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Abstract 

Background  Renal tubular dysgenesis (RTD) is a severe disorder with poor prognosis significantly impacting 
the proximal tubules of the kidney while maintaining an anatomically normal gross structure. The genetic origin 
of RTD, involving variants in the ACE, REN, AGT, and AGTR1 genes, affects various enzymes or receptors within the Renin 
angiotensin system (RAS). This condition manifests prenatally with oligohydramninos and postnatally with persistent 
anuria, severe refractory hypotension, and defects in skull ossification.

Case presentation  In this report, we describe a case of a female patient who, despite receiving multi vasopres‑
sor treatment, experienced persistent hypotension, ultimately resulting in early death at five days of age. While 
there was a history of parental consanguinity, no reported family history of renal disease existed. Blood samples 
from the parents and the remaining DNA sample of the patient underwent Whole Genome Sequencing (WGS). The 
genetic analysis revealed a rare homozygous loss of function variant (NM_000685.5; c.415C > T; p.Arg139*) in the Angi‑
otensin II Receptor Type 1 (AGTR1) gene.

Conclusion  This case highlights the consequence of loss-of-function variants in AGTR1 gene leading to RTD, which 
is characterized by high mortality rate at birth or during the neonatal period. Furthermore, we provide a comprehen‑
sive review of previously reported variants in the AGTR1 gene, which is the least encountered genetic cause of RTD, 
along with their associated clinical features.
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Background
Renal tubular dysgenesis (RTD) (MIM# 267,430) is a 
rare autosomal recessive disorder of renal tubular devel-
opment that was first characterized in two stillborn sib-
lings in 1983 [1]. The disease carries a poor prognosis 
and a high mortality rate due to the severity of the dis-
ease where patients may die in utero or soon after birth, 
despite the availability of high-quality clinical care. 
Although the exact prevalence of RTD is unknown, 
there are multiple reports of RTD cases [2, 3].

The underlying pathophysiology of RTD involves 
reduced intrauterine renal perfusion leading to dysgen-
esis of proximal tubule formation in the kidneys, with 
preservation of grossly normal kidney structure [4].The 
clinical manifestations of RTD include persistent fetal 
anuria with subsequent oligohydramnios in pregnancy, 
pulmonary hypoplasia, and skull ossification defects of 
the bone due to persistent hypotension [5]. In addition, 
typical pathological changes seen on kidney sections 
taken from affected patients show the incomplete devel-
opment of renal proximal tubules. These changes are 
attributed to the consequences of hypoperfusion and 
renal ischemia in the absence of Angiotensin II (ANG 
II) production or function, a defect responsible for the 
severe refractory hypotension observed at birth [6].

Previous studies have demonstrated the fundamental 
role of Renin Angiotensin System (RAS) during fetal devel-
opment of the kidneys. Physiologically, the RAS pathway 
regulates extracellular fluid volume and maintains blood 
pressure levels in the body [7]. Several variants in four dif-
ferent genes encoding RAS signaling proteins (AGT​, REN, 
ACE, and AGTR1) have been described to cause RTD [8]. 
Variants in the AGTR1 gene constitute approximately 8% 
of the reported mutations causing RTD [9].

The Angiotensin II Receptor Type 1 (AGTR1) gene 
encodes a receptor protein of the ligand angiotensin II, 
which is a potent vasopressor hormone in the RAS path-
way [10]. The binding of ANG II to the Angiotensin II 
Type 1 receptor (AT1 receptor) promotes its activation, 
leading to vasoconstriction, sympathetic activity and 
aldosterone release from adrenals, ultimately increasing 
blood pressure [11]. Angiotensin II also regulates renal 
growth during fetal development [12].

Herein, we report a rare nonsense variant in the 
AGTR1 gene detected through whole genome sequenc-
ing (WGS) in a neonate exhibiting persistent anuria 
and resistant refractory pulmonary hypoplasia, ulti-
mately resulting in early lethality.

Case presentation
The female patient, born to consanguineous parents (first 
degree cousins) with a family history of Oculocutane-
ous Albinism in the mother. This was the mother’s first 

pregnancy and antental ultrasound scans revealed oli-
gohydramnios and Intra-Uterine Growth Retardation 
(IUGR). The patient was born prematurely at 36  weeks 
through an emergency cesarean section due to reduced 
fetal movement and failed induction. The baby was born 
weighing 2.0 kg with meconium stained liquor and Apgar 
scores were 6 and 9 at one and five minutes, respectively. 
The baby required minimal resuscitation and she was 
managed on continuous positive airway pressure (CPAP) 
in the first hour of life; however, within a few hours she 
deteriorated with bilateral pneumothoraces requiring 
chest drains, intubation, and ventilation. The patient 
was started on inhaled nitric oxide for hypoxic respira-
tory failure, and inotropes due to low blood pressure 
including dopamine, dobutamine, and epinephrine. The 
patient remained hypotensive with a mean blood pres-
sure of 15–20  mmHg, which required the addition of 
hydrocortisone followed by vasopressin to improve her 
blood pressure. Her oxygen saturation measurements 
were 35%—45% in 100% FiO2. Supportive measures, 
including sedation, antibiotics, and fluids were adminis-
tered. The patient didn’t have any urine output and she 
developed persistent hypoxia and hypotension, necessi-
tating veno-arterial Extra Corporeal Membrane Oxygen-
ation (ECMO) support on the second day of life, which 
led to an improvement in her oxygen saturation. How-
ever, the patients blood pressure remained low despite 
the ECMO and continuous inotropic support. While on 
ECMO, renal replacement therapy (CRRT) was initiated, 
effectively normalzing the creatinine levels, however 
the CRRT was discontinued due to the development of 
hypotension, resulting in progressive edema and fluid 
overload. Subsequently, the decision was made to decan-
nulate and remove the ECMO support due to a substan-
tial right-sided parenchymal hemorrhage and extra-axial 
hemorrhage observed on head ultrasound. The patient 
experienced coagulopathy, manifesting as oozing from 
the skin and chest tubes requiring multiple Fresh Frozen 
Plasma (FFP), cryoprecipitate, and red cell transfusions 
due to low hemoglobin, persistent thrombocytopenia 
and coagulopathy. On the fourth day, a multi-disciplinary 
team meeting, with the patient’s parents present, con-
cluded to transition the patient from intensive care to 
comfort care with no further resuscitation. The patient 
was extubated the following day and passed away a few 
hours later.

Imaging studies that were done on the baby included: 
(1) Echocardiography, which showed a structurally nor-
mal heart but was associated with severe persistent 
pulmonary hypertension of newborn (PPHN) and com-
plete right to left shunting across the ductus arteriosus; 
(2) Abdominal ultrasound, which showed non-specific 
bilateral echogenic kidneys; (3) Head ultrasound, which 
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showed large left intra-parenchymal and extra-axial acute 
bleeding associated with mass effect.

The post-mortem examination revealed mildly hypo-
plastic kidneys, moderate pulmonary hypoplasia, solid 
and poorly aerated lungs with diffuse alveolar damage, 

significantly reduced skull vault mineralization and 
bony development, indicative features of oligohydram-
nios sequence. Limbs exhibited some flexion changes, 
and there were characterestics findings of of Potters’ 
facies, marked edema, and a structurally normal heart. 

Fig. 1  Renal histological characteristics. a H&E renal cortex, showing crowding of the glomeruli, with intervening tubules mainly of distal tubule 
type, and lack of proximal tubules. b CD10 highlighting the glomeruli and the Bowmans capsule, but normal proximal tubules are not seen, 
only weak staining of the ureteric buds
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Fig. 2  Patient characteristics and genetic findings. a Family pedigree of the patient along with genotypes of the nonesense AGTR1 variant 
(c.415C > T; p.Arg139*). b Chromatogram of Sanger sequencing showing the variant position and genotypes of the 3 family members. c Schematic 
of AGTR1 gene body with highlights of protein domains and reported ClinVar variants. The yellow stars refer to the staring system of ClinVar which 
indicate the review status of the variant
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Histopathology showed changes of renal tubular dysgen-
esis with the renal cortex containing crowded glomeruli 
separated by small tubules with distal tubular morphol-
ogy and absence of proximal tubules (Fig. 1). The proxi-
mal tubules should be as numerous as the glomeruli and 
have plump lining cells with abundant cytoplasm. The 
medulla appeared largely unremarkable. The family his-
tory of parental consanguinity and the severity of symp-
toms prompted enrolling the family in the Mendelian 
disease program at Sidra Medicine (Fig. 2a) [13]. Genome 
sequencing was performed on all family members, 
and following our in-house analysis pipeline [14], the 
patient was, initially, found to carry six de novo and nine 
homozygous rare protein-altering variants, including 
two that were predicted to lead to loss-of-function (LoF) 
(Additional file 1). These two include a variant in OR1J4 
(c.221C > G, p.Ser74*), an olfactory receptor gene not 
known to be associated with Mendelian disease, and a 
nonsense previously unreported variant (NM_000685.5; 
c.415C > T; p.Arg139*) was identified in the Angiotensin 
II Receptor Type 1 (AGTR1) gene (Table 1). Importantly, 
LoF variants in this gene have been associated with renal 
tubular dysgenesis (MIM# 267,430) [8]. Both parents 
were heterozygous carriers of the variant (Fig. 2b) and in-
silico pathogenicity scores predicted it to be highly dam-
aging (CADD of 39 and GERP of 5.8).

Discussion and conclusion
The molecular mechanisms underlying the genetic 
basis of RTD pathogenesis are still not fully elucidated; 
however, LoF/structural variants in genes encoding 
components of the RAS pathway are a major cause of 
the disease [8]. Disruption of the RAS leads to defects 
in the differentiation of proximal tubules during fetal 
development resulting in severe symptoms during pre- 
and postnatal periods including fetal anuria and oligo-
hydramnios [15].

In this report, we present a case of a newborn female 
patient who suffered from congenital RTD and several 
severe complications, ultimately resulting in perinatal 
death at five days of life. Genetic analysis of the child and 
her parents identified a pathogenic nonsense variant in 
exon 3 of the AGTR1 gene. The predicted effects of this 
variant are protein truncation and possibly nonsense-
mediated mRNA decay. To date, only eight RTD patients, 
including ours, have been reported with five different 
AGTR1 gene variants (Table  1, Fig.  2c), reflecting the 
rare nature of RTD and the significance of RAS signaling 
pathway in early development.

The genetic association of AGTR1 variants with an 
RTD phenotype is supported by the literature in which 
patients suffer severe symptoms during pre-and/or post-
natal life [8, 9]. In addition, recent evidence has pointed 

Table 1  AGTR1 reported variants and relevant information

“– “ indicate not available

GA Gestational age, TP Termination of pregnancy

* Termination

Present study Demirgan (2020) Gribouval(2012) Gribouval (2012) Gribouval (2005)

Variant c.415C > T
p.Arg139*

c.376C > T
p.Arg126*

c.376C > T
p.Arg126*

c.251G > A
p.Trp84*

c.110_111insT
p.Ile38HisfsX37
c.845C > T
p.Thr282Met

dbSNP id rs1417391173 rs397514687 rs397514687 rs398122935 rs387906577; rs104893677

Variant Effect Stop gained Stop gained Stop gained Stop gained Missense

Zygosity Homozygous Homozygous Homozygous Homozygous Compound heterozygotes

Exon 3 3 3 3 3

Gender F M + F (siblings) – + M (siblings) F M + F (siblings)

Country of origin GCC​ Turkish Pakistan North Africa Europe

Consanguinity Yes Yes Yes Yes No

No. Affected 1 2 2 1 2

GA (weeks) 36 M (39)
F (32)

– (27)
M (37)

37 M (35)
F (TP at 24)

Oligohydramnios (weeks) Yes M (–)
F (20)

Yes 20 M (30)
F (24)

Age of death Day 4 M (Alive)
F (Alive)

Both Day 1 Stillborn M (36 d)
F (TP)

Anuria Yes M (no)
F (Yes, resolved)

Yes Yes Yes
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to the possibility of a milder form of the RTD depend-
ing on the variant position in the AGTR1 gene [16]. A 
male carrier of a homozygous LoF variant (p.Arg216*) 
in AGTR1 has been described who lived to 28  years of 
age under management with high doses of fludrocorti-
sone which, along with vasopressin, have proved effec-
tive in managing RTD [16]. Overall, although the severity 
of symptoms in patients who carry AGTR1 mutations is 
consistent across all reported cases, it has been suggested 
that, similar to other genetic renal diseases, the pheno-
type is more severe when the affected protein is located 
more distally along the RAS pathway [17].

Reaching a final diagnosis of RTD prenatally has been 
challenging because all prenatal symptoms of oligohy-
dramnios, and IUGR are not specific. This challenge 
leaves genetic testing as the only viable diagnostic 
option after none genetic causes have been excluded 
[18], particularly when offered in the context of pre-
natal diagnosis through chorionic villus sampling. 
Even when early symptoms began to emerge postna-
tally, the patient’s instability did not indicate a spe-
cific diagnosis. The genetic finding complemented by 
the histopathology confirmed the diagnosis of RTD. 
Although the treatment remained supportive, provid-
ing prompt answers to healthcare providers and fami-
lies is immensely valuable.

Given the severity of the condition, improved out-
comes for RTD patients can be realized through early 
detection, facilitating clinical decision making and 
enhancing neonatal care, particularly in cases of severe 
congenital diseases with prenatal indications and 
symptoms. Genetic testing empowers carrier parents 
to make informed decisions regarding their future fam-
ily plans. In the case of the newborn discussed here, 
the parents received appropriate counselling and were 
informed about the genetic results, and the disease 
risk in subsequent pregnancies. Early identification 
of recessive pathogenic variants, particularly in such 
highly consanguineous population, plays a pivotal role 
in the success of population screening programs and 
contributes to lowering the long-term burden of Men-
delian diseases.
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