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Abstract 

Background Organ measurements derived from magnetic resonance imaging (MRI) have the potential to enhance 
our understanding of the precise phenotypic variations underlying many clinical conditions.

Methods We applied morphometric methods to study the kidneys by constructing surface meshes from kidney 
segmentations from abdominal MRI data in 38,868 participants in the UK Biobank. Using mesh-based analysis tech-
niques based on statistical parametric maps (SPMs), we were able to detect variations in specific regions of the kid-
ney and associate those with anthropometric traits as well as disease states including chronic kidney disease (CKD), 
type-2 diabetes (T2D), and hypertension. Statistical shape analysis (SSA) based on principal component analysis 
was also used within the disease population and the principal component scores were used to assess the risk of dis-
ease events.

Results We show that CKD, T2D and hypertension were associated with kidney shape. Age was associated with kid-
ney shape consistently across disease groups. Body mass index (BMI) and waist-to-hip ratio (WHR) were also associ-
ated with kidney shape for the participants with T2D. Using SSA, we were able to capture kidney shape variations, rela-
tive to size, angle, straightness, width, length, and thickness of the kidneys, within disease populations. We identified 
significant associations between both left and right kidney length and width and incidence of CKD (hazard ratio (HR): 
0.74, 95% CI: 0.61–0.90, p < 0.05, in the left kidney; HR: 0.76, 95% CI: 0.63–0.92, p < 0.05, in the right kidney) and hyper-
tension (HR: 1.16, 95% CI: 1.03–1.29, p < 0.05, in the left kidney; HR: 0.87, 95% CI: 0.79–0.96, p < 0.05, in the right kidney).

Conclusions The results suggest that shape-based analysis of the kidneys can augment studies aiming at the better 
categorisation of pathologies associated with chronic kidney conditions.
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Introduction
The incidence of conditions such as chronic kidney dis-
ease (CKD), type-2 diabetes (T2D), and hypertension are 
rising and are amongst the leading causes of death glob-
ally [1]. The prevalence of CKD, which increases with 
age, is significantly common among older people, with an 
adverse effect on longevity [2]. Progression of CKD is gen-
erally tracked as a gradual decline in glomerular filtration 
rate (GFR), however there are suggestions that changes in 
kidney volume occur much earlier in the disease process 
and can accurately predict disease [3, 4]. Changes in kid-
ney volume, as well as kidney length and structure, have 
additionally been reported in metabolic diseases includ-
ing obesity, T2D, and hypertension, these act as drivers of 
CKD progression reducing kidney function [5–7].

Recently the automated segmentation and measure-
ment of kidney volume from magnetic resonance imag-
ing (MRI) has become more commonplace, enabling 
rapid measurement and the ability to obtain detailed 
anatomical information [8]. While this advance has 
enhanced our understanding of the kidney at a popula-
tion level, additional knowledge regarding morphological 
changes and regional variation in response to particular 
conditions are still lacking.

Three-dimensional (3D) mesh-derived phenotypes cap-
ture additional information related to morphological and 
regional organ variation using statistical parametric maps 
(SPMs) and may be used to map more subtle differences 
between a healthy and diseased state. A similar approach is 
statistical shape analysis (SSA), which can be used to trans-
form the spatially correlated data into a smaller number of 
principal components and characterise variations in organ 
shape across a population. These morphometric analyses 
offer a way to model the human body non-invasively and 
have been widely used to model bones [9, 10], abdominal 
organs [11–13], the brain [14, 15], the heart [16, 17] and 
the aorta [18, 19]. However, they have been less frequently 
applied to abdominal organs, despite known morphologi-
cal changes occurring in clinical conditions [3].

The objectives of this study were to (1) identify factors 
associated with variation in kidney shape in a region-
specific manner, through computational image analysis, 
and assess whether this analysis can be used to identify 
morphological variation associated with anthropometric 
and clinical conditions CKD, T2D, and hypertension; and 
(2) investigate whether the emerging 3D kidney mesh-
derived phenotypes can add to the prediction of disease 
outcomes.

Methods
Data
Full details regarding the UK Biobank abdominal MRI 
acquisition protocol have previously been reported [20]. 

Briefly, the data included here focused on the neck-to-
knee Dixon MRI acquisitions involving six overlapping 
series that were positioned automatically following an 
initial selection made by the radiographer. All data were 
processed and segmented using automated methods [8].

Participant data from the UK Biobank cohort was 
obtained through UK Biobank Access Application num-
ber 44584. The UK Biobank has approval from the North 
West Multi-Centre Research Ethics Committee (REC ref-
erence: 11/NW/0382). All methods were performed in 
accordance with the relevant guidelines and regulations, 
and informed consent was obtained from all participants. 
Researchers may apply to use the UKBB data resource by 
submitting a health-related research proposal that is in 
the public interest. Additional information may be found 
on the UK Biobank researchers and resource catalogue 
pages (www. ukbio bank. ac. uk).

Quality control
Participants with missing clinical, anthropometric, or 
biological data, as well as those with Dixon MRI data-
sets that did not have full anatomical coverage, were 
excluded from the study (i.e. organs with zero volumes). 
More specifically, we removed 5,272 data that were miss-
ing anthropometric, biological and lifestyle variables that 
are necessary for analyses. To ensure comprehensive 
anatomical coverage, we also discarded kidney segmen-
tations with volumes less than 30  ml from our analysis, 
resulting in the exclusion of further 305 data. For consist-
ency in the sample size, participants with missing data or 
segmentations below the lower limit threshold for one 
kidney were excluded from the study even if the other 
kidney had full coverage. We further performed quality 
control by visually inspecting potential outliers in the 
3D kidney mesh-derived phenotype to potentially iden-
tify extremely high values, falling outside from randomly 
selected quantiles (0.1% and 99.9%), however no further 
exclusion was required. Supplementary Fig. S1 shows a 
flow diagram of the quality control process and result-
ing study population. Overall, from the initial 44,445 
participants, data from of 5,577 participants did not pass 
quality control and were excluded from the final analy-
sis (12.6% of the dataset excluded, of which 47% were 
male, 64.7 ± 7.8 years old, with a body mass index (BMI) 
26.3 ± 4.5 kg/m2 [mean ± standard deviation (SD)]), leav-
ing a final dataset of 38,868 participants.

Image registration and mesh construction
The process for organ template construction has been 
previously detailed in [21, 22]. Here, we constructed a 
template using the kidney segmentations from a sex-bal-
anced European ancestry cohort of 200 participants. The 
characteristics of the template population are provided 

http://www.ukbiobank.ac.uk
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in Supplementary Table S2. We then constructed 3D 
surface meshes from the template image and all par-
ticipants’ segmentations using the marching cubes algo-
rithm. These meshes were subsequently smoothed using 
a Laplacian filter [23]. Supplementary Fig. S2 illustrates a 
brief diagram for the construction of average kidney tem-
plate meshes.

The registration process we employed has been previ-
ously outlined in [22]. In brief, we initially used rigid reg-
istration to remove the position and orientation difference 
between all participant-specific surfaces and template 
surfaces. We then registered the template to the partici-
pant’s segmentations via affine and non-rigid registration. 
The template mesh was then propagated to each partici-
pant mesh using the deformation fields obtained from 
the non-rigid registration. Hence, all surface meshes are 
parameterised with the same number of vertices (approxi-
mately 4,000) ensuring each vertex was anatomically 
accurate and consistent across all participants while pre-
serving the size and shape information for subsequent 
analysis. All the steps for the template-to-subject registra-
tion were performed using the Image Registration Toolkit 
(IRTK) (https:// biome dia. doc. ic. ac. uk/ softw are/ irtk).

To determine the regional outward or inward adap-
tations in kidney surface relative to an average kidney 
shape for each participant, the surface-to-surface (S2S) 
distance, the 3D mesh derived phenotype was measured. 
This measurement involved computing the signed dis-
tance between each vertex in the template mesh and each 
corresponding vertex in the subjects’ mesh. In this con-
text, positive distances signify outward expansion in the 
subject’s vertices when compared to the template verti-
ces, while negative distances indicate inward shrinkage in 
the subject’s vertices [22].

Mass univariate regression analysis
Associations between S2S distances and anthropometric 
variables were estimated using a linear regression frame-
work. The linear regression model is expressed as follows:

where, Y is a ns × nv matrix containing ns subjects from a 
sample of the population under study and nv is the num-
ber of voxels in the mesh, X is the ns × p design matrix of 
p known covariates (including the intercept) and the rel-
evant variables for each subject. X is related to Y by the 
vector of the estimated regression coefficients β  . Finally 
ǫ is a ns × nv matrix which is independent and identically 
distributed across the subjects and is assumed to be a 
zero-mean Gaussian process [24]. We applied threshold-
free cluster enhancement (TFCE) [25] and permutation 
testing to assess the associations between S2S distances 

Y = Xβ + ǫ,

and anthropometric variables, and derive the p-values 
associated with each regression coefficient following 
adjustment for relevant covariates with the correction 
to control the false discovery rate (FDR), as previously 
described [21].

Specifically, we performed an SPM framework, mass 
univariate regression (MUR) analysis using a refined 
version of the R package mutools3D [26] adjusted for 
multiple comparisons by applying the FDR procedure 
using the Benjamini–Hochberg method [27] to all the 
TFCE-derived p-values for each vertex and each model 
using 1,000 permutations. The estimated regression coef-
ficients β̂  for each of the relevant covariates and their 
related TFCE-derived p-values after correction for mul-
tiple testing, were then displayed at each vertex in the 
mesh on the whole 3D kidney anatomy, providing the 
spatially-distributed associations. The MUR model for 
deriving associations between clinical conditions and a 
3D phenotype is outlined in supplementary Fig. S3.

To determine which factors were associated with kid-
ney shape and size, we fitted a linear regression model 
for each vertex with age, sex, ethnicity, BMI, waist-to-
hip ratio (WHR), alcohol drinker status, smoking sta-
tus, ibuprofen medication, sodium in urine, urea and 
clinical conditions including CKD, T2D, and hyperten-
sion as predictors, and applied a correction to control 
the FDR. It is well known that the number of nephrons 
decreases with age which can contribute to the decline 
in kidney function [4]. Hence, to investigate whether 
there was a stronger relationship in terms of accelerating 
change between age and CKD, T2D, and hypertension we 
included interaction terms between age and all clinical 
conditions. We then included interaction terms between 
BMI and T2D, and between WHR and T2D, as markers 
of obesity, to investigate whether there is a change in kid-
ney function caused by hyperfiltration. We further per-
formed a sex-stratified analysis, producing two models 
for male and female separately, using all the aforemen-
tioned variables apart from sex. All continuous variables, 
including the S2S distances, were standardised with 
units in one SD, prior to being included in the regression 
models.

Statistical shape analysis
Statistical shape analysis (SSA) is a technique defined by 
the variation of the size and shape (represented using a 
surface mesh) across participants. Principal component 
analysis (PCA) is a widely explored dimensionality reduc-
tion approach applied in SSA for constructing 3D statis-
tical shape models [28, 29]. The principal directions of 
variation, also called modes of variation, could be repre-
sented by eigenvectors calculated from PCA. This tech-
nique finds a new coordinate system that describes the 

https://biomedia.doc.ic.ac.uk/software/irtk
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input data so that the greatest variance of the data lies on 
the first coordinate (the first principal component mode), 
the second-largest variance of the data that is orthogonal 
to the first component mode on the second coordinate, 
and so on. In this study, we initially performed PCA on 
the coordinate system and the S2S distances of the full 
cohort (N = 38,868), to explore whether these coefficients 
for the principal components known as shape parameters 
can characterise variations in kidney shape across the 
population.

Survival analysis
Cox proportional hazards models were used to assess 
the risk of disease outcomes that occurred after the 
imaging visit. These models were adjusted for relevant 
covariates to account for potential confounding fac-
tors. To reduce the dimensionality of the 3D mesh-
derived phenotype, we performed SSA by computing 
the PCA on the S2S distances across all participants 

within each disease cohort and extracted the principal 
component (PC) scores.

To determine the unique contribution of each kidney 
measurement and ensure robust statistical significance of 
associations, we employed separate models for each kid-
ney (left and right). This approach allowed us to account 
for potential confounding and effectively capture the spe-
cific associations between the kidney measures and dis-
ease outcomes. In these separate models, we adjusted for 
a comprehensive set of covariates including age, sex, eth-
nicity, body mass index, waist-to-hip ratio, alcohol intake 
frequency, smoking status, ibuprofen medication, sodium 
in urine, urea, kidney volume and the first four principal 
component scores of the S2S distances.

Disease outcomes and dates of the first occurrence of 
CKD, T2D, and hypertension were defined based on a 
combination of hospital records, primary care records, 
self-report, and death records (see Disease Definitions 
in supporting information and supplementary Table 
S1). Time-to-event was censored at the first event for 
each outcome, death, or last recorded follow-up (10th 
of February 2022), with a median of 3.7 years follow-up 
period since the imaging visit. Participants with an event 
recorded prior to the imaging visit were excluded.

Model summaries are reported as hazard ratios with 
95% confidence intervals (CI). To control for multi-
ple testing, the FDR procedure was estimated from the 
p-values, and a threshold of FDR < 0.05 determined 
significance.

Phenotype definitions
Anthropometric measurements including age, BMI, 
waist and hip circumferences, and systolic and diastolic 
blood pressure were taken at the UK Biobank imag-
ing visit, and ethnicity was defined based on the self-
reported ethnic background at the initial assessment 
visit (field: 21,000). For the purpose of our analysis we 
categorised ethnic background as follows: 0 for "White" 
and 1 for any other ethnic background (due to small 
numbers of non-white participants in this dataset 
(3.1%)). Sex was self-reported and included those 
recorded by the NHS and those obtained at the initial 
assessment visit (field: 31).

Biological samples for serum creatinine (field: 30,700) 
were measured in millimole/L , sodium in urine (field: 
30,530) in millimole/L and urea (field: 30,670) in 
millimole/L units were taken on the initial assessment 
visit. Estimated glomerular filtration rate (eGFR) was 
calculated based on the CKD-EPI creatinine Eq.  (2009) 
[30] as follows:

where Scr is serum creatinine in converted into mg/dL 
units, κ is 0.7 for females and 0.9 for males, α is − 0.329 
for females and − 0.411 for males, min is the minimum 
of Scr/κ or 1, and max is the maximum of Scr/κ or 1. In 
the aforementioned equation, ethnicity for “Black” was 
defined based on the continental genetic ancestry for 
“African” ancestry (https:// pan. ukbb. broad insti tute. org) 
and if missing from the self-reported ethnic background 
(field: 21,000) for “Black or Black British”.

Questionnaire information from the UK Biobank imag-
ing visit was used to determine alcohol intake frequency 
(field: 1558), smoking status (field: 20,116), and usage of 
ibuprofen medication (field: 6154, field: 20,003). For our 
analysis, we categorised alcohol intake frequency as 1 for 
“Daily or almost daily” and 0 otherwise and smoking sta-
tus as 1 for”Current” and 0 for “Previous” and “Never”. It 
should be noted that the UK Biobank initial assessment 
visit preceded the imaging visit by 9 ± 1.7 years.

Disease definitions
We selected diseases known to be associated with 
kidney health, and those previously associated with 
changes in kidney volume [8]. In part, this was also 
guided by the number of patients available in the UK 
Biobank with diseases of interest. We included partici-
pants with CKD, and T2D as well as participants with 
hypertension (see Disease Definitions in supporting 
information and supplementary Table S1).

eGFR = 141×min(Scr/κ , 1)α×max(Scr/κ , 1)−1.209
×0.993Age[× 1.018 if female], [× 1.159 if black].

https://pan.ukbb.broadinstitute.org
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Results
Study population characteristics
Of the cohort of 38,868 participants 96.9% were white and 
48.3% male, with an age range between 44 and 82 years, and 
a mean BMI 26.5 ± 4.3 kg/m2 (supplementary Table S3). We 
identified 1,134 participants with CKD (581F/553 M), age 
69 ± 6.9 years and a BMI 27.8 ± 4.7 kg/m2, 2,054 participants 
with T2D from which 66% were male, age 66.6 ± 7.3 years 
and BMI 29.7 ± 5.2  kg/m2 and 14,113 participants with 
hypertension of which 58% male; age 66.8 ± 7.2 years; BMI 
28 ± 4.6 kg/m2.

From all 1,134 participants with CKD, defined by an eGFR 
below 60 ml/min/1.73 m2, codes for chronic kidney disease, 
kidney dialysis, and kidney transplantation operation codes 
(supplementary Table S1), 466 (41.1%) participants had 
an eGFR below 60 ml/min/1.73 m2 (53.8 ± 6.1, mean ± SD; 
21.2—60  ml/min/1.73 m2, range) and 793 participants 
were identified based on the codes for diagnosis. Hence, 
from the participants diagnosed with CKD (N = 793), only 
125 of them also had eGFR levels below 60  ml/min/1.73 
m2 (supplementary Fig. S4). From the 14,113 participants 
with hypertension defined as self-reported of hyperten-
sive medication, or a prior diagnosis of hypertension, or 
mean blood pressure ≥ 140/90 mmHg (see Disease Defini-
tions in supporting information and supplementary Table 
S1), only 4,326 (30.7%) had mean blood pressure measure-
ments ≥ 140/90 mmHg (supplementary Fig. S5).

Associations with anthropometric traits and disease
We proceeded to register the 200 healthy participant 
template on the full cohort (N = 38,868), computing S2S 
distances between the template and surface of each indi-
vidual kidney mesh, and performed MUR analysis to 
generate SPMs, adjusting for all relevant covariates. A 
summary of the model for the whole cohort, representing 
the standardised regression coefficients for each covari-
ate and the significance areas on the kidney, is provided 
in Tables 1, 2, and supplementary Figs. S6, S7. The SPMs 
that represent associations between S2S distances and 
the anthropometric measurements are shown in Fig. 1.

S2S distances were negatively associated with age, 
showing an inward shape variation observed in the infe-
rior and superior areas of both kidneys. There was also 
a positive association between age and S2S distances, 
shown in the anterior and posterior areas of both kid-
neys. BMI and WHR had statistically significant positive 
associations with S2S distances, covering 85% and 55% of 
the left kidney surface and 87.3% and 62.8% of the right 
kidney surface, respectively. Alcohol intake frequency, 
smoking status and use of ibuprofen medication showed 
a statistically significant outward shape variation in both 
kidneys. We further examined the associations between 
S2S distances and biological markers including sodium 
in urine and urea. Sodium in urine showed a statistically 
significant positive association with S2S distances in both 

Table 1 Significance areas for covariates in the MUR model for the anthropometric variables (N = 38,868) of the model for the left 
kidney. The total area has been split into areas of positive, negative, and total associations. The standardised regression coefficients 
( ̂β  ) are presented as median (interquartile range—IQR) across all vertices of the left kidney surface and the significance areas as a 
percentage (%) of the vertices with statistically significant associations

Left Kidney Standardised β̂ < 0 Standardised β̂ > 0 Total

Beta coefficients Significance area Beta coefficients Significance area Significance area

Age -0.10 (0.07) 89.84% 0.03 (0.02) 5.5% 95.32%

BMI -0.10 (0.07) 14.79% 0.20 (0.09) 85% 99.79%

WHR -0.04 (0.04) 37.44% 0.04 (0.03) 54.98% 92.42%

Alcohol intake frequency -0.06 (0.03) 14.47% 0.07 (0.02) 84.43% 98.9%

Smoking status -0.05 (0.01) 3.88% 0.12 (0.05) 84.36% 88.24%

Ibuprofen medication -0.04 (0.03) 0.5% 0.04 (0.02) 84.27% 84.77%

Sodium in urine -0.02 (0.02) 31.05% 0.02 (0.01) 48.81% 79.86%

Urea -0.06 (0.01) 88.84% 0.02 (0.02) 6.6% 95.43%

CKD -0.33 (0.11) 91.6% 0.09 (0.04) 3.74% 95.34%

T2D -0.06 (0.02) 1.78% 0.20 (0.08) 85.5% 87.28%

Hypertension -0.03 (0.02) 19.59% 0.06 (0.04) 67.44% 87.03%

Age * CKD -0.06 (0.03) 67.31% 0.06 (0.02) 9.54% 76.85%

Age * T2D -0.06 (0.03) 89.98% 0.002 (0.002) 0.07% 90.05%

Age * Hypertension -0.03 (0.02) 71.39% 0.02 (0.003) 1% 72.4%

BMI * T2D -0.05 (0.02) 59% 0.05 (0.02) 5.09% 64.09%

WHR * T2D -0.07 (0.04) 49.93% 0.05 (0.02) 8.97% 58.9%
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kidneys, while urea showed an inward shape variation 
with S2S distances in the both kidneys.

A diagnosis of CKD was associated with S2S distances 
with an inward shape variation in both kidneys. T2D was 
positively associated with S2S distances in both kidneys 
and hypertension showed an outward shape variation in 
S2S distances covering 67.4% of the left kidney and 79.8% 
of the right kidney. To facilitate a clearer interpretation, 
we have provided a table with the unstandardised (raw) 
regression coefficients to estimate the shape variations 
associated with the disease state in mm, based on the 
standardised coefficients and the median SD of the S2S 
distances across all vertices (supplementary Table S4). 
By considering that the median SD value for the S2S dis-
tances of the left kidney is 3.02 mm and for the right kid-
ney is 2.95 mm, we showed that a diagnosis of CKD was 
associated with a median inward shape variation of -1 mm 
for the left kidney and -0.89 mm for the right kidney. T2D 
exhibited a positive association with S2S distances, with 
a median of 0.6 mm for the left kidney and 0.59 mm for 
the right kidney. Hypertension demonstrated a positive 

association with S2S distances, resulting in a median out-
ward shape variation of 0.18  mm in the left kidney and 
0.15 mm in the right kidney.

We undertook further analysis to determine whether 
there was an interaction between all clinical conditions 
and age, adjusted for all covariates in the model. We 
observed a stronger relationship between age and S2S 
distances with a median inward shape variation of -0.16 
in CKD participants, compared with -0.10 in non-CKD 
participants in the left kidneys and median shape varia-
tion in S2S distances of -0.13 in CKD participants com-
pared with -0.07 in non-CKD participants in the right 
kidney for the main effect of age (Tables 1, 2, and Fig. 1). 
The association between age and S2S distances in par-
ticipants with CKD and without a clinical condition are 
directly compared in Fig. 2i and ii. Participants with T2D 
(Fig.  2iii) display a stronger relationship with S2S dis-
tances with a median inward shape variation of -0.16 in 
the left kidney and a median inward shape variation of 
-0.13 in the right kidney with increasing age. Participants 
with hypertension (Fig.  3iv) showed a median inward 

Table 2 Significance areas for covariates in the MUR model for the anthropometric variables (N = 38,868) of the model for the right 
kidney. The total area has been split into areas of positive, negative, and total associations. The standardised regression coefficients 
( ̂β  ) are presented as median (interquartile range—IQR) across all vertices of the left kidney surface and the significance areas as a 
percentage (%) of the vertices with statistically significant associations

Right Kidney Standardised β̂ < 0 Standardised β̂ > 0 Total

Beta coefficients Significance area Beta coefficients Significance area Significance area

Age -0.07 (0.05) 78.32% 0.03 (0.03) 12.43% 90.75%

BMI -0.14 (0.03) 12.46% 0.23 (0.07) 87.35% 99.81%

WHR -0.05 (0.07) 27.26% 0.04 (0.05) 62.82% 90.08%

Alcohol intake frequency -0.05 (0.02) 12.77% 0.07 (0.02) 85.77% 98.54%

Smoking status -0.06 (0.02) 2.13% 0.13 (0.05) 92.17% 94.3%

Ibuprofen medication -0.01 (0.01) 0.48% 0.04 (0.01) 83.21% 83.68%

Sodium in urine -0.02 (0.02) 35.36% 0.02 (0.01) 48.78% 71.61%

Urea -0.06 (0.02) 91.78% 0.02 (0.02) 4.91% 96.69%

CKD -0.30 (0.13) 94.66% 0.09 (0.03) 2.54% 97.29%

T2D -0.06 (0.02) 6.97% 0.20 (0.05) 87.76% 94.73%

Hypertension -0.04 (0.03) 10.76% 0.07 (0.05) 79.76% 90.51%

Age * CKD -0.06 (0.04) 72.54% 0.06 (0.02) 3.74% 76.28%

Age * T2D -0.06 (0.03) 89.84% - - 89.84%

Age * Hypertension -0.02 (0.01) 40.97% 0.01 (0.01) 0.19% 41.16%

BMI * T2D -0.07 (0.04) 59.63% 0.06 (0.03) 14.23% 73.86%

WHR * T2D -0.05 (0.02) 22.28% 0.05 (0.03) 28.56% 50.84%

(See figure on next page.)
Fig. 1 Three-dimensional statistical parametric maps (SPMs) of kidney morphology, projections are anterior and posterior views for both left 
(L) and right (R) kidneys in both anterior (left plots) and posterior (right plots) views. The SPMs show the local strength of association for each 
covariate in the model (i - xvi) with S2S distances on the full cohort (N   = 38,868). Yellow contour lines indicate the boundary between statistically 
significant regions (p < 0.05) after correction for multiple testing, with positive associations in bright red and negative associations in bright blue. The 
standardised regression coefficients ( ̂β  ) are shown with units in standard deviations for each covariate
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Fig. 1 (See legend on previous page.)



Page 8 of 16Thanaj et al. BMC Nephrology          (2023) 24:362 

shape variation in S2S distances with increasing age of 
-0.13 in the left kidney and -0.09 in the right kidney.

We further investigated whether there was an interac-
tion between T2D and BMI as well as WHR adjusted for 
all covariates in the model (Tables 1, 2, and Fig. 1). BMI 

in participants with T2D showed a stronger relationship 
with S2S distances with a median outward shape varia-
tion 0.05 covering only a small significance area of only 
5.1% of the left kidney and a median outward shape vari-
ation of 0.06 covering an area of 14.2% of the right kidney 

Fig. 2 Three-dimensional statistical parametric maps (SPMs) of kidney morphology, projections are anterior (left plots) and posterior (right 
plots) views for both left (L) and right (R) kidneys. The SPMs show the local rate of change as a function of age for S2S distances in participants i) 
without CKD, T2D, or hypertension, ii) with CKD, referred to the sums of the regression coefficients for Age and Age*CKD, iii) with T2D, referred 
to the sums of the regression coefficients for Age and Age*T2D, and iv) with Hypertension, referred to the sums of the regression coefficients 
for Age and Age*Hypertension, in the full cohort (N  =  38,868). Positive associations are in red and negative associations are in blue. Regression 
coefficients ( ̂β  ) are shown with units in standard deviations for each covariate
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in addition to the median outward shape variation of 0.20 
in the left kidney and 0.23 in the right kidney for the main 
effect of BMI. However, we observed a stronger relation-
ship in S2S distances with a median inward shape varia-
tion covering a significance area of 59% in the left kidney 
and 59.6% in the right kidney, for the main effect of BMI 
(Fig. 3i, ii).

From the interaction between WHR and T2D 
(Tables 1, 2, and Fig. 1), we observed a stronger relation-
ship with S2S distances with a median outward shape 
variation of 0.05 in the both kidneys, in addition to the 
median shape variation of 0.04 in the both kidneys for the 
main effect of WHR. However, we also found a stronger 
relationship in S2S distances with a median inward shape 
variation of -0.07 in addition to the median shape varia-
tion of -0.04 in the left kidney and -0.05 in addition to the 
median shape variation of -0.05 in the right kidney for 
the main effect of WHR (Fig. 3iii, iv).

Associations by sex
We performed MUR analysis to explore the associations 
between kidney shape and anthropometric and disease 
traits separated by sex, adjusting for all relevant covari-
ates excluding sex. A summary of the model for the 
whole cohort, representing the standardised regression 
coefficients and the significance areas on the kidney is 
provided in supplementary Tables S5  and S6, and the 
histograms showing the statistically significant standard-
ised regression coefficients is provided in supplementary 
Figs. S8 and  S9. The SPMs that represent associations 

between S2S distances and the anthropometric meas-
urements are shown in supplementary Fig. S10 for 
male (N = 18,855) and Fig. S10 for female participants 
(N = 20,013).

We observed similar associations with the model 
including the full cohort for both sexes. However, we 
noticed that the WHR in both the left and right kidneys 
showed more statistically significant negative associa-
tions with S2S distances in male participants and more 
statistically significant positive associations in female 
participants (supplementary Tables S5 and S6).

We also observed the interaction between age and all 
disease outcomes, BMI and T2D as well as WHR and 
T2D for male and female participants, separately. Female 
participants with CKD showed a strong relationship with 
S2S distances with a median inward shape variation of 
-0.09 in the left kidney and -0.08 in the right kidney, in 
addition to the median shape variation of -0.10 in the left 
kidney and -0.08 in the right kidney for the main effect of 
age. While, male participants with CKD showed a strong 
relationship with S2S distances with a median inward 
shape variation of -0.10 in the left kidney and -0.11 in 
the right kidney, in addition to the median shape vari-
ation of -0.10 in the left kidney and for -0.08 in the left 
kidney the main effect of age. We further found that both 
male and female participants with T2D showed a strong 
relationship with S2S distances showing a greater signifi-
cance area in male participants with inward shape vari-
ations observed in the both kidneys, for the main effect 
of age. Furthermore, male participants with hypertension 

Fig. 3 Three-dimensional statistical parametric maps (SPMs) of kidney morphology, projections are anterior (left plots) and posterior (right 
plots) views for both left (L) and right (R) kidneys. i) The SPMs show the local rate of change as a function of BMI for S2S distances in participants 
without T2D and ii) with T2D, referred to the sums of the regression coefficients for BMI and BMI*T2D, iii) SPMs show the local rate of change 
as a function of WHR for S2S distances in participants without T2D and iv) with T2D, referred to the sums of the regression coefficients for WHR 
and WHR*T2D, on the full cohort (N = 38,868). Positive associations are in red and negative associations in blue. Regression coefficients ( ̂β  ) are 
shown with units in standard deviations for each covariate
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showed a stronger relationship with S2S distances for the 
main effect of age, with inward shape variations in both 
kidneys.

Interactions between BMI and T2D showed a strong 
relationship with S2S distances in both sexes although 
a greater significance area was observed in men with a 
median inward shape variation for both kidneys. Finally, 
male participants with T2D showed a strong relationship 
with S2S distances for the main effect of WHR, with out-
ward shape variations observed in both kidneys covering 
a small significance area, while female participants with 
T2D showed an inward shape variation in the left kidney 
for the main effect of WHR.

Statistical shape analysis
To visualise shape variation across a population, we com-
puted the PCA of the coordinate system including the 
S2S distances from the full cohort (N = 38,868). The first 
four modes of kidney size and shape variation from the 
PCA are presented as -3 SD, mean and + 3 SD (Fig. 4i and 
supplementary video S1).

The principal components are mathematically derived, 
so they do not necessarily correspond to physical fea-
tures but they can be broadly interpreted by visualising 
extreme values along each axis (± 3 SD). The percent-
age of shape variation explained by the first ten modes 
of PCA for both left and right kidneys on the full cohort 
is presented in supplementary Fig. S12. The first princi-
pal component accounting for 39.5% of the shape vari-
ation for the left kidney and 41.2% for the right kidney, 
appeared to correspond best to the size of the kidney. The 
second principal component appeared to correspond to 
the angle of the superior end and the straightness of the 
kidney whereas the third principal component is visually 
related to the kidneys’s dimensions in terms of the length 
and width. The fourth principal component appeared 
to be associated with kidney’s length and thickness. The 
remaining principal components are difficult to visually 
interpret.

Survival analysis
We assessed whether the S2S distances had predic-
tive value for the three disease outcomes diagnosed 
after the imaging visit. Here we identified 247 partici-
pants with CKD of which 59% were male, aged between 
68.6 ± 6.5 years (mean ± SD) and a BMI between 16.4 and 
48.9 kg/m2, 181 participants with T2D of which 61% were 
male, aged 65.4 ± 7.6 years with a BMI between 19.5 and 
47.9  kg/m2 and finally, 733 participants with hyperten-
sion (56.2% male; aged 65.8 ± 7.1 years; BMI from 17.4 to 
53 kg/m2). We created a model for each disease outcome 
adjusting for age, sex, ethnicity, body mass index, waist-
to-hip ratio, alcohol intake frequency, smoking status, 

ibuprofen medication, sodium in urine, urea, kidney 
volume, and the first 4 PC scores derived from the PCA 
applied on the S2S distances (accounting for over 60% of 
the variation in S2S distances in all disease outcomes and 
for both kidneys), separately for each kidney (Fig. 4ii for 
the left kidney; Fig. 4iii for the right kidney).

We found that the third PC scores of the S2S distances 
were risk factors for CKD diagnosis in both the left kid-
ney (0.74 [0.61–0.90]) and the right kidney (0.76 [0.63–
0.92]). No PC scores of the S2S distances in both left and 
right kidneys were associated with T2D. This may be 
attributed to the relatively short follow-up period from 
the imaging visit (median 3.7  years, IQR 2.3  years) as 
well as the small number of incidences of T2D diagnosis 
(N = 181), resulting in reduced statistical power to detect 
significant associations.

We further found that increased right kidney volume 
was a risk factor for hypertension (1.60 [1.15–2.22]). The 
third PC score of the S2S distances for the left kidney was 
significantly positively associated with risk of hyperten-
sion (1.16 [1.04–1.29]) however, PC3 score of the S2S 
distances for the right kidney was significantly negatively 
associated with risk of hypertension (0.87 [0.79–0.96]).

Discussion
In this study, we mapped local shape variations across 
the kidneys and determined how these variations were 
associated with anthropometric and disease traits. To 
achieve this we constructed surface meshes from kid-
ney segmentations of 38,868 participants from the UK 
Biobank. Previous studies using similar SPM techniques 
have suggested that this is a useful technique in neuro-
imaging [14] and cardiac imaging [16], for mapping the 
associations between phenotypic and genetic variation in 
specific anatomical regions.

Measurements of the kidneys have been extensively 
explored using a variety of approaches from computed 
tomography angiography (CTA) [31], ultrasound [6], 
computed tomography (CT), and MRI [32], with assess-
ments including measurements of the whole organ as 
well as the kidney sub-structures, and typically include 
measurement of size, length [33, 34], volume [3] and cor-
tical thickness [35]. While these methods enhance our 
understanding of the kidneys in population-level studies, 
they do not capture specific morphological and regional 
variations that occur in the kidneys in response to spe-
cific conditions. The SPM method implemented in this 
study demonstrates significant regional variations that 
can be captured in each participant’s kidney shape.

Age was significantly associated with a decrease in 
S2S distances observed in the inferior and superior 
areas of both kidneys and was positively associated with 
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S2S distances in the anterior and posterior areas of the 
kidneys. Previous studies investigating the kidney sub-
structures of potential kidney donors found that cortical 
volume decreases with age and increases in medullary 
volume, with a slight difference in females [3]. Other 
studies investigating the parenchymal and total kidney 
volume of healthy individuals, found that kidney vol-
ume and length increased up to middle age followed by 

a continuous decrease in men and slowly decreased in 
women, suggesting some progressive loss of functional 
nephrons [36]. In our analysis, we found a similar decline 
in S2S distances with age for both sexes. However, future 
work will help to shed light on the shape variations from 
the kidney sub-structures such as the cortex and medulla.

We further found statistically significant positive asso-
ciations between S2S distance and both BMI and WHR, 

Fig. 4 i) The first four modes of shape variation for the kidneys of the full cohort (N = 38,868). The mean shape and the shape at the ± three SD 
are displayed for each mode showing the S2S distance variation in mm. The kidney shape variations are shown in the anterior views for both left 
(L) and right (R) kidneys. ii) Hazard ratios and 95% CIs for the three outcomes: CKD, T2D, and hypertension for the left kidney. iii) Hazard ratios 
for the three disease outcomes for the right kidney adjusted for age, sex, ethnicity, body mass index, waist-to-hip ratio, sodium in urine, urea, alcohol 
intake frequency, smoking status, ibuprofen medication uptake, kidney volume and the first 4 principal component scores for the S2S distances. 
Significant associations for p < 0.05 are shown in red and non-significant associations in grey
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confirming previous associations between BMI and 
kidney measurements [37]. Lifestyle factors, including 
alcohol consumption and smoking, also demonstrated 
positive associations with S2S distances, revealing nota-
ble shape variations. Increased kidney volume has been 
linked to smoking [3], and both smoking and heavy 
drinking have been associated with kidney dysfunction 
and various health risks [38, 39].

The presence of CKD was associated with reduced 
S2S in both kidneys. From previous sonographic meas-
urements of the kidneys, it has been shown that a 
reduction in kidney volume can be used as an indica-
tor of CKD [40] enabling the use of kidney size for the 
prediction of kidney function in healthy populations as 
well as patients with CKD [41, 42]. Participants with 
T2D and hypertension exhibited significant variations 
in S2S distance, consistent with reports that non-insu-
lin dependent diabetics develop enlarged kidneys with 
hyperfiltration [43]. However, existing literature on the 
relationship between hyperfiltration and hypofiltration 
and kidney volume is unclear, showing both diabetes 
and hypertension being associated with hyperfiltration 
[44] while others reported no significant association 
between kidney volume and diastolic blood  pressure 
[3]. Unlike conventional kidney measurements, which 
report a broader relationship with markers of CKD, dia-
betes and hypertension [45, 46], we have demonstrated 
that there is a strong and distinct regionality of the kid-
ney shape in the face of these diseases, with simulta-
neous inward and outward adaptation. These findings 
emphasise the significance of utilising morphometric 
measurements to capture both global and local changes 
in the kidney morphology.

Interaction models within disease groups showed a 
stronger relationship between age and S2S distances 
in both kidneys with inward shape variation for all dis-
ease outcomes. More specifically our findings demon-
strate that the added effect of age and CKD may further 
explain the variations in the kidneys’ S2S distances. 
This could be explained by the loss of nephrons, which 
lead to the progressive loss of kidney function as CKD 
progresses [47]. It is worth noting that due to the clini-
cal heterogeneity of our current clinical cohort (CKD, 
T2D and hypertension), in terms of time of diagnosis 
and medication, as well as the possibility of collider bias 
or reverse confounding, it is not possible to identify 
causal mechanisms for the observed results. Despite 
this, our findings contribute to a better understanding 
of the complex relationship between kidney morphol-
ogy and various factors.

We further explored variations in kidney morphom-
etry by performing PCA on the full cohort. Our find-
ings show that the kidney shape variations are heavily 

biased by organ size, angle, straightness, length-to-
width ratio and length-to-thickness ratio, which are in 
line with previous findings [11]. Further work is needed 
to condense the entire coordinate matrix or deforma-
tion conventional matrix into most distinct modes to 
categorise population variations, which could be used 
in genetic association studies [48, 49].

We also investigated the risk of future disease out-
comes adjusted for relevant anthropometric variables, 
kidney volumes as well as kidney S2S distances. Our 
findings revealed contrasting associations between the 
SSA-based S2S variations corresponding to the length 
and width of the kidneys with risk of hypertension. 
Specifically, we observed a significant positive associa-
tion in the left kidney but a negative association in the 
right kidney. This difference may relate to the anatomi-
cal variations that predispose to atheroma in the renal 
artery which may then contribute to the associations 
with hypertension. This discrepancy may be also attrib-
uted to the significant anatomical differences in kidney 
length and width between the left and right sides. A 
previous study utilising sonographic measurements of 
renal size have also reported such disparities [50]. They 
also suggest that these differences may be attributed 
to the greater spatial capacity in the left kidney and a 
shorter length of the left renal artery compared to the 
right renal artery, resulting in increased blood flow 
and potentially an increase in kidney volume. We fur-
ther demonstrated that variations corresponding to the 
length and width in the left and right kidney were asso-
ciated with incidents of CKD. Previous studies meas-
uring kidney size by ultrasonography, reported that 
kidney length and volume were correlated with eGFR 
levels in the elderly, however they report that kidney 
length had lower specificity in predicting kidney dys-
function [42]. Other studies investigating the accuracy 
of sonographic kidney measurements to detect kidney 
impairment and histological change, reported that kid-
ney length to height ratio weighted for kidney echo-
genicity was able to detect kidney dysfunction [50]. 
Although these studies report the usefulness of the 
sonographic kidney measurements in detecting loss of 
kidney function, our study highlights the importance of 
the SSA-based shape features and the potential of inte-
grating morphological features with clinical outcomes 
to enhance our understanding of the risk of future dis-
ease outcomes and prognosis.

Our study has limitations. The UK Biobank is a large 
cross-sectional study that is subject to selection bias 
with a “healthier” cohort than the wider UK population, 
who are predominantly of European ancestry, excludes 
younger participants and potentially more severe cases 
[51, 52]. However, it has been shown that risk factor 
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associations are likely to be generalisable [53]. Further-
more, the current study is constrained by the limited 
resolution of the UK Biobank imaging acquisition which 
could lead to reduced sensitivity in detecting subtle mor-
phological changes or structural variations. Despite this 
limitation, our analysis was still able to capture signifi-
cant morphological variations in the kidneys in response 
to anthropometric traits and clinical conditions. Nev-
ertheless, it is plausible that higher resolution imaging 
could enhance our analysis and show more significant 
associations. Moreover, it is essential to acknowledge that 
the true association between variables may not be linear 
in the model parameters. Nonlinear models might offer 
a better fit to the data in such cases. Nonetheless, the 
advantages supporting the use of a linear model encom-
pass its simplicity, the ease with which it can be designed 
and adjusted for various factors, making it a commonly 
used tool in the field of biostatistics. Another potential 
limitation of this study is that to ensure sufficient num-
bers of participants in the CKD group, we included both 
participants based on CKD diagnosis codes reported at 
the imaging visit and participants based on eGFR levels 
taken at the initial assessment visit which precedes the 
imaging visit. Also, although albumin/creatinine ratio 
(ACR) is widely used to assess kidney function and diag-
nose diseases such as CKD, cardiovascular disease and 
diabetes [54, 55], this parameter was not used in this 
study as urine albumin was only available for 28% of 
the UK Biobank imaging cohort [56, 57]. Furthermore, 
this study has only a 3.7  years follow-up period since 
the imaging visit, which may limit the power of time-
to-event studies. Additional longitudinal measurements 
will be required to assess age-related changes in disease 
cohorts.

Conclusions
Our findings align with existing literature and can serve 
as a proof of principle, highlighting the potential scien-
tific and clinical significance of shape analysis techniques. 
We found statistically significant associations between 
S2S distances and disease outcomes including CKD, 
T2D and hypertension. While the S2S distances provide 
important insights into kidney shape variations in rela-
tion to disease states, further research may be needed 
to fully establish their clinical implications and utility in 
a broader clinical population. We also identified signifi-
cant associations between the SSA-based shape features 
corresponding to the size, length and width, and future 
events of disease outcomes. Therefore, the application 
of SPM and SSA-based shape analysis is feasible for 
improving our understanding of the variations in kidney 
shape associated with disease outcomes and their pre-
diction. These techniques will benefit future research in 

population-based cohort studies, in identifying associa-
tions between physiological, genetic and environmental 
effects on structure and function of the kidneys as well 
as the kidney sub-structures such as cortex and medulla.
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disease; T2D: Type-2 diabetes. Figure S2. Average template mesh con-
struction. Dixon MRI volumes from UK Biobank abdominal protocol (left) 
are used to produce subject-specific 3D kidney segmentations (middle), 
then images are registered to a common space and combined to produce 
average kidney template meshes. Figure S3. Flow diagram for the mass 
univariate regression (MUR) analysis of three-dimensional phenotypes. 
The phenotypes are used to construct the linear regression model. MUR 

https://doi.org/10.1186/s12882-023-03407-8
https://doi.org/10.1186/s12882-023-03407-8


Page 14 of 16Thanaj et al. BMC Nephrology          (2023) 24:362 

analysis produces parameter estimates ( ̂β  ) and their null distribution via 
permutation. Threshold free cluster enhancement (TFCE) is applied to the 
t-statistics from the regression analysis to produce a significance thresh-
old. The associated TFCE-derived p - values are corrected for multiple 
comparisons and mapped onto the kidney’s mesh for visualisation. This 
diagram was modified from [4]. Figure S4. Density plots showing the par-
ticipants with CKD that are diagnosed by doctor, shown in red (N =793) 
and selected by eGFR below 60 ml/min/1.73 m², shown in blue (N=466), 
across eGFR levels. Means for each CKD are shown in dashed lines. Figure 
S5. Density plots showing the participants with hypertension (N=14,113) 
across blood pressure readings. The thresholds applied are for systolic 
blood pressure (SBP) ≥ 140 mmHg shown in blue solid line and diastolic 
blood pressure (DBP) ≥ 90 mmHg shown in red solid line. Means for each 
blood pressure reading are shown in dashed lines. Figure S6. Histograms 
showing the statistically significant regression coefficients across the ver-
tices (~4,000) of the left kidney for each covariate in the model on the full 
cohort (N = 38,868) with positive associations in red and negative associa-
tions in blue. Beta coefficients are provided with units in standard devia-
tions for each covariate. Figure S7. Histograms showing the statistically 
significant regression coefficients across the vertices (~4,000) of the right 
kidney for each covariate in the model on the full cohort (N = 38,868) with 
positive associations in red, negative associations in blue. Beta coefficients 
are provided with units in standard deviations for each covariate. Figure 
S8. Histograms showing the statistically significant regression coefficients 
across the vertices (~4,000) of the left kidney for each covariate in the 
model on the full cohort (N = 38,868) separated by gender with positive 
associations in red, negative associations in blue, female (N = 20,013) in 
light colour and male (N = 18,855) in darker colour. Beta coefficients are 
provided with units in standard deviations for each covariate. Figure S9. 
Histograms showing the statistically significant regression coefficients 
across the vertices (~4,000) of the right kidney for each covariate in the 
model on the full cohort (N = 38,868) separated by gender with positive 
associations in red, negative associations in blue, female (N = 20,013) 
in light colour and male (N = 18,855) in darker colour. Beta coefficients 
are provided with units in standard deviations for each covariate. Figure 
S10. Three-dimensional statistical parametric maps (SPMs) of kidney 
morphology, projections are anterior (left plots) and posterior (right plots) 
views for both left (L) and right (R) kidneys in both anterior (left) and 
posterior (right) views. The SPMs show the local strength of association for 
each covariate in the model with S2S distances on the male cohort (N = 
18,855). Yellow contour lines indicate the boundary between statistically 
significant regions (p < 0.05) after correction for multiple testing, with 
positive associations in bright red and negative associations in bright blue. 
Regression coefficients are shown with units in standard deviations for 
each covariate. Figure S11. Three-dimensional statistical parametric maps 
(SPMs) of kidney morphology, projections are anterior (left plots) and 
posterior (right plots) views for both left (L) and right (R) kidneys in both 
anterior (left) and posterior (right) views. The SPMs show the local strength 
of association for each covariate in the model with S2S distances on the 
female cohort (N = 20,013). Yellow contour lines indicate the boundary 
between statistically significant regions (p < 0.05) after correction for 
multiple testing, with positive associations in bright red and negative 
associations in bright blue. Regression coefficients are shown with units 
in standard deviations for each covariate. Figure S12. The percentage of 
shape variation explained by the first ten modes of PCA for the kidneys of 
the full cohort (N = 38,868). Video S1. The first 4 modes of shape variation 
for the kidneys of the full cohort (N = 38,868). The mean shape and the 
shape at the +/- 3 standard deviations are displayed for each mode show-
ing the S2S distance change in mm. The right kidney is shown on the left 
side and the left kidney on the right side of the video.
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