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Abstract
Background  Delayed graft function (DGF) is an important complication after kidney transplantation surgery. The 
present study aimed to develop and validate a nomogram for preoperative prediction of DGF on the basis of clinical 
and histological risk factors.

Methods  The prediction model was constructed in a development cohort comprising 492 kidney transplant 
recipients from May 2018 to December 2019. Data regarding donor and recipient characteristics, pre-transplantation 
biopsy results, and machine perfusion parameters were collected, and univariate analysis was performed. The least 
absolute shrinkage and selection operator regression model was used for variable selection. The prediction model 
was developed by multivariate logistic regression analysis and presented as a nomogram. An external validation 
cohort comprising 105 transplantation cases from January 2020 to April 2020 was included in the analysis.

Results  266 donors were included in the development cohort, 458 kidneys (93.1%) were preserved by hypothermic 
machine perfusion (HMP), 96 (19.51%) of 492 recipients developed DGF. Twenty-eight variables measured before 
transplantation surgery were included in the LASSO regression model. The nomogram consisted of 12 variables from 
donor characteristics, pre-transplantation biopsy results and machine perfusion parameters. Internal and external 
validation showed good discrimination and calibration of the nomogram, with Area Under Curve (AUC) 0.83 (95%CI, 
0.78–0.88) and 0.87 (95%CI, 0.80–0.94). Decision curve analysis demonstrated that the nomogram was clinically useful.
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Introduction
Delayed graft function (DGF) is a common complication 
in organ transplantation. DGF is a form of acute renal 
failure [1] that can result in increased allograft immuno-
genicity, leading to subsequent acute rejection and graft 
failure. As reported earlier [2], DGF is remarkably associ-
ated with long-term dysfunction. There is no consensus 
in the literature about how to define DGF. The straight-
forward United Network for Organ Sharing definition 
of DGF is the need for at least one dialysis treatment in 
the first week after transplantation (classical DGF) [3]. 
According to the 2018 Annual Report of the Organ Pro-
curement and Transplantation Network/Scientific Reg-
istry of Transplant Recipients (OPTN/SRTR) [4] and 
the 2016 Annual Report of the European Renal Asso-
ciation-European Dialysis and Transplant Association 
(ERA-EDTA) Registry [5], the incidence of DGF ranged 
between 20% and 30% in the United States and almost 
50% in Europe.

DGF can lead to several health-related consequences. 
It not only increases the risk of graft failure but also 
prolongs hospitalization, thereby increasing healthcare-
related expenditure. Additionally, a high rate of mortality 
is reported in recipients diagnosed to have DGF [6].

DGF is a multifactorial event. The risk factors of DGF 
include donor and recipient characteristics, pre-trans-
plantation biopsy results [7], and machine perfusion 
parameters [8]. Irish et al. developed a primary DGF 
prediction model based on a nomogram by consider-
ing donor and recipient clinical factors alone [9]. The 
incorporation of machine perfusion parameters and 
pre-transplantation biopsy results into a clinical vari-
able-based predictive model can improve its prognos-
tic performance. Traditional regression models such as 
logistic regression, however, are limited due to overfitting 
when several covariates are included [10]; this implies 
that regression models fit the training cohort well, but 
they cannot be generalized to sufficiently reflect real-
world cases. Moreover, variable selection is important if a 
high-dimensional feature exists [11].

In the least absolute shrinkage and selection operator 
(LASSO) regression model, the estimates of the regres-
sion coefficients are sparse, which implies that many 
components have exactly zero values. Thus, LASSO auto-
matically deletes unnecessary covariates. LASSO has 
many desirable properties for regression models with 
several covariates.

The present study aimed to develop and validate a 
comprehensive predictive model to better stratify kid-
ney transplant recipients according to DGF risk. We used 
the LASSO-logistic regression method to select suitable 
covariates from a vast amount of clinical and histological 
data obtained from pre-transplantation biopsy of kidney 
allografts. We also investigated the gain in the accuracy 
of the comprehensive nomogram model by incorporating 
histological signature and clinical risk factors for the pre-
operative prediction of DGF.

Materials and methods
Patients and ethical approval
This retrospective study was approved by the Ethics 
Committee of the First Affiliated Hospital of Xi’an Jiao-
tong University (Shaanxi, China), No. XJTU1AF2015LSL 
− 058. All participants signed the informed consent form. 
The study protocol complied with the Declaration of Hel-
sinki and Istanbul principles. Kidneys for transplantation 
were obtained from the Coordination Group of Shaanxi 
Red Cross Organization and harvested by the Organ 
Procurement Organization (OPO). No organs were har-
vested from executed prisoners. The immediate relatives 
of the donors voluntarily offered organ donation. Organ 
allocation was performed based on the China Organ 
Transplant Response System, and the process was kept as 
double-blind between donors and recipients.

Immunosuppressive regimen
On the day of transplantation surgery, all recipients were 
intravenously administered induction therapy by using 
rabbit anti-thymocyte globulin (r-ATG, 50 mg or 75 mg), 
ATG-Fresenius (ATG-F, 200–300  mg), or basiliximab 
(40 mg). The dose of r-ATG or ATG-F was tapered until 
discontinuation on postoperative day 5, and basiliximab 
40 mg was provided again on postoperative day 4. Since 
the first day after transplantation, each recipient received 
the triple immunosuppressive regimen consisting of a 
mycophenolic acid drug (MPA: enteric-coated mycophe-
nolate sodium or mycophenolate mofetil), a calcineu-
rin inhibitor (CNI: tacrolimus or cyclosporine A), and 
prednisone.

Study design
The inclusion criteria for donors were as follows: (i) had 
clear identity and met the medical and ethical conditions 
for organ transplantation; (ii) had no history of kidney 
disease, drug abuse, and active infection diseases such 
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as HIV and HBV; (iii) had no history of diabetes melli-
tus with severe complications; and (iv) had no history of 
malignant tumor.

Recipients were excluded if: (1) recipients who devel-
oped graft failure within 48 h of the transplant operation; 
(2) had a positive cross match or positive panel-reactive 
antibody (over 30%); (3) had an active infection, hepa-
titis, or abnormal hepatic function; or (4) had leuko-
penia (leukocytes < 3000/mm3), thrombocytopenia 
(platelets < 100,000/mm3), or severe anemia (hemoglo-
bin < 60 g/L); (4) recipients who received re-transplanta-
tion or dual kidneys; (5) children’s kidney (6) recipients 
who received combined liver transplant; (7) Recipients 
with body mass index (BMI) < 28 kg/m2.

The donor scoring system included the donor’s age, 
primary disease, sCr levels prior to organ recovery, his-
tory of hypertension, CPR incidence and hypotension 
duration. The value of donor clinical scores in predict-
ing graft performance was previously developed and 
validated from a thousand-patient cohort at our center 
[12]. Donors above 16 years of age with confirmed iden-
tity; with no history of kidney diseases, diabetes, drug 
abuse, and uncontrollable psychotic symptoms; who 
were not actively infected with hepatitis B and C viruses, 
human immunodeficiency virus, bacteria, and fungi; and 
in whom the isolated renal had a warm ischemia time 
(WIT) < 30  min and a cold ischemia time (CIT) < 12  h 
were included in the study. At least one kidney from each 
donor was used for single renal transplantation. Executed 
prisoners were excluded from the study.

DGF was considered as the primary outcome of this 
study, and it was defined as the need for dialysis [13] in 
the first week after kidney transplant surgery. Two inde-
pendent datasets were used in this study, including the 
training cohort and the validation cohort. The train-
ing cohort was used to construct the predictive model 
and included 492 kidney transplant recipients between 
May 2018 and December 2019. The independent valida-
tion cohort was used to test the predictive model and 
included 105 recipients who underwent transplantation 
surgery between January 2020 and April 2020.

Variables and samples
Three transplant surgeons independently assessed the 
clinical characteristics of the included donors and recipi-
ents. The donor clinical characteristics included age, gen-
der, body mass index (BMI), ABO blood type, cause of 
death (cardiac death), hypertension history (presence or 
absence), hypotension procedure (systolic pressure < 100 
mmHg, presence or absence), cardiopulmonary resus-
citation (CPR) procedure (presence or absence), ter-
minal renal function (including serum creatinine (SCr) 
and blood urea nitrogen (BUN) levels), and urine vol-
ume. The recipient clinical characteristics included age, 

gender, BMI, primary disease, ABO blood type, dialysis 
method (hemodialysis or peritoneal dialysis) and dura-
tion, human leukocyte antigen (HLA) mismatch, pre-
transplant panel reactive antibody (PRA) level (positive 
or negative), and type of induction therapy (r-ATG, ATG-
F, or basiliximab).

After organ procurement, the kidneys were preserved 
by static cold storage (SCS) or hypothermic machine 
perfusion (HMP). HMP was performed using the Life-
Port Kidney Transporter machine (Organ Recovery Sys-
tems, Chicago, IL, USA). The initial pump pressure was 
set as 30–40 mmHg. The machine recorded the follow-
ing five parameters: pressure, temperature, resistance, 
flow rate, and duration. The following characteristics of 
organ transport were recorded by OPO and transplant 
surgeons: transport method (SCS or HMP), machine 
perfusion parameters (initial and terminal pressure, flow 
rate, and resistance), cold ischemic time (CIT), and warm 
ischemic time (WIT).

Pre-implantation biopsies were performed by the 
transplant surgeon by using a 16G Bard needle. One 
sample was obtained from each kidney; fixed in form-
aldehyde; embedded in paraffin; sectioned; and stained 
with hematoxylin and eosin, periodic acid-Schiff, Mas-
son’s trichrome, and silver methenamine. Each section 
was evaluated by two pathologists independently. Light 
microscopy was performed, and Banff 2022 classifica-
tion [14] was used to evaluate chronic histopathological 
changes in the kidney. Acute changes, including acute 
tubular injury (ATI) and arteriolar smooth muscle vacu-
olar degeneration, were also noted. Each chronic or acute 
lesion was recorded on the scale of 0–3 points according 
to the degree of severity. Remuzzi score [15] and Banff 
score were calculated according to semi-quantitative 
chronic histopathological changes. All biopsies were per-
formed pre-implantation and after conducting HMP/
SCS.

Development of a nomogram model
Continuous variables are reported as mean ± SD (stan-
dard deviation), and categorical variables are reported 
as primary frequencies (percentages). HMP parameters, 
histological lesions, and donor and recipient clinical 
characteristics were analyzed using the Mann-Whitney 
U test or the chi-square test to determine significant dif-
ferences between the DGF and non-DGF groups. Signifi-
cant variables were included in the multivariate model. 
However, because of the small number of events relative 
to the number of factors and to obtain an optimal model 
with as few factors as possible, we used L1-penalized 
LASSO regression for multivariate analysis [16]; this 
was the first-step variable selection process. This logis-
tic regression model penalizes the absolute size of the 
regression coefficients according to the lambda value. 
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With larger penalties, the estimates of weaker factors 
shrink toward zero; consequently, only the strongest pre-
dictors remain in the model, and weaker predictors are 
excluded. To avoid overfitting models to idiosyncratic 
relationships in the training cohorts, the variable selec-
tion process used 10-fold cross-validation to select the 
optimal level of tuning or penalization, as measured by 
the Bayesian information criterion. A nomogram model 
was developed using variables with nonzero coefficients 
through multivariate logistic regression.

Validation and performance of the nomogram
Calibration curves were plotted to calibrate the predic-
tion nomogram, accompanied with the Hosmer-Lem-
eshow (H-L) test. A nonsignificant test result (P > 0.05) 
implies that the calibration of the model is inaccurate. To 
assess the discrimination of the prediction nomogram, a 
receiver operating characteristic curve (ROC) was plot-
ted, and area under the curve (AUC) values were deter-
mined. Calibration curves and ROC of the validation 
cohort were obtained to validate this nomogram.

Decision curve analysis (DCA) was performed to 
determine the clinical usefulness of the nomogram by 

quantifying the net benefits at different threshold prob-
abilities in the validation cohort [17].

Pre-transplant biopsies
Pre-implantation biopsies were performed by the trans-
plant surgeon using a 16-g Bard needle. Two biopsies 
were performed for each donor kidney. One piece of 
tissue was embedded for immunofluorescence stain-
ing, including IgA, IgM, IgG, C3, C1q, and fibrin-related 
antigens. Another biopsy tissue was fixed with formalde-
hyde, embedded in paraffin, sectioned and stained with 
hematoxylin and eosin, periodic acid Schiff, Masson tri-
chrome, and hexamine silver. The donor kidney biopsy 
tissue contained at least 25 glomeruli, and Remuzzi 
score was immediately performed according to the rapid 
biopsy results [15]. Remuzzi’s method was used to evalu-
ate the chronic histopathological changes of the donor 
kidney, and the ATI of the donor kidney was evaluated. 
According to Remuzzi scoring criteria, the degree of 
glomerular sclerosis, renal tubular atrophy, interstitial 
fibrosis and arterial lumen stenosis of the donors were 
evaluated by pathologists with a score of 0–3. All biopsies 
were performed before transplantation, but histopatho-
logical diagnoses were determined after transplantation 
to avoid potential selection bias based on histopathologi-
cal findings.

Statistical analysis
Statistical analysis was conducted using R version 4.0.0 
(www.Rproject.org) and GraphPad Prism v9.0. LASSO 
logistic regression was performed using the “glmnet” 
package. The packages “rms,” “pROC,” and “Decision-
Curve” were used to plot the nomogram, ROC and AUC, 
and DCA, respectively. The H-L test was performed 
using the “generalhoslem” package. The reported signifi-
cance levels were two-sided and set at 0.05.

Results
Donor and recipient clinical characteristics
The development cohort comprised 492 kidney trans-
plant recipients; of these 492 recipients, 96 (19.51%) 
developed DGF after transplant surgery. Table  1 shows 
the baseline characteristics of recipients and univari-
ate analysis results. All recipients included those who 
accepted kidney transplant surgery for the first time. The 
PRA level alone was significantly different between DGF 
and non-DGF recipients (P = 0.028). No significant dif-
ferences were observed between the DGF and non-DGF 
groups in terms of recipient age, gender, BMI, primary 
disease, blood type, pre-transplant dialysis duration, 
HLA mismatch, SCr level, and perioperative induction 
therapy. Table S2 shows the clinical characteristics of the 
validation cohort.

Table 1  Comparison of recipient characteristics between the 
DGF and non-DGF groups in the development cohort
Recipient characteristics Non-DGF 

Group
DGF Group P 

value
n = 396 n = 96

Age (years) 36.08 ± 9.61 37.66 ± 8.57 0.142
Male, n (%) 275 (69.4%) 72 (75.0%) 0.319
BMI (kg/m2) 20.10 ± 1.18 19.98 ± 0.79 0.798
Primary disease, n (%) 0.895
Chronic 
glomerulonephritis

283 (71.5%) 75 (78.1%)

IgA nephropathy 56 (14.1%) 10 (10.4%)
Diabetic nephropathy 10 (2.5%) 2 (2.1%)
Polycystic kidney 18 (4.5%) 4 (4.2%)
Purpura nephritis 9 (2.3%) 4 (4.2%)
Others 20 (5.1%) 1 (1.0%)
Hemodialysis (before 
transplant), n (%)

333 (84.1%) 74 (77.9%) 0.401

Dialysis duration (months) 19.71 ± 19.49 24.04 ± 26.80 0.075
HLA mismatches 2.0 (1.0, 2.0) 2.0 (1.0, 2.0) 0.337
PRA positive, n (%) 59 (14.8%) 6 (6.3%) 0.028
Pre-transplant serum 
creatinine (µmol/L)

892.41 ± 254.83 938.02 ± 244.74 0.114

Induction therapy, n (%) 0.581
r-ATG 255 (64.6%) 62 (64.6%)
ATG-F 57 (14.4%) 18 (18.8%)
Basiliximab 58 (14.7%) 10 (10.4%)
Others 26 (6.56%) 6 (6.3%)
Data are expressed as mean ± SD, n (%), or median (interquartile range). DGF, 
delayed graft function; BMI, body mass index; HLA, human leukocyte antigen; 
PRA, panel reactive antibody; r-ATG, rabbit anti-thymocyte globulin; ATG-F, 
anti-thymocyte globulin Fresenius

http://www.Rproject.org
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The baseline information on the donors is summa-
rized in Table 2. A total of 266 donors were included in 
the development cohort. Overall, the mean age (SD) of 
donors in the cohort was 50.82 ± 12.24 years; 207 donors 
(77.8%) were males. Trauma (37.2%), and cerebrovas-
cular accident (54.1%) were the main reasons of death 
of the donors. The mean (SD) SCr level of the donors 
was 112.45 ± 77.70 µmol/L. Protein in the urine of 16 
donors (6.0%) was detected by urine tests before pro-
curement surgery. Univariate logistic regression analysis 
showed that donor hypertension (odds ratio [OR] = 1.22, 
95% confidence interval [CI]: 1.01–1.37, P < 0.001), CPR 
(OR = 2.68, 95% CI: 1.00–7.18, P = 0.049), and terminal 
SCr level (OR = 1.01, 95% CI: 1.00–1.01, P = 0.002) signifi-
cantly influenced DGF onset.

HMP parameters
A total of 458 kidneys (93.1%) were preserved by HMP. 
Compared to SCS, HMP did not significantly reduce 
DGF incidence (SCS 19.8% vs. HMP 14.7%, P = 0.611). 
HMP parameters consisted of initial and terminal per-
fusion pressure (mmHg), perfusion flow (mL/min), and 
perfusion resistance (mmHg.min.mL− 1). As shown in 
Table  3, all parameters exhibited significant differences 
between the DGF and non-DGF groups.

Pre-transplant biopsies
Chronic and acute lesions in pre-transplant biopsies were 
assessed through semi-quantitative approaches. Table  4 
shows the distribution of pathological lesions between 
the DGF and non-DGF groups. Except for arterial hya-
line degeneration, the distribution of all chronic and 
acute pathological lesions showed significant differences 
between the DGF and non-DGF groups. The distribution 
of arterial hyaline degeneration was not significantly dif-
ferent between the DGF and non-DGF group (P = 0.541).

Predictor selection
Twenty-eight variables measured before transplantation 
surgery were included in the LASSO regression model. 
After LASSO regression selection, 12 variables remained 
as potential predictors (Fig. 1A and B) and were features 
with nonzero coefficients in the LASSO logistic regres-
sion model. These 12 predictors included six donor 
characteristics (death reason, hypotensive procedure, 
CPR, BUN, SCr, and hypertension history), two organ 
preservation variables (initial perfusion resistance and 
WIT), and four pre-transplant biopsy features (mesan-
gial matrix hyperplasia, moderate and severe ATI, and 
Banff score). Because of the high relevance of the rela-
tionship between terminal BUN and SCr levels, SCr was 
eliminated from the list of predictors to avoid multicol-
linearity. Severe ATI was integrated with moderate ATI 
because of its small sample size. Therefore, 12 variables 

with nonzero coefficients in the LASSO logistic regres-
sion model were reduced to 10 variables.

Table 5 shows the variables and their regression coef-
ficients, LASSO-derived multivariate ORs, and the inter-
cept of the model. The model identified CPR, terminal 
BUN level, and ATI as independent predictors.

Construction of the preoperative DGF risk score
The DGF risk score was constructed on the basis of the 
coefficients from the logistic model. We used the fol-
lowing formulas for the logistic model to calculate the 
probability and 95% CIs [18]: probability = exp(∑β × X)/
[1 + exp(∑β × X)]; lower limit of 95% CI = exp[∑Xn × βn-∑z 
× SE(β)]/{1 + exp[∑Xn × βn-∑z × SE(β)]}; and upper limit 
of 95% CI = exp[∑Xn × βn + ∑z × SE(β)]/{1 + exp[∑Xn × βn 
+ ∑z × SE(β)]}. The model that incorporated the above 
predictors was developed and presented as a nomogram 
(Fig. 2).

Table 2  Donor characteristics
Donor characteristics Parameter P value Univari-

ate logistic 
regression
OR (95%CI)

n = 266
Age (mean ± SD, years) 50.82 ± 12.24 0.654
Male/female ratio 207/59 (77.8%) 0.768
BMI (mean ± SD, kg/m2) 22.91 ± 2.90 0.542
Cause of death (n, %)
Trauma 99 (37.2%)
Cerebrovascular disorders 144 (54.1%)
Hypoxic ischemic encepha-
lopathy Tumor

13 (4.9%)

Others 10 (3.7%)
History of hypertension 
(n, %)

167 (62.7%) < 0.001 1.22 (1.01–1.37)

Terminal sCr (mean ± SD, 
µmol/L)

112.45 ± 77.70 0.002 1.01 (1.00–1.01)

CPR 50 (18.9%) 0.049 2.68 (1.00–7.18)
Data are expressed as mean ± SD, n (%), or median (interquartile range). BMI, 
body mass index; CPR, cardiopulmonary resuscitation; sCr: serum creatinine

Table 3  Comparison of HMP parameters between the DGF and 
non-DGF groups
Parameters Non DGF 

group
DGF group P value

Initial stage
Pressure (mmHg) 34.85 ± 3.74 36.49 ± 3.74 < 0.001
Flow (mL/min) 90.43 ± 18.08 84.31 ± 19.09 0.004
Resistance 
(mmHg.min.mL− 1)

0.37 ± 0.11 0.42 ± 0.14 < 0.001

Terminal stage
Pressure (mmHg) 29.87 ± 6.40 32.46 ± 5.63 < 0.001
Flow (mL/min) 108.26 ± 16.54 100.99 ± 19.09 < 0.001
Resistance 
(mmHg.min.mL− 1)

0.24 ± 0.09 0.29 ± 0.11 < 0.001
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Performance of the preoperative DGF risk score
The mean AUC values based on the data from the devel-
opment and validation cohorts were 0.83 (95% CI, 0.78–
0.88) and 0.87 (95% CI, 0.80–0.94), respectively (Fig. 3A 
and B). The calibration curve of the nomogram for DGF 
prediction demonstrated good agreement between the 
predicted and observed values in the development and 
validation cohorts (Fig. 3C and D). The H-L test yielded 
a nonsignificant statistical value (P = 0.712 and P = 0.509).

Clinical application
Figure 4 presents the DCA for the DGF prediction nomo-
gram. The decision curve showed that if the threshold 
probability of a recipient is > 5% and < 70%, the use of the 
nomogram to predict DGF adds more benefit than that 

achieved with either the treat-all-patients scheme or the 
treat-none scheme.

Discussion
Precise and early detection of recipients with a high risk 
of developing DGF before transplantation surgery is cru-
cial as DGF is associated with adverse outcomes [19]. 
First, the occurrence of DGF increases the risk of acute 
rejection and long-term graft loss [20]. Second, DGF 
prolongs hospitalization, resulting in additional finan-
cial burden [20]. In a 5-year study of patients following 
kidney transplantation, early re-hospitalization after 
transplantation was a common event, occurring in 32% 
of the cohort, and only a few (9%) of these events had 
evidence of prevention. The leading causes of readmis-
sions included surgical complications (15%), rejection 
(14%), volume metastasis (11%), and systemic and surgi-
cal wound infections (11% and 2.5%, respectively). Only 
19 cases of rehospitalization (8%) met the criteria for pre-
vention. The causes of early rehospitalization were var-
ied, and the quality index after renal transplantation was 
also low [21].

Presently, the pathogenetic mechanisms of DGF 
remain unknown, and it is generally believed that both 
immune and nonimmune factors promote the occur-
rence and development of DGF [22]. These factors 
include donor-related factors (ischemia duration, age, 
kidney donor profile index [KDPI], end-stage sCr, history 
of hypertension, and CPR history), receptor-related fac-
tors (immune response, ischemia-reperfusion injury, and 
dialysis duration), and surgery-related factors [23]. The 
combined effect of these factors increases the allogenic 
response of organs, thus affecting their long-term sur-
vival. On the basis of etiology, predisposition, and under-
lying mechanisms, it is reasonable to infer that there are 
different subtypes of DGF, and consequently, the prog-
nosis varies [24]. A recent study [25] reported commonly 
accepted risk factors for DGF, which included donation 
after cardiac death (DCD) donors, long CIT, long-dis-
tance transportation, pre-transplant dialysis recipients, 
past transplant recipients, diabetic recipients and higher 
BMI, longer waiting time, and donor-recipient mismatch. 
DGF is associated with an increased incidence of acute 
rejection and with poor long-term transplant outcomes. 
It is also associated with a lower quality of life. DGF 
leads to an increased financial burden; in a study based 
on the Premier Healthcare database, DGF was found to 
be associated with an average cost increase of approxi-
mately $18,000, an additional 6-day stay in the hospital, 
and an additional 2-day stay in the intensive care unit. 
Finally, together with the financial burden on the health-
care system, patients with DGF are also socially and psy-
chologically affected, as they are often overwhelmed by 

Table 4  Pre-transplant biopsy results in the DGF and non-DGF 
groups
Lesions in 
pre-transplant 
biopsy

Degree Non DGF 
group

DGF group P value

Chronic lesions
Glomerular 
sclerosis

None 257 (65.1%) 40 (41.7%) < 0.001
Mild 134 (33.9%) 51 (53.1%)
Moderate 4 (1.0%) 5 (5.2%)
Severe 0 (0.0%) 0 (0.0%)

Tubular atrophy None 256 (64.8%) 40 (41.7%) < 0.001
Mild 135 (34.2%) 27 (28.1%)
Moderate 4 (1.0%) 0 (0.0%)
Severe 0 (0.0%) 0 (0.0%)

Interstitial fibrosis None 257 (65.1%) 40 (41.7%) < 0.001
Mild 134 (33.9%) 51 (53.1%)
Moderate 4 (1.0%) 5 (5.2%)
Severe 0 (0.0%) 0 (0.0%)

Arterial intimal 
hyperplasia

None 204 (51.8%) 29 (30.2%) < 0.001
Mild 146 (37.1%) 40 (41.7%)
Moderate 43 (10.9%) 27 (28.1%)
Severe 1 (0.3%) 0 (0.0%)

Mesangial matrix 
hyperplasia

None 284 (75.1%) 41 (46.6%) < 0.001
Mild 83 (22.0%) 40 (45.5%)
Moderate 11 (2.9%) 5 (5.7%)
Severe 0 (0.0%) 2 (2.3%)

Arterial hyaline 
degeneration

None 238 (60.4%) 52 (54.2%) 0.541
Mild 72 (18.3%) 23 (24.0%)
Moderate 82 (20.8%) 20 (20.8%)
Severe 2 (0.5%) 1 (1.0%)

Acute lesions
Acute tubular 
injury

None 0 (0.0%) 0 (0.0%) < 0.001
Mild 366 (92.7%) 63 (65.6%)
Moderate 26 (6.6%) 30 (31.2%)
Severe 3 (0.8%) 3 (3.1%)

Arteriolar smooth 
muscle vacuolar 
degeneration

None 113 (81.9%) 26 (70.3%) 0.040
Mild 19 (13.8%) 11 (29.7%)
Moderate 6 (4.3%) 0 (0.0%)
Severe 0 (0.0%) 0 (0.0%)
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the frequency of outpatient visits and their absence from 
home.

Currently, the accurate prediction of DGF is difficult to 
achieve; however, it is possible to identify high-risk DGF 
recipients at an early stage on the basis of a range of clini-
cal and laboratory indicators. Our study included path-
ological and clinical data of 492 deceased donor (DD) 
kidney transplantation cases. The variables were selected 

by LASSO regression, and the multivariate logistic 
regression model with DGF as the endpoint was finally 
established. The nomogram of the model was drawn, and 
the practicability of the prediction model for evaluating 
donor kidney quality was assessed and verified.

Donor and recipient characteristics have significant 
implications for DGF prediction. In the last decade, 
Irish 2010 [9], Nyberg 2001 [26], Jeldres 2009 [19], and 

Fig. 1  Variable selection using the least absolute shrinkage and selection operator (LASSO) binary logistic regression model. (A) Tuning parameter (λ) 
selection in the LASSO model used 10-fold cross-validation with the minimum criteria. The binomial deviance was plotted versus log(λ). Dotted vertical 
lines were drawn at the optimal values by using the minimum criteria and the 1-standard error of the minimum criteria (the 1-SE criteria). A λ value of 
0.012, with log (λ), -4.423 was chosen (1-SE criteria) according to 10-fold cross-validation. (B) LASSO coefficient profiles of the 28 variables. A coefficient 
profile plot was produced against the log(λ) sequence. A vertical line was drawn at the value selected using 10-fold cross-validation, where optimal λ 
resulted in 12 nonzero coefficients (except for the intercept)
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Chapal 2014 [27] conducted studies on the DGF predic-
tive model. The variables included in each scoring sys-
tem were different. The main DGF risk factors reported 
in these studies included donor age, BMI, terminal SCr 
level, cause of death, hypertension history, diabetes his-
tory, WIT, CIT, recipient BMI, HLA mismatch, PRA 
level, dialysis method and duration, and induction ther-
apy method. In the present study, we extracted these risk 
factors and analyzed their correlation with DGF through 
the univariate analysis.

In our present study, CIT, recipient BMI, HLA mis-
match, and dialysis method and duration were not cor-
related with DGF occurrence, mainly because of the 
following reasons. The recipients in China had a shorter 
waiting time before transplantation surgery. According 
to the 2015 Annual Chronic Kidney Disease Report in 
China [28], the median waiting time of domestic patients 
with uremia was 17.53 months, and approximately 40% 
of the recipients received kidney transplant surgery 
within 1 year after entering the waiting list. However, 
the median waiting time in USA for kidney transplant 
was 49.2 months [29]. Relatively, patients with uremia 
in China have shorter waiting time for kidney transplant 
and shorter dialysis time before transplantation. Uremia 
is a wasting disease. Longer waiting time and dialysis 
duration will deteriorate patients’ condition and decrease 
their tolerance to surgery, thereby resulting in a high risk 
of postoperative complications such as DGF and PNF. 

The variations in national and demographic character-
istics can explain the differential risk factors of DGF to 
some extent.

When constructing the predictive model, it is worth 
noting that the effect of CIT on DGF is not significant, 
contrary to some previous studies [30]. In recent years, 
with the advancement of medicine and the deepening 
of DGF research, some researchers have found that the 
influence of CIT on DGF is gradually diminishing. For 
example, the survival rates of animal models of allografts 
treated with hydrogen sulfide in cold storage were signifi-
cantly improved compared to controls (P < 0.01) [31]. In 
a large clinical database, also found that recipients using 
immunosuppressants after KT could also disregard the 
effects of CIT [27]. In analyzing data on 90,810 recipients 
of DD in the United States from 2010 to September 2018, 
reported that the risk of CIT for DGF was not significant 
[27]. Advances in the preservation of donor kidneys dur-
ing transport, such as LifePort cryogenic machine per-
fusion, have significantly reduced the impact of CIT on 
renal ischemia-reperfusion injury [32]. Therefore, the 
series of trials and clinical cohort analyses described 
above suggest that central CIT has little significance for 
predicting DGF effects. In addition, using the original 
database, we found that the gender ratios of donors and 
recipients were highly imbalanced. This is related to the 
insufficient coverage of social ideology, family income 
and hospital propaganda. This imbalance will lead to sig-
nificant errors in the model.

Previous studies have shown that HMP is beneficial and 
leads to significantly lower risk of DGF [33]. However, in 
the present study, no significant difference in DGF risk 
was observed between HMP-preserved donor kidneys 
and SCS-preserved donor kidneys; this might be due to 
the small number of SCS-preserved donor kidneys. The 
present study analyzed the correlation between HMP 
parameters and DGF. The results showed that the initial 
and terminal perfusion pressure, flow rate, and resistance 
parameters were significantly correlated with DGF; how-
ever, the difference in various parameters before and after 
perfusion was not significantly correlated with DGF. This 
study included a larger number of patients than a pre-
vious study and added the influence of Banff score and 
HMP on results. This finding was consistent with the 
results of previous research [8, 34–36].

Most chronic and acute histologic lesions in pre-
transplant biopsy are independent risk factors of DGF; 
however, DGF predictive models have rarely included 
these histologic factors. The most important and final 
argument for using the nomogram is based on the com-
bination of pre-transplant biopsies with donor clinical 
characteristics and HMP parameters. By performing vari-
able selection through LASSO regression, this nomogram 
was significantly better than previous models reported in 

Table 5  Variables selected by LASSO regression for predicting 
DGF
Variables β P value OR (95%CI) VIF
Donor variables
Died of CVA or HIE 0.242 0.556 1.27 (0.57–2.87) 1.777
Hypotensive procedure 
(SBP < 100 mmHg)

0.447 0.163 1.56 (0.83–2.94) 1.185

CPR procedure 0.906 0.041 2.47 (1.01–5.84) 1.051
Terminal BUN (mmol/L) 0.112 < 0.001 1.12 (1.06–1.18) 1.849
Hypertension history 0.425 0.283 1.53 (0.71–3.38) 1.136
HMP parameters
Initial perfusion resistance 
(mmHg·min·mL− 1)

2.019 0.087 7.54 
(0.72–77.11)

1.068

WIT (min)
CIT (h)

0.078
0.369

0.217
0.07

1.08 (0.95–1.23)
1.05 (0.97–1.11)

1.051
1.124

Pre-transplant biopsies
Mesangial matrix 
hyperplasia

0.706 0.052 2.03 (0.99–4.15) 1.586

Moderate or severe ATI 2.131 < 0.001 8.42 
(4.22–17.22)

1.059

Banff score 0.122 0.136 1.13 (0.96–1.33) 1.962
β is the regression coefficient. Terminal BUN, initial perfusion resistance, WIT, 
and Banff score were entered into the logistic model as continuous variables, 
and the other variables were entered as dichotomous variables. Abbreviations: 
CVA, cerebrovascular accident; HIE, hypoxic encephalopathy; SBP, systolic 
pressure; CPR, cardiopulmonary resuscitation; BUN, blood urea nitrogen; HMP, 
hypothermia machine perfusion; WIT, warm ischemia time; CIT, Cold ischemia 
time; ATI, acute tubular injury; VIF, variance inflation factor
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the above-mentioned literature [8, 34, 35]. The AUC val-
ues of this nomogram were 0.83 and 0.87 in the develop-
ment and validation cohorts, respectively. These results 
demonstrate the potential utility of this model to predict 
patients at risk of developing DGF. The old model was 
compared with the current nomogram model to reflect 
the current era of kidney transplantation. The study pop-
ulation was refined to improve the prediction accuracy of 
the model, which can also be used to predict long-term 
graft survival before transplantation.

The established DGF risk prediction model derived and 
validated a potential clinical prediction tool rather than 
a decision rule. In this study, chronic and acute lesions 
in pretransplant biopsies were assessed by semi-quanti-
tative methods. There were significant differences in the 
distribution of chronic and acute lesions between the 
DGF and non-DGF groups, except for arterial hyaline 
degeneration. The pre-transplantation biopsy score can 
be used to inform clinicians’ evidence-based decision 
making regarding the use of kidneys to guide the man-
agement of kidney transplantation. For example, based 
on the mildly impaired and moderately injured, we rec-
ommend that the DCD kidney can be used with minimal 
risk of DGF. However, at severe damage, we recommend 

being cautious in the application of the DCD kidney and 
should be used in specific clinical situations. The DGF 
risk prediction model established in this study has refer-
ence value for the selection of kidney transplant donors 
and can be used to predict DGF before organ donation 
acquisition.

The limitations of the present study include small sam-
ple size and single center study. For better disease pre-
diction, the sample size should be increased to increase 
the accuracy of prediction. Additionally, future studies 
should include multiple centers to further validate the 
clinical application of this nomogram.

Conclusion
In conclusion, this study presents a DGF prediction 
nomogram that incorporates donor clinical characteris-
tics, HMP parameters, and pre-transplant biopsy features 
and can be conveniently used for preoperative individual-
ized prediction of DGF in recipients before kidney trans-
plantation surgery.

Fig. 2  The developed preoperative DGF prediction nomogram. The nomogram was constructed using the data from the development cohort. Ten vari-
ables with nonzero coefficients selected by LASSO regression were presented. Terminal BUN level, initial perfusion resistance, WIT, and Banff score were 
entered into the logistic model as continuous variables, while the other variables were entered as dichotomous variables
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Fig. 3  Predictive performance of the preoperative DGF prediction nomogram. (A) and (B) show the ROC curves of the nomogram in the development 
and validation cohorts, respectively. (C) and (D) present the calibration curves of the nomogram in the development and validation cohort, respectively. 
The calibration curve shows the calibration of the nomogram in terms of the agreement between the predicted risk of DGF and the observed risk of DGF. 
The 45° dotted line represents a perfect prediction, and the solid line represents the predictive performance of the nomogram. The solid line shows a 
closer fit to the dotted line, which indicates better predictive accuracy of the nomogram
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