33, 1.74). To the left of the break-
point, there was no significant relationship between 
WWI and CKD (OR = 0.55, 95% CI: 0.25, 1.21) (Table 3). 
Similarly, there was a nonlinear association between 
WWI, BMI, WHTR, weight, and WC with CKD (EKFC) 
(Logarithmic likelihood ratio test P-value < 0.05)(Supple-
mentary Figure S1, Supplementary Table S2).

Association between WWI and albuminuria
We found positive associations between WWI and 
WHTR with albuminuria (Table 2). In Model 3, the prev-
alences of albuminuria increased by 60% and 6.19-fold 
for each one-unit increase in WWI and WHTR (WWI: 
OR = 1.60; 95% CI: 1.40, 1.82; WHTR: OR = 7.19; 95% 
CI: 2.35, 22.00). In contrast, higher levels of height ver-
sus weight were related to a lower prevalence of albumi-
nuria in Model 3 (Height: OR = 0.97; 95% CI: 0.95, 0.98; 
Weight: OR = 0.99; 95% CI: 0.99, 0.99).

We detected nonlinear relationships of BMI, WHTR, 
weight and WC with albuminuria by smooth curve fit-
ting (Fig.  2). Their breakpoints were 23.9, 0.5, 82.2 
and 80, respectively  (Logarithmic likelihood ratio test 
P-value < 0.05) (Table 3). We did not find a nonlinear rela-
tionship between WWI and albuminuria.

Association between WWI and low‑eGFR
The relationships between WWI and other obesity 
indicators with low-eGFR were also evaluated using 
three distinct models (Table  2). We did not find a sig-
nificant association of WWI with low-eGFR in Model 3 
(OR = 1.10, 95% CI: 0.95, 1.28) (Table  2). But we found 
positive associations of height, weight and WC with low-
eGFR. We found similar associations between WWI and 

http://www.empowerstats.com
http://www.empowerstats.com
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Table 1 Baseline characteristics according to WWI tertiles

WWI Weight-adjusted-waist index, BMI body mass index, WHtR waist-to-height ratio, WC waist circumference, GED general educational development, TC total 
cholesterol, HDL-C high density lipoprotein-cholesterol, LDL-C low-density lipoprotein cholesterol, ACR  urinary albumin-to-creatinine ratio, eGFR urinary albumin-to-
creatinine ratio, CKD chronic kidney disease, EKFC European Kidney Function Consortium

WWI Overall Tertile 1 Tertile 2 Tertile 3 P-value
(5.65–10.38) (10.38–11.22) (11.22–15.70)

N 40,421 13,474 13,472 13,475

WWI, cm/√kg 10.81 ± 0.93 9.79 ± 0.42 10.80 ± 0.24 11.84 ± 0.48  < 0.001

BMI, kg/m2 27.50 ± 6.69 23.35 ± 4.43 27.55 ± 5.74 31.61 ± 6.90  < 0.001

WHTR 0.57 ± 0.10 0.47 ± 0.05 0.56 ± 0.06 0.66 ± 0.08  < 0.001

Height, cm 166.30 ± 10.07 169.39 ± 9.88 166.58 ± 9.75 162.93 ± 9.49  < 0.001

Weight, kg 76.41 ± 20.87 67.54 ± 16.30 77.18 ± 20.13 84.50 ± 22.16  < 0.001

WC, cm 94.01 ± 17.16 79.91 ± 10.41 94.15 ± 12.71 107.98 ± 14.81  < 0.001

Age, years  < 0.001

 20–40 15,340 (37.95%) 4705 (34.92%) 5322 (39.50%) 5313 (39.43%)

 41–60 13,075 (32.35%) 4421 (32.81%) 4365 (32.40%) 4289 (31.83%)

  > 60 12,006 (29.70%) 4348 (32.27%) 3785 (28.10%) 3873 (28.74%)

Sex, n (%) 0.533

 Male 19,507 (48.26%) 6543 (48.56%) 6511 (48.33%) 6453 (47.89%)

 Female 20,914 (51.74%) 6931 (51.44%) 6961 (51.67%) 7022 (52.11%)

Race, n (%) 0.250

 Mexican American 6945 (17.18%) 2293 (17.02%) 2315 (17.18%) 2337 (17.34%)

 Other Hispanic 3470 (8.58%) 1129 (8.38%) 1159 (8.60%) 1182 (8.77%)

 Non-Hispanic White 17,449 (43.17%) 5854 (43.45%) 5778 (42.89%) 5817 (43.17%)

 Non-Hispanic Black 8604 (21.29%) 2942 (21.83%) 2852 (21.17%) 2810 (20.85%)

 Other Races 3953 (9.78%) 1256 (9.32%) 1368 (10.15%) 1329 (9.86%)

Education level, n (%) 0.075

 Less than high school 10,581 (26.24%) 3613 (26.86%) 3456 (25.72%) 3512 (26.13%)

 High school or GED 9298 (23.05%) 3131 (23.28%) 3052 (22.71%) 3115 (23.17%)

 Above high school 20,452 (50.71%) 6707 (49.86%) 6929 (51.57%) 6816 (50.70%)

 Others 85 (0.21%) 21 (0.16%) 34 (0.25%) 30 (0.22%)

Smoking status, n (%)  < 0.001

  ≥ 100 cigarettes lifetime 13,486 (44.24%) 2806 (39.43%) 4843 (44.51%) 5837 (46.73%)

  < 100 cigarettes lifetime 17,000 (55.76%) 4310 (60.57%) 6037 (55.49%) 6653 (53.27%)

Hypertension, n (%) 20,463 (50.73%) 7326 (54.42%) 6356 (47.27%) 6781 (50.50%)  < 0.001

Diabetes, n (%) 21,974 (54.73%) 6589 (49.03%) 7138 (53.33%) 8247 (61.88%)  < 0.001

Serum uric acid, mg/dL 5.42 ± 1.55 5.41 ± 1.55 5.48 ± 1.63 5.36 ± 1.49 0.062

TC, mg/dL 183.70 ± 41.64 168.99 ± 35.95 188.51 ± 40.80 193.61 ± 43.68  < 0.001

HDL-C, mg/dL 53.34 ± 15.42 56.07 ± 14.72 53.02 ± 15.87 51.21 ± 15.22  < 0.001

LDL-C, mg/dL 106.90 ± 34.84 96.56 ± 31.14 111.26 ± 34.60 112.85 ± 36.23  < 0.001

Triglyceride, mg/dL 116.06 ± 99.03 84.30 ± 65.43 119.49 ± 99.27 143.96 ± 115.89  < 0.001

Serum total calcium, mg/dL 9.48 ± 0.42 9.47 ± 0.44 9.49 ± 0.41 9.46 ± 0.40 0.064

ACR, mg/g 34.83 ± 259.88 20.61 ± 106.04 25.68 ± 191.42 58.21 ± 392.28  < 0.001

Albuminuria, n (%) 4434 (10.97%) 1189 (8.82%) 1145 (8.50%) 2100 (15.58%)  < 0.001

eGFR, mL/min/1.73  m2 98.52 ± 28.69 98.04 ± 26.41 99.81 ± 27.69 97.70 ± 31.67  < 0.001

Low-eGFR, n (%) 3085 (7.63%) 744 (5.52%) 848 (6.29%) 1493 (11.08%)  < 0.001

CKD, n (%) 6755 (16.71%) 1882 (13.97%) 1826 (13.55%) 3047 (22.61%)  < 0.001

eGFR(EKFC), mL/min/1.73  m2 88.90 ± 21.71 88.63 ± 19.99 90.12 ± 21.13 87.94 ± 23.78  < 0.001

Low-eGFR(EKFC), n (%) 4090 (10.12%) 1111 (8.25%) 1160 (8.61%) 1819 (13.50%)  < 0.001

CKD(EKFC), n (%) 7667 (18.97%) 2232 (16.57%) 2107 (15.64%) 3328 (24.70%)  < 0.001
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Table 2 Associations between WWI and other obesity indicators with CKD, albuminuria, and low-eGFR

Index Outcome Continuous or categories Model  1c Model  2d Model  3e

ORa (95%CIb) P- value OR (95%CI) P- value OR (95%CI) P- value

WWI CKD WWI as continuous variable 1.34 (1.30, 1.38)  < 0.0001 1.36 (1.32, 1.40)  < 0.0001 1.42 (1.26, 1.60)  < 0.0001

Tertile 1 Reference Reference Reference

Tertile 2 0.97 (0.90, 1.04) 0.3244 1.00 (0.93, 1.07) 0.9571 1.06 (0.79, 1.41) 0.7053

Tertile 3 1.80 (1.69, 1.92)  < 0.0001 1.88 (1.76, 2.01)  < 0.0001 1.87 (1.42, 2.46)  < 0.0001

P for trend  < 0.0001  < 0.0001  < 0.0001

Albuminuria WWI as continuous variable 1.41 (1.36, 1.46)  < 0.0001 1.41 (1.36, 1.46)  < 0.0001 1.60 (1.40, 1.82)  < 0.0001

Tertile 1 Reference Reference Reference

Tertile 2 0.96 (0.88, 1.04) 0.3425 0.97 (0.89, 1.05) 0.4295 1.28 (0.92, 1.78) 0.1379

Tertile 3 1.91 (1.77, 2.06)  < 0.0001 1.92 (1.78, 2.07)  < 0.0001 2.35 (1.73, 3.21)  < 0.0001

P for trend  < 0.0001  < 0.0001  < 0.0001

Low‑eGFR WWI as continuous variable 1.40 (1.35, 1.46)  < 0.0001 1.46 (1.40, 1.52)  < 0.0001 1.10 (0.95, 1.28) 0.2038

Tertile 1 Reference Reference Reference

Tertile 2 1.15 (1.04, 1.27) 0.0072 1.24 (1.12, 1.38)  < 0.0001 0.77 (0.52, 1.13) 0.1756

Tertile 3 2.13 (1.95, 2.34)  < 0.0001 2.39 (2.17, 2.63)  < 0.0001 1.16 (0.81, 1.66) 0.4184

P for trend  < 0.0001  < 0.0001 0.1607

BMI CKD BMI as continuous variable 1.01 (1.01, 1.01)  < 0.0001 1.01 (1.01, 1.02)  < 0.0001 1.01 (0.99, 1.02) 0.2558

Tertile 1 Reference Reference Reference

Tertile 2 1.04 (0.97, 1.11) 0.2304 1.08 (1.01, 1.15) 0.0247 0.86 (0.66, 1.13) 0.2860

Tertile 3 1.24 (1.16, 1.32)  < 0.0001 1.30 (1.22, 1.39)  < 0.0001 1.14 (0.87, 1.49) 0.3418

P for trend  < 0.0001  < 0.0001 0.1254

Albuminuria BMI as continuous variable 0.99 (0.99, 1.00) 0.9306 1.00 (0.99, 1.01) 0.8757 1.00 (0.98, 1.02) 0.9579

Tertile 1 Reference Reference Reference

Tertile 2 0.75 (0.70, 0.81)  < 0.0001 0.76 (0.70, 0.82)  < 0.0001 0.64 (0.48, 0.85) 0.0024

Tertile 3 0.99 (0.92, 1.07) 0.7818 0.99 (0.93, 1.08) 0.9696 0.91 (0.69, 1.21) 0.5365

P for trend 0.7156 0.5499 0.6806

Low‑eGFR BMI as continuous variable 1.03 (1.03, 1.04)  < 0.0001 1.04 (1.03, 1.05)  < 0.0001 1.01 (0.99, 1.03) 0.4459

Tertile 1 Reference Reference Reference

Tertile 2 2.00 (1.81, 2.22)  < 0.0001 2.26 (2.04, 2.50)  < 0.0001 1.56 (1.08, 2.25) 0.0178

Tertile 3 2.09 (1.89, 2.31)  < 0.0001 2.42 (2.18, 2.68)  < 0.0001 1.35 (0.93, 1.95) 0.1160

P for trend  < 0.0001  < 0.0001 0.3435

WHTR CKD WHTR as continuous variable 5.41 (4.22, 6.95)  < 0.0001 6.73 (5.23, 8.67)  < 0.0001 7.00 (2.41, 20.36) 0.0004

Tertile 1 Reference Reference Reference

Tertile 2 1.02 (0.95, 1.09) 0.6272 1.05 (0.98, 1.13) 0.1341 1.05 (0.80, 1.40) 0.7122

Tertile 3 1.55 (1.46, 1.66)  < 0.0001 1.64 (1.54, 1.75)  < 0.0001 1.67 (1.26, 2.21) 0.0004

P for trend  < 0.0001  < 0.0001  < 0.0001

Albuminuria WHTR as continuous variable 4.11 (3.05, 5.53)  < 0.0001 4.28 (3.18, 5.76)  < 0.0001 7.19 (2.35, 22.00) 0.0006

Tertile 1 Reference Reference Reference

Tertile 2 0.80 (0.74, 0.87)  < 0.0001 0.80 (0.74, 0.87)  < 0.0001 0.97 (0.71, 1.33) 0.8710

Tertile 3 1.42 (1.32, 1.53)  < 0.0001 1.43 (1.33, 1.54)  < 0.0001 1.78 (1.31, 2.42) 0.0002

P for trend  < 0.0001  < 0.0001  < 0.0001

Low‑eGFR WHTR as continuous variable 16.54 (11.76, 23.27)  < 0.0001 29.18 (20.43, 41.66)  < 0.0001 2.31 (0.58, 9.27) 0.2358

Tertile 1 Reference Reference Reference

Tertile 2 1.77 (1.60, 1.96)  < 0.0001 1.98 (1.78, 2.19)  < 0.0001 1.30 (0.89, 1.90) 0.1734

Tertile 3 2.29 (2.08, 2.53)  < 0.0001 2.66 (2.40, 2.94)  < 0.0001 1.26 (0.86, 1.84) 0.2433

P for trend  < 0.0001  < 0.0001 0.3665

Height CKD Height as continuous variable 1.01 (1.01, 1.01)  < 0.0001 1.01 (1.01, 1.01)  < 0.0001 0.99 (0.98, 1.00) 0.0900

Tertile 1 Reference Reference Reference

Tertile 2 1.05 (0.98, 1.12) 0.1829 1.07 (1.00, 1.14) 0.0450 0.85 (0.66, 1.09) 0.1935
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In sensitivity analysis, WWI, BMI, WHTR, WC, height and weight were converted from continuous variables to categorical variables (tertiles)
a OR: Odd ratio
b 95% CI: 95% confidence interval
c Model 1: No covariates were adjusted
d Model 2: Adjusted for age, sex, and race
e Model 3: Adjusted for sex, age, race, education level, smoking status, serum uric acid, TC, LDL-C, HDL-C, triglycerides, serum total calcium, hypertension, and diabetes 
status

Table 2 (continued)

Index Outcome Continuous or categories Model  1c Model  2d Model  3e

ORa (95%CIb) P- value OR (95%CI) P- value OR (95%CI) P- value

Tertile 3 1.28 (1.20, 1.36)  < 0.0001 1.34 (1.26, 1.43)  < 0.0001 0.82 (0.64, 1.05) 0.1106

P for trend  < 0.0001  < 0.0001 0.1229

Albuminuria Height as continuous variable 0.98 (0.98, 0.98)  < 0.0001 0.98 (0.98, 0.98)  < 0.0001 0.97 (0.95, 0.98)  < 0.0001

Tertile 1 Reference Reference Reference

Tertile 2 0.88 (0.81, 0.94) 0.0005 0.88 (0.82, 0.95) 0.0007 0.70 (0.54, 0.90) 0.0064

Tertile 3 0.67 (0.62, 0.72)  < 0.0001 0.67 (0.62, 0.73)  < 0.0001 0.45 (0.35, 0.58)  < 0.0001

P for trend  < 0.0001  < 0.0001  < 0.0001

Low‑eGFR Height as continuous variable 1.05 (1.04, 1.05)  < 0.0001 1.06 (1.05, 1.06)  < 0.0001 1.05 (1.03, 1.06)  < 0.0001

Tertile 1 Reference Reference Reference

Tertile 2 1.69 (1.52, 1.89)  < 0.0001 1.84 (1.64, 2.06)  < 0.0001 1.78 (1.23, 2.57) 0.0020

Tertile 3 3.24 (2.93, 3.58)  < 0.0001 3.89 (3.51, 4.31)  < 0.0001 2.98 (2.10, 4.21)  < 0.0001

P for trend  < 0.0001  < 0.0001  < 0.0001

Weight CKD Weight as continuous variable 1.01 (1.00, 1.01)  < 0.0001 1.01 (1.00, 1.01)  < 0.0001 1.00 (0.99, 1.01) 0.6614

Tertile 1 Reference Reference Reference

Tertile 2 1.03 (0.97, 1.10) 0.3593 1.07 (0.99, 1.14) 0.0526 0.80 (0.62, 1.04) 0.0990

Tertile 3 1.30 (1.22, 1.39)  < 0.0001 1.39 (1.30, 1.48)  < 0.0001 0.93 (0.71, 1.20) 0.5574

P for trend  < 0.0001  < 0.0001 0.8515

Albuminuria Weight as continuous variable 0.99 (0.99, 0.99)  < 0.0001 0.99 (0.99, 0.99)  < 0.0001 0.99 (0.99, 0.99) 0.0031

Tertile 1 Reference Reference Reference

Tertile 2 0.70 (0.65, 0.76)  < 0.0001 0.71 (0.65, 0.76)  < 0.0001 0.59 (0.45, 0.78) 0.0002

Tertile 3 0.80 (0.74, 0.86)  < 0.0001 0.81 (0.75, 0.87)  < 0.0001 0.55 (0.42, 0.72)  < 0.0001

P for trend  < 0.0001  < 0.0001  < 0.0001

Low‑eGFR Weight as continuous variable 1.02 (1.02, 1.02)  < 0.0001 1.02 (1.02, 1.02)  < 0.0001 1.01 (1.01, 1.02)  < 0.0001

Tertile 1 Reference Reference Reference

Tertile 2 2.44 (2.18, 2.72)  < 0.0001 2.76 (2.46, 3.09)  < 0.0001 1.95 (1.32, 2.88) 0.0007

Tertile 3 3.33 (3.00, 3.70)  < 0.0001 4.10 (3.67, 4.57)  < 0.0001 2.40 (1.64, 3.51)  < 0.0001

P for trend  < 0.0001  < 0.0001  < 0.0001

WC CKD WC as continuous variable 1.01 (1.01, 1.01)  < 0.0001 1.01 (1.01, 1.02)  < 0.0001 1.01 (1.00, 1.02) 0.0020

Tertile 1 Reference Reference Reference

Tertile 2 1.02 (0.96, 1.10) 0.4773 1.07 (0.99, 1.15) 0.0513 0.93 (0.70, 1.23) 0.5970

Tertile 3 1.62 (1.52, 1.73)  < 0.0001 1.74 (1.63, 1.86)  < 0.0001 1.39 (1.04, 1.85) 0.0250

P for trend  < 0.0001  < 0.0001 0.0034

Albuminuria WC as continuous variable 1.01 (1.00, 1.01)  < 0.0001 1.01 (1.00, 1.01)  < 0.0001 1.00 (0.99, 1.01) 0.3116

Tertile 1 Reference Reference Reference

Tertile 2 0.77 (0.71, 0.83)  < 0.0001 0.77 (0.71, 0.84)  < 0.0001 0.74 (0.55, 1.01) 0.0560

Tertile 3 1.22 (1.13, 1.31)  < 0.0001 1.23 (1.14, 1.33)  < 0.0001 1.08 (0.80, 1.47) 0.6066

P for trend  < 0.0001  < 0.0001 0.1734

Low‑eGFR WC as continuous variable 1.03 (1.02, 1.03)  < 0.0001 1.03 (1.03, 1.03)  < 0.0001 1.02 (1.01, 1.03)  < 0.0001

Tertile 1 Reference Reference Reference

Tertile 2 2.15 (1.92, 2.40)  < 0.0001 2.46 (2.19, 2.75)  < 0.0001 2.06 (1.34, 3.16) 0.0009

Tertile 3 3.37 (3.04, 3.74)  < 0.0001 4.15 (3.72, 4.62)  < 0.0001 2.43 (1.59, 3.73)  < 0.0001

P for trend  < 0.0001  < 0.0001 0.0002
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Fig. 2 Smooth curve fitting for WWI and other obesity indicators with CKD, albuminuria, and low-eGFR. (A) WWI and CKD; (B) WWI and albuminuria; 
(C) WWI and low-eGFR; (D) BMI and CKD; (E) BMI and albuminuria; (F) BMI and low-eGFR; (G) WHTR and CKD; (H) WHTR and albuminuria; (I) WHTR 
and low-eGFR; (J) Height and CKD; (K) Height and albuminuria; (L) Height and low-eGFR; (M) Weight and CKD; (N) Weight and albuminuria; (O) 
Weight and low-eGFR; (P) WC and CKD; (Q) WC and albuminuria; (R) WC and low-eGFR
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Table 3 Threshold effect analysis of WWI and other obesity indicators on CKD, albuminuria, and low-eGFR using a two-piecewise 
linear regression model in Model 3

CKD Albuminuria Low‑eGFR

ORa (95%CIb) P- value OR (95%CI) P- value OR (95%CI) P- value

WWI

 Fitting by standard linear model 1.42 (1.26, 1.60)  < 0.0001 1.60 (1.40, 1.82)  < 0.0001 1.10 (0.95, 1.28) 0.2038

 Fitting by two-piecewise linear model

  Breakpoint (K) 9.81 12.55 9.58

  OR1(< K) 0.55 (0.25, 1.21) 0.1395 1.52 (1.32, 1.75)  < 0.0001 0.09 (0.03, 0.32) 0.0002

  OR2(> K) 1.52 (1.33, 1.74)  < 0.0001 4.29 (1.32, 13.89) 0.0152 1.25 (1.06, 1.47) 0.0078

  OR2 / OR1 2.76 (1.19, 6.42) 0.0181 2.82 (0.83, 9.55) 0.0964 13.50 (3.61, 50.48) 0.0001

 Logarithmic likelihood ratio test P-value 0.020 0.083  < 0.001

BMI

 Fitting by standard linear model 1.01 (0.99, 1.02) 0.2558 1.00 (0.98, 1.02) 0.9579 1.01 (0.99, 1.03) 0.4459

 Fitting by two-piecewise linear model

  Breakpoint (K) 20.60 23.9 26.45

  OR1(< K) 0.79 (0.65, 0.96) 0.0167 0.86 (0.80, 0.93) 0.0002 1.11 (1.03, 1.19) 0.0075

  OR2(> K) 1.02 (0.99, 1.03) 0.0635 1.02 (1.00, 1.04) 0.0484 0.99 (0.96, 1.01) 0.2834

  OR2 / OR1 1.29 (1.05, 1.57) 0.0128 1.18 (1.08, 1.29) 0.0002 0.89 (0.82, 0.97) 0.0097

 Logarithmic likelihood ratio test P-value 0.013  < 0.001 0.008

WHTR

 Fitting by standard linear model 7.00 (2.41, 20.36) 0.0004 7.19 (2.35, 22.00) 0.0006 2.31 (0.58, 9.27) 0.2358

 Fitting by two-piecewise linear model

  Breakpoint (K) 0.49 0.5 0.55

  OR1(< K) 0.01 (0.01, 4.02) 0.1233 0.01 (0.01, 0.23) 0.0144 105.95 (1.04, 175.04) 0.0479

  OR2(> K) 13.33 (3.92, 45.29)  < 0.0001 20.21 (5.53, 73.87)  < 0.0001 0.77 (0.12, 5.06) 0.7862

  OR2 / OR1 20.17 (1.98, 81.24) 0.0314 50.87 (9.47, 92.6) 0.0017 0.01 (0.01, 2.01) 0.0859

 Logarithmic likelihood ratio test P-value 0.033 0.002 0.081

Height

 Fitting by standard linear model 0.99 (0.98, 1.00) 0.0900 0.97 (0.95, 0.98)  < 0.0001 1.05 (1.03, 1.06)  < 0.0001

 Fitting by two-piecewise linear model

  Breakpoint (K) 151 165.7 175.5

  OR1(< K) 0.95 (0.86, 1.05) 0.3241 0.97 (0.95, 1.00) 0.0185 1.06 (1.04, 1.08)  < 0.0001

  OR2(> K) 0.99 (0.98, 1.00) 0.2019 0.96 (0.94, 0.98)  < 0.0001 1.02 (0.98, 1.06) 0.4167

  OR2 / OR1 1.04 (0.94, 1.15) 0.4124 0.98 (0.95, 1.02) 0.3749 0.96 (0.91, 1.01) 0.1097

 Logarithmic likelihood ratio test P-value 0.414 0.374 0.107

Weight

 Fitting by standard linear model 1.00 (0.99, 1.01) 0.6614 0.99 (0.99, 0.99) 0.0031 1.01 (1.01, 1.02)  < 0.0001

 Fitting by two-piecewise linear model

  Breakpoint (K) 67.7 82.2 81.8

  OR1(< K) 0.98 (0.96, 0.99) 0.0241 0.97 (0.96, 0.99)  < 0.0001 1.04 (1.02, 1.06)  < 0.0001

  OR2(> K) 1.01 (1.00, 1.01) 0.0766 1.00 (0.99, 1.01) 0.3273 1.00 (0.99, 1.01) 0.7520

  OR2 / OR1 1.03 (1.01, 1.05) 0.0150 1.03 (1.01, 1.05) 0.0004 0.96 (0.94, 0.99) 0.0015

 Logarithmic likelihood ratio test P-value 0.015  < 0.001 0.001

WC

 Fitting by standard linear model 1.01 (1.00, 1.02) 0.0020 1.00 (0.99, 1.01) 0.3116 1.02 (1.01, 1.03)  < 0.0001

 Fitting by two-piecewise linear model

  Breakpoint (K) 79 80 90.5

  OR1(< K) 0.95 (0.90, 0.99) 0.0394 0.92 (0.88, 0.97) 0.0012 1.07 (1.03, 1.10) 0.0006

  OR2(> K) 1.01 (1.01, 1.02) 0.0001 1.01 (1.00, 1.02) 0.0170 1.01 (0.99, 1.02) 0.1405

  OR2 / OR1 1.07 (1.01, 1.14) 0.0143 1.09 (1.04, 1.15) 0.0007 0.95 (0.91, 0.99) 0.0084

 Logarithmic likelihood ratio test P-value 0.015  < 0.001 0.006

Adjusted for sex, age, race, education level, smoking status, serum uric acid, TC, LDL-C, HDL-C, triglycerides, serum total calcium, hypertension, and diabetes status
a OR Odd ratio
b 95% CI 95% confidence interval
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other obesity indicators with low-eGFR (EKFC) (Supple-
mentary Table S1).

We did not find a significant association of WWI with 
low-eGFR by the weighted multivariable regression 
model in Model 3 (Table  2). However, we detected an 
L-shaped relationship of WWI with low-eGFR by smooth 
curve fitting (Fig.  2). The breakpoint was 9.58. WWI 
was negatively related to low-eGFR when WWI < 9.58 
(OR = 0.09, 95% CI: 0.03, 0.32). On the right side of the 
breakpoint, the prevalence of low-eGFR increased by 
25% for each unit increase in WWI (OR = 1.25, 95% CI: 
1.06, 1.47).

Subgroup analysis
Our results indicated that the correlations between 
WWI and other obesity indicators with CKD are not 
consistent (Fig.  3). According to the interaction tests, 
age, sex, smoking status, hypertension, and diabetes 
did not substantially influence the relationship between 
WWI and CKD across strata (all p for interaction > 0.05). 
The relationships between WHTR and WC with CKD 
depended on the hypertensive status and may be appli-
cable to hypertensive populations (Fig.  3). Interaction 
tests showed that the relationships between WWI and 
other obesity indicators with CKD (EKFC) were applica-
ble in different populations (all p for interaction > 0.05) 
(Supplementary Figure S2).

A positive association between WWI and albuminu-
ria was found in all subgroups (all p < 0.05) (Fig. 3). The 
relationships between WWI, WHTR, and WC with albu-
minuria were not substantially associated in interaction 
tests with various stratifications, demonstrating that 
these associations were the same across population con-
texts (all p for interaction > 0.05) (Fig. 3).

Interaction tests showed that the relationships between 
WWI, BMI, WHTR, weight, and WC with low-eGFR 
were not affected by the above stratification factors (all p 
for interaction > 0.05) (Fig. 3).

ROC analysis
We calculated the AUC values to compare the predictive 
accuracy of WWI with other obesity indicators (BMI, 
WHTR, WC, height, and weight) for CKD, albuminuria, 
and low-eGFR (Fig.  4). We found that the AUC values 
of WWI were higher than the other 5 obesity indicators 
in predicting CKD and albuminuria (CKD: AUC (95% 
CI): 0.5778 (0.5699–0.5857); albuminuria: AUC (95% 
CI): 0.5889 (0.5794–0.5983)). Moreover, the difference 
in AUC values between WWI and other obesity indica-
tors was statistically significant (all p < 0.05), suggesting 
that WWI may be a better predictive indicator for CKD 
and albuminuria than BMI, WHTR, weight, height, and 
WC (Table  4). Similarly, WWI was significantly better 

than other obesity indicators in predicting CKD (EKFC) 
(AUC (95% CI): 0.5653 (0.5578–0.5728)(all p < 0.05) 
(Supplementary Figure S3, Supplementary Table  3). 
Additionally, Height was the best predictor in predict-
ing low-eGFR (AUC (95% CI): 0.6402 (0.6302–0.6502)) 
(Table 4).

Association between WWI and eGFR
We also analyzed the association of WWI with eGFR. 
WWI was positively correlated with eGFR in Model 4 
(Supplementary Table S4). We detected a nonlinear rela-
tionship and a saturation effect of WWI with eGFR by 
GAM and smooth curve fitting (Supplementary Figure 
S4). The breakpoint was 10.62 (Supplementary Table S5). 
Subgroup analysis revealed that the relationship of WWI 
with eGFR was dependent on age, smoking status, and 
hypertension (Supplementary Figure S5). We also found 
similar results for the relationship of WWI with eGFR 
(EKFC) (Supplementary Tables S6 and S7, Supplemen-
tary Figures S6 and S7).

Discussion
In this cross-sectional study including 40,421 adults, we 
found a positive association between WWI and CKD. 
Through smooth curve fitting, we identified a thresh-
old effect of the nonlinear relationship between WWI 
and CKD, which was determined to be a breakpoint of 
9.81 cm/√kg. Additionally, we discovered a positive cor-
relation between WWI and albuminuria. There was an 
L-shaped association between WWI and low-eGFR. Sub-
group analysis and interaction tests indicated no signifi-
cant differences in the associations between WWI with 
CKD, albuminuria, and low-eGFR among different pop-
ulations. ROC analysis showed that WWI was the best 
predictor of CKD and albuminuria when compared to 
other obesity  indicators (BMI, WHTR, WC, height, and 
weight). Additionally, higher height was associated with 
a higher prevalence of low-eGFR. ROC analysis showed 
that height was the best predictor of low-eGFR. In con-
clusion, we need to focus on the importance of high 
WWI and height levels in assessing kidney health in US 
adults.

Previous research has mostly focused on the links 
between other obesity  indicators and CKD. Previ-
ous studies have made mixed statements about the 
association between BMI and CKD [17–20]. In con-
trast, we found a nonlinear relationship of BMI with 
CKD. Below 20.60, BMI was negatively associated 
with CKD. Above the breakpoint, there was no sig-
nificant association between BMI and CKD. This sug-
gests that high BMI may be protective for CKD. This 
may be due to the limitation of BMI in distinguishing 
muscle mass from fat mass. Those of the same height 
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but with a greater degree of body muscularity may 
have the same BMI as those with a high fat mass [21]. 
And high fat and low muscle mass are strongly associ-
ated with the risk of developing CKD [22, 23]. This is 
further validated by our study, in which ROC analysis 
showed that BMI was the poorest predictor of CKD, 
albuminuria, and low-eGFR compared with other 
obesity indicators. WC reflects abdominal fat accu-
mulation but does not account for the effect of height 

on body fat distribution. The use of WC alone may 
overestimate the risk of obesity in taller or underes-
timate the risk of obesity in people with short stature 
[21]. Previous studies have shown that the associa-
tion between WC and CKD is not strong [24, 25]. Our 
study agrees with this view, with the prevalences of 
CKD and low-eGFR increasing by only 1% and 2% 
for each unit increase in WC. In conclusion, nei-
ther WC nor BMI can be used as the best predictor 

Fig. 3 Subgroup analysis for the associations of WWI and other obesity indicators with CKD, albuminuria, and low-eGFR. (A) WWI and CKD; (B) 
WWI and albuminuria; (C) WWI and low-eGFR; (D) BMI and CKD; (E) BMI and albuminuria; (F) BMI and low-eGFR; (G) WHTR and CKD; (H) WHTR 
and albuminuria; (I) WHTR and low-eGFR; (J) Height and CKD; (K) Height and albuminuria; (L) Height and low-eGFR; (M) Weight and CKD; (N) Weight 
and albuminuria; (O) Weight and low-eGFR; (P) WC and CKD; (Q) WC and albuminuria; (R) WC and low-eGFR
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of renal function in the US adult population. Previ-
ous studies have shown that WHtR is strongly associ-
ated with renal function [24, 26, 27]. Our study also 
showed that the prevalences of CKD and albuminu-
ria increased 6-fold and 6.19-fold, respectively, for 
each unit increase in WHtR. Also, there were non-
linear associations between WHtR with CKD and 

albuminuria. However, unlike previous studies, we 
did not find a significant association between WHtR 
and low-eGFR [21, 26]. We think that various demo-
graphic factors, such as region, race, population, sam-
ple size, and eGFR calculation method, can produce 
various outcomes. Our study also found that height 
was positively associated with low-eGFR. By ROC 

Fig. 4 ROC curves and the AUC values of the six obesity indicators (WWI, BMI, WHTR, WC, height, and weight) in diagnosing CKD, albuminuria 
and low-eGFR. (A) Six obesity indicators were assessed to identify CKD. (B) Six obesity indicators were assessed to identify albuminuria. (C) Six 
obesity indicators were assessed to identify low-eGFR

Table 4 Comparison of AUC values between WWI and other obesity indicators

1 AUC: area under the curve
2 95% CI: 95% confidence interval

Test AUC 1 95%CI2 low 95%CI upp Best threshold Specificity Sensitivity P for different in AUC 

CKD
 WWI 0.5778 0.5699 0.5857 11.3439 0.7342 0.4099 Reference

 BMI 0.5220 0.5143 0.5297 27.405 0.5677 0.4783  < 0.0001

 WHTR 0.5514 0.5436 0.5593 0.5880 0.6253 0.4785  < 0.0001

 Height 0.5294 0.5218 0.5371 167.75 0.5804 0.4855  < 0.0001

 Weight 0.5314 0.5237 0.5391 78.55 0.6080 0.4503  < 0.0001

 WC 0.5596 0.5518 0.5674 97.45 0.6192 0.4931  < 0.0001

Albuminuria
 WWI 0.5889 0.5794 0.5983 11.3446 0.7278 0.4312 Reference

 BMI 0.4913 0.4816 0.5010 30.445 0.7252 0.3088  < 0.0001

 WHTR 0.5394 0.5296 0.5492 0.6117 0.7013 0.4061  < 0.0001

 Height 0.5507 0.5418 0.5596 170.55 0.3424 0.7289  < 0.0001

 Weight 0.5317 0.5221 0.5412 61.25 0.7645 0.3088  < 0.0001

 WC 0.5220 0.5122 0.5318 102.65 0.7166 0.3604  < 0.0001

Low‑eGFR
 WWI 0.5957 0.5847 0.6066 11.1439 0.6494 0.5183  < 0.0001

 BMI 0.5805 0.5711 0.5900 24.655 0.3895 0.7546  < 0.0001

 WHTR 0.5949 0.5850 0.6047 0.5491 0.4768 0.6834  < 0.0001

 Height 0.6402 0.6302 0.6502 167.75 0.5878 0.6538 Reference

 Weight 0.6312 0.6220 0.6404 72.27 0.4874 0.7177  < 0.0001

 WC 0.6371 0.6277 0.6465 92.65 0.5097 0.7015  < 0.0001
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analysis, height was the best predictor of low-eGFR. 
This may be due to the fact that height is generally 
higher in men than in women. And previous stud-
ies have shown that men were more likely to have 
worsened renal function due to testosterone and sex 
hormones [28, 29]. Therefore, American adults with 
higher height should be aware of kidney health.

This is the first investigation that we are aware of that 
examines the connection between WWI and CKD. 
There are few prior investigations on the connection 
between WWI and kidney function. Only one study 
with 36,921 US adults found that those with higher 
WWI had a higher likelihood of having albuminuria 
[11]. This was also confirmed in our study. In WWI, the 
prevalence of albuminuria increased by 60% for every 
unit increment. In a study including 24,791 Chinese 
participants, Kang et  al. discovered that a higher vis-
ceral fat area (VFA) was linked to a higher risk of CKD 
[30]. In a cross-sectional study involving 35,018 US 
adults, Qin et al. found that participants with higher vis-
ceral obesity index (VAI) had an increased risk of devel-
oping CKD and albuminuria [31]. According to our 
findings, which are in line with earlier research, WWI 
was found to be positively linked with CKD. The non-
linear association between WWI and CKD was also 
found to have a threshold effect in the current investi-
gation, with a breakpoint of 9.81 cm/kg. WWI is nega-
tively but not statistically significantly linked with CKD 
when it is less than 9.81. WWI and CKD were positively 
associated on the right side of the breakpoint. In other 
words, the prevalence of CKD considerably rose when 
WWI > 9.81. In conclusion, WWI may have a significant 
negative impact on kidney function. Previous studies 
have also observed the superiority of WWI. Compared 
to BMI, WC, WHtR, and a body shape index(ABSI), 
WWI is the best predictor of cardiovascular disease 
[6]. Qin et  al. showed that WWI has a higher correla-
tion with albuminuria than BMI and WC [11]. This is 
attributed to WWI as a new obesity indicator that can 
effectively distinguish between fat mass and muscle 
mass [7, 8]. Our study agrees with this view, and ROC 
analysis showed that WWI was the best obesity indica-
tor for predicting CKD and albuminuria compared with 
other obesity indicators (BMI, WHTR, WC, height, and 
weight). Thus, WWI can be deemed a more precise and 
all-encompassing measure of obesity, with the added 
advantage of being low-cost and easily accessible. In 
conclusion, it holds great promise for predicting kidney 
health in American adults.

Interestingly, the weighted multivariable regression 
model showed that WWI was not significantly associ-
ated with low-eGFR in Model 3. However, we found an 
L-shaped association between the two in the smooth 

curve fitting. When WWI < 9.58, WWI was nega-
tively correlated with low-eGFR. On the right side of 
the breakpoint, the prevalence of low-eGFR increased 
by 25% for each unit increase in WWI. That is, the 
prevalence of low-eGFR was lowest at WWI = 9.58. 
We further evaluated the association between WWI 
and eGFR. After adjusting for albuminuria, WWI was 
positively associated with eGFR. And there was a non-
linear association and saturation effect between the 
two. Higher WWI was associated with higher eGFR 
at WWI < 10.62. Whereas, on the right side of the 
breakpoint, the two were not significantly associated. 
In conclusion, WWI was a favorable factor for eGFR. 
This was further validated by our ROC analysis, which 
showed that WWI was not the best predictor of low-
eGFR compared to other obesity indicators.

Compared to people without diabetes, research has 
shown that participants with diabetes have a significantly 
higher prevalence of CKD [3]. Our study provides sup-
portive evidence for this view, as subgroup analysis showed 
that for each unit increase in WWI, participants with dia-
betes exhibited a higher prevalence of CKD than those 
without diabetes. Our subgroup analysis also revealed that 
male participants were more likely to develop CKD. This 
finding has also been confirmed by previous studies [32]. 
This may be related to unhealthy lifestyle habits in males, 
as well as the protective effect of estrogen or the destruc-
tive effect of testosterone [33]. Additionally, we found 
that the effects of age, sex, smoking status, hypertension, 
or diabetes on the associations between WWI with CKD, 
albuminuria, and low-eGFR were not statistically signifi-
cant. These associations might be applicable to various 
populations. These findings support and provide addi-
tional evidence for the harm that WWI caused to kidneys.

The relationship between WWI and CKD may be 
influenced by inflammation and insulin resistance. 
Adiposity accumulation can increase the expres-
sion of pro-inflammatory adipokines like adiponectin 
while decreasing the expression of anti-inflammatory 
adipokines like interleukin-6 (IL-6), tumor necrosis 
factor-α (TNF-α), and transforming growth factor-β 
(TGF-β) [34]. Additionally, this buildup has the poten-
tial to activate the renin–angiotensin–aldosterone 
system (RAAS), which can result in hypertension and 
insulin resistance, both of which are known to be risk 
factors for kidney injury [18, 35]. Additionally, glo-
merular hyperperfusion, hypertension, and even func-
tional loss might emerge from central fat distribution 
relative to effective kidney plasma flow, which can 
raise the glomerular filtration rate and result in an ele-
vated filtration fraction [36].

Our research possesses various advantages. Firstly, 
our research relies on NHANES data, a national 
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population-based survey that follows a strict study 
protocol and quality control measures. Secondly, our 
large sample size and adjustment for confounding 
covariates enhance the reliability and representative-
ness of our study. Given its computational simplicity, 
WWI can be a practical tool for managing and inter-
vening in CKD in clinical practice. Our study does, 
however, have certain flaws. First instance, establish-
ing a causal connection between WWI and CKD was 
impossible due to the cross-sectional design. Second, 
while we adjusted for numerous important covari-
ates, we cannot eliminate the impact of other possible 
confounding variables. Third, because NHANES is a 
cross-sectional survey of the US population, it may be 
difficult to extrapolate our results to the general popu-
lation or other ethnic groups.

Conclusion
WWI is the best obesity indicator to predict CKD and 
albuminuria compared to other obesity indicators (BMI, 
WHTR, WC, height, and weight). WWI and CKD and 
albuminuria were found to be positively correlated. Fur-
thermore, height had the strongest ability to predict low-
eGFR. Therefore, the importance of WWI and height in 
assessing kidney health in US adults should be empha-
sized. More comprehensive prospective studies are nec-
essary to support the authors’ findings.
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