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Abstract
Background  Early identification of high-risk individuals with cisplatin-induced nephrotoxicity (CIN) is crucial for 
avoiding CIN and improving prognosis. In this study, we developed and validated a CIN prediction model based on 
general clinical data, laboratory indications, and genetic features of lung cancer patients before chemotherapy.

Methods  We retrospectively included 696 lung cancer patients using platinum chemotherapy regimens from 
June 2019 to June 2021 as the traing set to construct a predictive model using Absolute shrinkage and selection 
operator (LASSO) regression, cross validation, and Akaike’s information criterion (AIC) to select important variables. 
We prospectively selected 283 independent lung cancer patients from July 2021 to December 2022 as the test set to 
evaluate the model’s performance.

Results  The prediction model showed good discrimination and calibration, with AUCs of 0.9217 and 0.8288, 
sensitivity of 79.89% and 45.07%, specificity of 94.48% and 94.81%, in the training and test sets respectively. Clinical 
decision curve analysis suggested that the model has value for clinical use when the risk threshold ranges between 
0.1 and 0.9. Precision-Recall (PR) curve shown in recall interval from 0.5 to 0.75: precision gradually declines with 
increasing Recall, up to 0.9.

Conclusions  Predictive models based on laboratory and demographic variables can serve as a beneficial 
complementary tool for identifying high-risk populations with CIN.
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Introduction and background
Cisplatin and its analogues are widely used in chemother-
apy regimens for cancer treatment, with approximately 
10-20% of cancer patients receiving such treatment. 
However, the side effects of cisplatin can lead to reduced 
dosage or the selection of alternative therapies, ultimately 
affecting prognosis. The lack of effective treatment mea-
sures to alleviate side effects, such as gastrointestinal 
problems, hematologic toxicity, neurotoxicity, and oto-
toxicity, can decrease the quality of life and increase med-
ical costs [1]. Cisplatin-induced nephrotoxicity (CIN) is a 
common side effect affecting 20-45% of patients, which is 
also the main limitation for its use [2–4]. Chemotherapy 
itself can cause renal tubular injury, interstitial nephritis, 
and thrombotic microvascular disease [5]. As cisplatin 
uptake and excretion are mainly mediated by proximal 
tubule transporters, its accumulation in renal proximal 
tubule cells can lead to cell injury [2]. Up to now, risk fac-
tors associated with CIN include advanced age, smoking, 
type of cancer, comorbidities, baseline blood biochemical 
levels before chemotherapy (such as creatinine, albumin, 
cystatin, etc.), exposure to nephrotoxic drugs (such as 
iodinated contrast agents, long-term use of non steroidal 
anti-inflammatory drugs (NSAIDs), and gemcitabine), 
electrolyte disorders (low serum magnesium levels), 
alcohol intake, and high-dose cisplatin (≥ 50 mg/m2) per 
dose, Frequency of administration, cumulative dose, and 
insufficient hydration during administration [6, 7]. By 
investigating related pathological mechanisms, such as 
reactive oxygen species and mitochondrial dysfunction, 
cell death pathways, inflammatory responses, autophagy, 
and other related signaling pathways, researchers have 
identified differences in the genetic characteristics of key 
genes in CIN [2, 8–10]. However, variations in clinical 
features, laboratory and genetic results, and the weight of 
risk factors have been observed across different studies, 
and there is a lack of sensitive and specific CIN predic-
tion biomarkers for both genetic and non-genetic factors 
[11]. These differences may be attributed to genetic vari-
ability among research subjects, disease types and pro-
tocols, inconsistencies in laboratory results and research 
design and the standardization of data analysis [1, 12].

Predictive models have been widely used to diagnose, 
treat, and evaluate prognosis by integrating non-unique 
factors and comprehensively assessing their weight [13]. 
Such models may help identify individuals at risk of 
nephrotoxicity, guide optimal drug and dose selection, 
and inform prevention strategies. Given the objectivity of 
tumor genetic heterogeneity, it is necessary to construct 
a prediction model that combines prediction indica-
tors based on more comprehensive clinical information 
and specific target gene information for unique types of 
tumors.

Genetic candidate genes and GWAS have identified 
several genetic risk factors for CIN [7, 11]. Okawa T [5] et 
al have developed a prediction model for CIN in elderly 
prostate cancer patients using a random forest algorithm 
that incorporated clinical and genomic characteristics 
extracted from saliva samples. It is believed that Genomic 
markers associated with nephrotoxicity are believed to be 
located in the regions between NAT1, NAT2, CNTN6, 
and CNTN4. Lung cancer remains the leading cause of 
cancer-related deaths worldwide, accounting for 30% of 
all cancer deaths in China [14, 15]. In terms of incidence, 
lung cancer is the most common cancer in China, with 
a mortality rate of 50% in Chinese males in 2020 [14]. 
Commonly recognized genetic variants associated with 
lung cancer and CIN include single nucleotide polymor-
phisms in genes such as ERCC1, ERCC2, and SLC22A2 
[12]. In our study on mitochondrial pathway disorders, 
we observed a reduced risk of nephrotoxicity in carriers 
of the T allele of rs920829 in the TRAP1 gene compared 
to carriers of the C allele (OR 0.684, 95% CI 0.524–0.894, 
p = 0.003). Consequently, we plan to include SNP features 
of ERCC1, ERCC2, SLC22A2, and TRAP1 gene in future 
research.

The objective of this study is to utilize Lasso regression 
to identify suitable clinical and genetic features and con-
struct and validate a CIN risk prediction model for lung 
cancer patients.

Materials and methods
Study subjects
A retrospective traing set was constructed to develop a 
predictive model for patients with clear lung cancer diag-
nosis and platinum chemotherapy regimen. The traing 
set included 696 patients who were hospitalized at Sich-
uan Provincial People’s Hospital between June 2019 and 
June 2021, of which 189 cases had CIN. A test set of 283 
patients with lung cancer and platinum chemotherapy 
regimen was prospectively and continuously included 
from July 2021 to December 2022 in the same hospital. 
All patients underwent the same preliminary clinical 
evaluation and treatment observation. The research pro-
cess was shown in Fig. 1.

Inclusion criteria were as follows: unrelated Han Chi-
nese; having carboplatin-based chemotherapy; signed 
written informed consent; having demographic charac-
teristics, physical examination, laboratory examinations, 
pathologically and histologically confirmed lung cancer; 
normal liver and kidney function before chemotherapy; 
and no obvious abnormalities in the preliminary clini-
cal evaluation. Exclusion criteria included: <18 years old; 
liver or kidney dysfunction prior to initial chemotherapy 
[16]. This study conformed to the provisions of the Dec-
laration of Helsinki (as revised in 2013) and it was autho-
rized by the Ethics Committee of Sichuan Provincial 
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People’s Hospital, University of Electronic Science and 
Technology of China Hospital. (Registration Number: 
AF-02/01.0). The chemotherapy regimens are listed in 
Table 1.

Definitions
Throughout each treatment cycle, toxicology information 
pertinent to the evaluation of cisplatin therapy (defined 
using the Common Terminology Criteria for Adverse 
Events version 5.0) was documented at least twice weekly 
[17]. This is the criteria how nephrotoxicity was rated: 
Grade 1, increased levels of creatinine above 0.3 mg/dL 
or 1.5–2.0 times higher than baseline levels; grade 2, 2–3 

times higher than baseline levels; grade 3, more than 3 
times higher than baseline levels or absolute levels above 
4.0 mg/dL or requiring hospitalization; and grade 4, life-
threatening consequences or requiring dialysis [17]. After 
2 and 14 cycles, oncologic outcome reporting criteria 
were used to classify patient responses to treatment into 
4 categories: complete response (CR), partial response 
(PR), stable disease (SD), and progressing illness (PD) 
[18].

Fig. 1  Flow diagram of the study population
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Data collection, preprocessing, and feature variable 
screening
The definitive diagnosis of CIN and basic medical history 
of subjects were exported from the HIS system by data 
collectors, and all relevant laboratory indications were 
exported in the LIS system. of complete blood count 
(SYSMEXXN-10, Sysmex, Japan), coagulation tests (SYS-
MEXCS-5100, Sysmex, Japan), and biochemical examina-
tion (Cobas c702, Roche, Germany)(Table 1). Candidate 

SNPs loci were typed using 48-Plex SNPscan® high-
throughput SNP typing technology (18). Thirty samples 
were randomly selected for double-blind experiments 
to ensure the repeatability and stability of the genotyp-
ing results, and all the genotype calling success rates 
were greater than 99.0% [19]. For single variables mea-
sured multiple times, we retrieved patients’ admission 
records from the Hospital Information System (HIS) for 
those who underwent cisplatin chemotherapy regimens, 

Table 2  The distributions of allele and genotype frequencies of all SNPs
Gene、 dbSNP allele genotype

allele PHWE CIN(n,%) non-CIN(n,%) P CIN(n,%) non-CIN(n,%) P
1/2 1/2 11/12/22 11/12/22

ERCC1 rs11615 G > A 0.989 80/298 223/791 0.771 13/54/122 32/159/316 0.917
ERCC1 rs3212986 C > A 0.997 118/260 253/762 0.020 22/74/93 61/130/316 0.020
ERCC2 rs13181 T > G 0.091 37/341 96/918 0.838 8/21/160 17/62/428 0.802
ERCC2 rs1799793 C > T 0.640 33/345 82/932 0.743 5/23/161 13/56/438 0.232
ERCC2 rs238405 A > T 0.641 42/336 99/915 0.485 13/16/160 30/39/438 0.836
SLC22A2 rs316019 C > A 0.118 43/335 122/892 0.780 11/21/157 34/54/419 0.906
BACH2 rs920829 G > A 0.188 107/272 254/760 0.217 24/59/106 54/146/307 0.535
TRPA1 rs920829 C > T 0.883 86/292 291/723 0.030 16/54/119 86/119/302 0.017

Fig. 2  Determination of the optimal penalty factor λ = 0.006521281 (mininum) and λ = 0.02185674(1 Ssd) in the Lasso model using 10-fold cross-validation
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and measurements, we retrieved patients’ admission 
records from the Hospital Information System (HIS) for 
those who underwent cisplatin chemotherapy regimens, 
and included their initial test records upon admission. 
The missing data of < 10% were filled with the median 
for continuous variables and plural for categorical vari-
ables, while missing data of > 10% were excluded. The 
medical records were used by data collectors to diagnose 
CIN, and any records without a definitive diagnosis were 
excluded after confirmation by a consulting clinician. 
Genetic polymorphism testing staff and clinical data col-
lectors worked independently, and data analysts used all 

data jointly to build predictive models and perform per-
formance validation. Absolute shrinkage and selection 
operator (LASSO) regression was used to initially screen 
candidate variables, with 1 standard deviation (1sd) pen-
alty coefficient lambada (λ) selected.

Identification of candidate predictors and construction of 
prediction models
The prediction model was constructed using multivariate 
logistic regression based on demographic variables and 
laboratory panel data [20]. . STATA software v15.0 was 
used to model candidate variables, with the goodness of 

Table 3  Multiple models using multivariate logistic regression for comparison
Models Construction method Inclusion of variables Screening df AIC BIC
model1 Stepwise method All variables 0.2 20 246.41 337.31
model2 Stepwise method(forward) All variables 0.05 11 274.35 324.35
model3 Stepwise method (backward) All variables 0.05 14 247.14 310.78
model4 Entry into law rs3212986 cys p alb urea ca. dbil mg tp gfr / 10 285.48 330.98
model5 Entry into law (dummy variable) rs3212986 cys p alb urea ca. dbil mg tp gfr tp gfr / 11 285.53 335.48
model6 Entry into law cys alb urea ca. dbil mg tp gfr / 9 344.64 385.55
AIC, Akaike’s information criterion; BIC, Baysian information criterion;

Fig. 3  Distribution of Lasso coefficients for the 69 clinical characteristics. The left dashed vertical line shows the 36 non-zero coefficient variables for 
which λ was chosen as the minimum and 11 non-zero coefficient variables for which λ was chosen as the 1se
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fit evaluated using Akaike’s Information Criterion (AIC) 
[13, 21]. . The selection criteria were AIC minimization 
and candidate variable minimization without affecting 
predictive efficacy [21].

Adjustment for model confounders and evaluation of 
predictive efficacy using training and test set data
Through 10-fold cross-validation, the model with the 
highest accuracy was selected. Covariance and inter-
action analyses were also performed on the candidate 
predictors. We used sensitivity, specificity, positive pre-
dictive value, negative predictive value, receiver operat-
ing characteristic (ROC) curves and C-index were used 
for model differentiation assessment, while calibration 
curve plots were used for consistency assessment [20]. 

Statistical analysis
The clinical and laboratory data were analyzed using 
SPSS software (version 23.0). Quantitative data with nor-
mal distribution were analyzed using t-tests or ANOVA, 
while non-normal quantitative data were analyzed 
using Mann-Whitney or Kruskal-Wallis nonparamet-
ric tests. Count data were analyzed using the chi-square 
test or logistic regression [16]. Potential predictors were 
screened using Lasso regression in R version 3.6.1 soft-
ware. Multi-factor analysis was performed using STATA 
version 14 software with logistic regression stepwise 
selection method, and the model was constructed based 
on the minimum AIC and the minimum number of pre-
dictors. Precision-Recall (PR) curve was plotted using the 
“ggplot2” package in R version 3.6.1 software. A nomo-
gram was used to visualize the prediction model, and 
decision curves were used to analyze its clinical applica-
tion value. The incidence of CIN in the China population 
was approximately 20% [22]. The bilateral significance 
level was set at 5%, with a test power of 80%. Taking into 
account a 10% loss to follow-up, the sample size for each 
group was estimated at approximately 100 cases [23].

Results
Basic information about the study population and clinical 
characteristics
In total, 979 patients were included in this study, with 
696 patients (189 CIN vs. 507 controls) in the traing set 
and 283 patients (71 CIN vs. 212 controls) in the test set. 
There was no significant difference in the frequency of 
CIN between the two sets. Table  1 presents the clinical 
characteristics of the study subjects, while Table  2 dis-
plays the distributions of allele and genotype frequencies 
of all SNPs.

Model predictor screening
Lasso regression was utilized to screen variables in the 
traing set, revealing that the optimal subset of non-
zero coefficient variables for inclusion in the model 
was 36 at the 1sd value of 10-fold cross-validation error 
λ = 0.02185674 and 11 at the minimum value of 10-fold 
cross-validation error λ = 0.006521281, as depicted in 
Figs. 2 and 3.

Identification of candidate predictors and prediction 
model building
36 candidate predictors were modeled in various ways, 
and the screening p values, AIC, and BIC were presented 
in Table 3. Model 1 had the smallest AIC of 246.41, but 
it contained an excessive number of predictive fac-
tors. Model 2 incorporated 11 variables with an AIC of 
274.35, model 4 incorporated 10 variables with an AIC 
of 285.48, and model 8 incorporated 9 variables with an 
AIC of 344.94. A comparison of model 2, model 4, and 
model 8 using the “lrtest test command” of STATA soft-
ware revealed that although model 4 and model 8 incor-
porated fewer variables, their predictive efficacy was 
reduced (both p < 0.05). The inclusion of rs3212986 as a 
dummy variable in the predictive factors did not improve 
the predictive efficiency as the AIC and the number of 

Table 4  Variables and characteristics eventually included in the 
model
Characteris-
tic variable

ß OR 95% CI p
Lower 
limit

Upper 
limit

cys -19.34695 0.0012 0.0425 0.318 < 0.001
P 5.472858 0.0475 0.8153 0.9205 < 0.001
Alb -0.1459131 0.8663 1.2428 2.1373 < 0.001
Urea 0.6151795 1.6298 1.0045 1.0180 0.001
Ldh 0.0132124 1.0112 0.0326 0.4677 0.002
Ca -2.686818 0.0839 1.1819 1.6693 0.001
Dbil 0.3402039 0.1237 0.0254 0.5421 0.006
mg 0.1458457 0.0916 1.0107 1.0971 0.013
tp 0.0626123 0.0220 0.9554 0.9927 0.007
gfr -0.0252943 0.0095 0.8153 0.9205 < 0.001
OR, odds ratio; CI, confidence interval

Table 5  Performance of prediction model in training and test 
set

training set test set
Sensitivity 79.89% 45.07%
Specificity 94.48% 94.81%
Positive predictive value 84.36% 74.42%
Negative predictive value 92.65% 83.75%
False positive rate 5.52% 5.19%
False negative rate 20.11% 54.93%
Correctly classified rate 90.52% 82.33%
Area under ROC curve 0.9217 0.8288
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predictive factors of the model increased. Therefore, 
model 2 was considered the best model with the charac-
teristics of incorporated variables as shown in Table 3.

Adjustment for model confounders and evaluation of 
predictive efficacy
In the adjustment for model confounders, interaction 
and collinearity were evaluated among the variables 

included in model 2 using the “corr test” command of 
STATA software. There was no interaction or collinear-
ity between the predictors (data availabe if necessary). 
Logistic regression models were recreated in the test set 
data summary using the regression coefficients from the 
traing set model:

O d d s ( C I N ) = 1 / ( 1 + e x p ( - ( 6 . 6 2 - 2 . 1 9 1 7 0 9 * m g -
0 . 1 4 5 9 1 3 1 * a l b - 0 . 0 2 5 2 9 4 3 * g f r-+ 0 . 0 6 2 6 1 2 3 * t p -

Fig. 4  (a) ROC curve of the prediction model built from the training set data. The area under the curve is 0.9217, indicating good discrimination. ROC, 
receiver opertating characteristic. (b) ROC curves established by applying the CIN prediction model in the validation set. the area under the ROC curve is 
0.8288, indicating good discrimination
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19.34694*cys+0.0132124*ldh+0.6151795*urea1+5.47285
8*p-0.686818*ca+0.3402039*dbil))).

Table  4 presents the variables and characteristics that 
were ultimately included in Model 2. The predictive per-
formance of the model is displayed in Table  5; Fig.  4, 
while the nomogram based on this prediction model is 
presented in Fig. 5. The agreement between the predicted 
and observed actual risk of CIN is compared in Fig.  6, 
and the clinical decision curve for the CIN prediction 
model is shown in Fig. 7. The model is deemed clinically 
valuable when the risk threshold ranges between 0.1 and 
0.9.

Given the class imbalance, we used Precision-Recall 
(PR) curve for the assessment of the model’s predictive 
performance as shown in Fig.  8. In recall interval from 
0.5 to 0.75: precision gradually declines with increasing 
Recall, remaining relatively high, up to 0.9. Within this 
range, the model maintains high accuracy in identifying 
positive samples and minimizing errors. In ecall interval 
from 0.75 to 0.90,precision drops more rapidly, from 0.9 
to 0.60. To improve recall further and identify more posi-
tive samples, the model sacrifices more Precision, result-
ing in more false positives. In recall interval from 0.90 to 

1.0,as recall approaches completeness, precision sharply 
decreases to about 0.10. In the pursuit of complete recall, 
the model’s accuracy significantly diminishes, introduc-
ing a large number of false positive predictions.

Independent validation
The proposed model’s performance was evaluated using 
test set data, and its fit was consistent with that of the 
traing set data, as determined by the Hosmer-Lemeshow 
test (p = 0.4636). The overall predictive performance of 
the model is illustrated in Table 5; Fig. 4, and Fig. 6.

Discussion
This study utilized machine learning algorithms to con-
struct a CIN prediction model based on clinical, labora-
tory, and genetic variables. The construction process was 
conducted strictly to the statement of clinical prediction 
models as follows: developing the prediction model, vali-
dating the prediction model, and predictive effectiveness 
evaluation [24]. The model demonstrated good sensitiv-
ity and specificity, indicating that combining laboratory 
and clinical variables can effectively identify high-risk 
populations of CIN. While the model cannot be used as 

Fig. 5  CIN prediction model presented as a column line graph plot
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an independent diagnostic method, it can serve as a sup-
plementary tool due to its common, objective, and easily 
obtainable predictive factors.

The predictive set factor included 69 feature variables, 
8 of which were genetic. If the genetic variables were 
considered as dummy variables, the total number of vari-
ables would increase to nearly 80. we employed LASSO 
regression with a 1sd penalty coefficient to consolidate 
the laboratory variables. This method effectively reduced 
the number of predictors and eliminated unimportant 
variables. LASSO is a method of shrinkage estimation 
based on model reduction. By constructing different pen-
alty functions, the regression coefficients of variables will 
decrease accordingly, and the regression coefficients of 
unimportant variables will eventually decrease to zero. 
Compared with the classical screening method, Lasso 
can effectively avoid the influence of factors such as dif-
ferent orders of magnitude, different units and possible 

collinearity between variables [25]. To screen candidate 
variables, we opted for Lasso regression over classic sin-
gle factor regression, using a 1 standard deviation pen-
alty coefficient lambda (λ) as the screening parameter to 
prevent the exclusion of relatively unimportant variables 
[7, 26, 27]. The LASSO algorithm was executed using 
the “glmmet” R package, while the logistic regression 
model was constructed using the “glm” R package [20]. 
Subsequently, we employed multifactor logistic stepwise 
regression to identify a concise and effective set of vari-
ables, which were then fitted into the formula based on 
their respective weights. This standardized approach to 
variable selection and weight conversion helps mitigate 
differences in the same indicator arising from different 
laboratory methods [13, 28].

In the traing set, the genetic variable rs3212986 of 
ERCC1 exhibited statistically significant differences in 
allele frequency and genotype characteristics between 

Fig. 6  (a) Comparison of the agreement between the predicted risk of the CIN prediction model and the observed actual risk of the CIN in the training 
set. the gray straight line at 45° over the origin represents the ideal line; the gray dashed line represents the actual observed value and the black straight 
line represents the predicted value according to the logistic model, S:p = 0.790. CIN: cisplatin induced nephrotoxicity Dxy, Somer’s rank correlation be-
tween p and y: DXY = 2(C-0.5); C, ROC area; ROC, receiver opertating characteristic; R2 Nagalkerke-Cox-Snell-Magee R-saquard index; D, Discrimination 
index D; U, unreliability index; Q, the quality index; Brier, Brier score (average squared difference in p and y); Emax, maximum absolute difference in 
predicted and loess-calibrated probabilities; E90, the 0.9 quantile absolute difference in predicted and loess-calibrated probabilities; Eavg, the average 
quantile absolute difference in predicted and loess-calibrated probabilitie; S:Z, The Spiegelhalter Z-test for calibration accuracy; S:P, the two-tailed value 
of Spiegelhalter Z test
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the CIN group and the control group. The proportion of 
A-allele carriers was higher in the CIN group (31.21%) 
than in the control group (24.92%). The proportions of 
AA, CA, and CC genotypes were 11.64%, 39.15%, and 
49.20% in the CIN group, and 12.03%, 25.64%, and 62.32% 
in the control group, respectively. These findings suggest 
that carriers of the A allele of rs3212986 are more likely 
to develop CIN, which is consistent with previous studies 
[29]. Similarly, the allele frequency and genotype char-
acteristics of rs920829 of TRPA1 were also statistically 
different between the CIN group and the control group. 
The proportion of T allele carriers was lower in the CIN 
group (22.75%) than in the control group (28.69%). The 
proportions of TT, CT, and CC genotypes were 8.46%, 
28.57%, and 62.96% in the CIN group, and 16.96%, 
23.47%, and 59.57% in the control group, respectively. 
These results suggest that T allele carriers of rs920829 are 
less likely to develop CIN. However, during the optimiza-
tion of variables through multiple factor logistic regres-
sion, neither rs3212986 nor rs920829 were incorporated. 
It is possible that these variables lack independent pre-
dictive power or their independent predictive value is not 
significant enough [30].

Cystatin-C (Cys-C) was identified as the independent 
risk factor with the highest odds ratio (OR) value in the 
prediction model, surpassing other factors in predictive 
performance. The reasons for the increase of Cys-C and 
the high risk of CIN are analyzed as follows: 1) Cys-C 

is produced by all nucleated cells in the body. Cys-C in 
the blood is filtered by the glomerulus, and is degraded 
through reabsorption of the renal tubules, and is not 
secreted through the renal tubules. The progress makes 
it a more effective indicator of early glomerular filtration 
function than creatinine, urea nitrogen, and other indica-
tors [31, 32]. Secondly, Cys-C is a member of the cyste-
ine protease inhibitor family and an imbalance between 
cathepsin and protease inhibitors may lead to tumor 
invasion and metastasis, which can also promote an 
elevation of Cys-C [33, 34]. Other factors in the model, 
such as dbil and LDH, were not traditional renal function 
indicators or related to cisplatin metabolism pathway, 
but may reflect changes in physiological or pathologi-
cal pathways during the occurrence and development 
of CIN (such as secretion and excretion, inflammatory 
response, oxidative stress damage, and electrolyte imbal-
ance) during the occurrence and development of CIN 
[27]. Therefore, using appropriate weighted models for 
joint evaluation can can aid in the earlier identification of 
CIN risks.

The model showed high sensitivity and negative predic-
tion value(NPV), which can help to recognize the high 
risk of CIN and remind clinical attention to the selec-
tion of chemotherapy regimen and the compatibility with 
drug dosage. The results also showed a satisfactory dis-
crimination ability and a prediction curve that is close 
to the actual curve, which indicates that the model can 

Fig. 7  Clinical decision curves for the established CIN prediction model. The thin blue line is the net benefit of therapeutic intervention for all men; the 
thin green line is the net benefit of therapeutic intervention for the men on the basis of the statistical model; the thick black line is the net benefit of 
therapeutic intervention for no man. The threshold probalility of X-axis and Net benefit of Y-axis are displayed as a ratio. Pr, Threshold Probability
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provide prediction results that are highly consistent with 
the actual ones to identify cases with high risk of CIN. 
The model had a C-index = 0.922 for the traing set’s dis-
criminant test, with the consistency test S: P = 0.790, 
Emax = 0.044, Eave = 0.007 and S: p = 0.790, suggest-
ing both the model’s discriminant and consistency were 
good. To avoid overfitting of the model due to random 
and systematic errors, a validation model was con-
structed from aother prospective dependent set data. The 
fitting of the model constructed from the test set data 
is consistent with the fitting of the model constructed 
from the traing set data. Further clinical decision curve 
analysis of the model revealed that the model was of good 
value for clinical use when the high-risk threshold was 
between 0.1 and 0.9. Meanwhile, Recision-Recall curve 
shown in recall interval from 0.5 to 0.75: precision gradu-
ally declines with increasing Recall, up to 0.9.

The prediction model developed in this study has cer-
tain limitations. Firstly, it is a single-center study, and 
although the test set data was prospectively included, 
the test set data was obtained retrospectively from the 

electronic medical record system. Consequently, there 
were unavoidable factors such as missing data, resulting 
in a final traing set of 696 patients, which may limit the 
model’s scalability and necessitate further multicenter 
research and external validation. Secondly, the study did 
not incorporate the latest CIN-related biomarkers, such 
as malondialdehyde (MDA), NADPH oxidases (NOX), 
or heme oxygenase 1 (HO-1), which could potentially 
impact the results [2]. Future research should focus on 
gradually conducting validation studies across multiple 
centers to continuously refine and enhance the model 
and provide guidance for clinical practice.

Conclusion
Predictive models based on laboratory and demographic 
variables can serve as a beneficial complementary tool for 
identifying high-risk populations with CIN.
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