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Abstract
Background  The mortality rate and prognosis of short-term and long-term acute kidney injury (AKI) patients who 
undergo continuous renal replacement therapy (CRRT) are different. Setting up risk stratification tools for both short-
term and long-term deaths is highly important for clinicians.

Method  A total of 1535 AKI patients receiving CRRT were included in this study, with 1144 from the training set 
(the Dryad database) and 391 from the validation set (MIMIC IV database). A model for predicting mortality within 10 
and 90 days was built using nine different machine learning (ML) algorithms. AUROC, F1-score, accuracy, sensitivity, 
specificity, precision, and calibration curves were used to assess the predictive performance of various ML models.

Results  A total of 420 (31.1%) deaths occurred within 10 days, and 1080 (68.8%) deaths occurred within 90 days. 
The random forest (RF) model performed best in both predicting 10-day (AUROC: 0.80, 95% CI: 0.74–0.84; accuracy: 
0.72, 95% CI: 0.67–0.76; F1-score: 0.59) and 90-day mortality (AUROC: 0.78, 95% CI: 0.73–0.83; accuracy: 0.73, 95% CI: 
0.69–0.78; F1-score: 0.80). The importance of the feature shows that SOFA scores are rated as the most important risk 
factor for both 10-day and 90-day mortality.

Conclusion  Our study, utilizing multiple machine learning models, estimates the risk of short-term and long-term 
mortality among AKI patients who commence CRRT. The results demonstrated that the prognostic factors for short-
term and long-term mortality are different. The RF model has the best prediction performance and has valuable 
potential for clinical application.
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Introduction
Acute kidney injury (AKI) is a clinical syndrome involv-
ing various clinical presentations and is characterized by 
a rapid deterioration of kidney function, with an occur-
rence rate as high as 50-60% among critically ill patients 
in the intensive care unit (ICU) [1–3]. Renal replacement 
therapy (RRT) is frequently used to mitigate the adverse 
effects of AKI, especially in patients with severe com-
plications such as hyperkalaemia, pulmonary edema, 
and metabolic acidosis [4, 5]. Approximately 6% of AKI 
patients in the ICU require RRT [6], yet the mortal-
ity rate can be as high as 50-70% [4, 7, 8]. Some studies 
have even suggested that patients undergoing RRT may 
face an elevated risk of adverse events, including mor-
tality, compared to those not receiving such treatment 
[9, 10]. CRRT is a blood purification technique primar-
ily used for the treatment of AKI, systemic inflammatory 
response syndrome, and multiple organ dysfunction syn-
drome, among other critical illnesses. For AKI patients 
undergoing CRRT, the mortality rate is greater in the 
early stages, but it levels off as treatment progresses [11, 
12]. This suggests that the short-term and long-term 
prognoses of these patients may be affected by different 
risk factors. Therefore, the precise identification of early 
and late mortality risks in patients undergoing CRRT is 
profoundly beneficial for clinicians.

Traditional statistical methods such as logistic regres-
sion (LR) and the Cox proportional hazards model can be 
used to predict the development of AKI. Yao et al. [13] 
employed logistic regression to construct a nomogram 
model for predicting the risk of in-hospital mortality 
associated with AKI, demonstrating commendable pre-
dictive accuracy. Additionally, Hu, Peng, and their team 
employed Cox regression to predict the progression of 
sepsis-induced AKI patients, also exhibiting commend-
able predictive efficacy [14, 15]. The diagnosis and treat-
ment of kidney diseases pose significant challenges due 
to the nonlinear, intricate, and variable pathophysiology 
of the kidney. This complexity makes the application of 
linear statistical methods problematic. Nonetheless, LR 
inherently processes the relationship between indepen-
dent and dependent variables linearly, potentially leading 
to an oversimplification of intricate nonlinear interac-
tions. Moreover, LR is prone to the influence of multicol-
linearity among variables, which may impede the model’s 
efficacy. Hence, the pursuit of more robust and precise 
predictive instruments is critically vital for the effica-
cious management of AKI. Currently, machine learning 
(ML) algorithms have shown promise for the early detec-
tion and accurate prediction of AKI progression [16, 
17]. ML-powered decision support may help solve these 
difficulties and improve the clinical and research out-
comes of nephrology [18, 19]. To date, no research has 
focused on developing risk classifiers for CRRT patients 

at different time points. ML algorithms may automati-
cally identify and anticipate the progression of AKI in 
multivariate patient data. This can help clinicians identify 
AKI patients at high risk of mortality and enable early 
therapeutic actions that may improve patient outcomes. 
Therefore, our study aimed to use ML algorithms to con-
struct a risk stratification tool and detect AKI patients for 
whom the initiation of CRRT was associated with poor 
survival outcomes at 10 and 90 days. This can help clini-
cians realize individualized differentiation and decision-
making for AKI patients undergoing CRRT.

Method
Data sources and participants
The data of this retrospective study were derived from 
two sets. The Dryad database, which contains the medical 
records of AKI patients who received CRRT in the ICU at 
Yonsei University Health System Severance Hospital and 
National Health Insurance Service Medical Center Ilsan 
Hospital, provided all the data for the training set [20]. 
Since the original study subjects were deidentified, no 
written consent was required from the recorded patients. 
The data for the validation set came from the MIMIC-IV 
database. The MIMIC database is a free database for clin-
ical researchers worldwide [21]. From 2008 to 2019, more 
than 38,000 people who were hospitalized at Beth Israel 
Deaconess Medical Center in Boston, Massachusetts, 
were tracked. We completed the training course at the 
National Institutes of Health and obtained the certificate 
(Completion Record ID: 48,551,683). This study obtained 
permission for ethical exemption from the ethics com-
mittee of the Affiliated Hospital of Nanjing University of 
Traditional Chinese Medicine. Patients with stage 2–3 
AKI (defined as at least a 2-fold increase in serum creati-
nine) who underwent CRRT were enrolled in this study. 
Because information was not recorded before admission 
in the MIMIC-IV database, we used the baseline creati-
nine level after admission as a reference. Patients who 
were under the age of 18, had insufficient laboratory 
tests (missing values greater than 30%), had a history of 
advanced chronic kidney disease (defined as an eGFR < 15 
mL/min/1.72 m2) or who underwent RRT on the day or 
before admission were excluded from this study.

Primary outcomes and exposure factors
Short-term mortality was defined as death within 10 
days of starting CRRT, while long-term mortality was 
defined as death within 90 days. Survival time was cal-
culated by subtracting the time of death from the time 
of hospitalization. Based on our clinical experience and 
literature review, we selected the following variables as 
our exposure factors: (1) demographics (gender and age); 
(2) complications (myocardial infarction, heart failure, 
cerebrovascular diseases, peripheral vascular disease, 
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diabetes mellitus, hypertension, chronic obstructive pul-
monary disease (COPD), and dementia); (3) laboratory 
parameters (potassium, bicarbonate, serum phosphate, 
white blood cell (WBC), hemoglobin, blood urea nitro-
gen (BUN), serum albumin, and estimated glomerular 
filtration rate (eGFR, based on the CKD-EPI formula)); 
(4) physical parameters (body mass index (BMI), sys-
tolic pressure, and diastolic pressure)); and (5) other 
variables (mechanical ventilation, two-hour urine out-
put, SOFA scores, the renal reactive renal replacement 
therapy (CRRT) dose, AKI stage (according to the Kidney 
Disease: Improving Global Outcomes (KDIGO) guide-
lines [22], stage 2: the serum creatinine level was 2.0-2.9 
times greater than the baseline; stage 3: the serum cre-
atinine level was 3.0 times greater than the baseline (or 
an increase in the Scr greater than 353.6 µmol/L)). All of 
the data from the laboratory and physical exam were ana-
lysed using data from the initiation of CRRT.

Statistical analysis
For the description of participation, we grouped the 
enrolled patients into two groups (patients who died or 
not) according to their survival status. The Shapiro‒Wilk 

test was applied to assess the normality of the distribu-
tion of continuous data. Using Student’s t test, continuous 
variables that fit a normal distribution were compared, 
and the results are shown as the mean ± standard devia-
tion (SD). The nonnormally distributed variables were 
then identified using the Kruskal‒Wallis (KW) test, and 
they are displayed as the median (1st–3rd quartile). Chi-
square tests were performed to compare categorical 
variables. If the theoretical frequency was less than 10, 
Fisher’s exact test was used. For variables with less than 
30% missing values, we employ the random forest algo-
rithm, and for variables with more than 30% missing val-
ues, we choose to delete them.

Construction of the machine learning model
Nine different types of ML algorithms were utilized in 
this study to estimate the likelihood of 10- and 90-day 
mortality: extreme gradient boost (XGBoost), logistic, 
light gradient boosting machine (LightGBM), random 
forest, adaptive boost (AdaBoost), Gaussian naive Bayes 
(GausianNB), multilayer perceptron (MLP), support 
vector machine (SVM), and k-nearest neighbor (KNN) 
methods. (Supplement Table 1)The training set was used 

Table 1  Comparison of risk factors of 10 days mortality after initiation of continuous renal replacement therapy (CRRT)
Variates Survival (n = 1015) Death (n = 520) p-value
Age (yr) 65.0 (53.0–73.0) 65.0 (53.0–73.0) 0.593
Gender(male) 618 (60.9%) 326 (62.7%) 0.527
Miocardial infarction 122 (12.0%) 53 (10.2%) 0.326
Congestive heart failure 221 (21.8%) 70 (13.5%) < 0.001
Cerevascular diseases 106 (10.4%) 41 ( 7.9%) 0.128
Peripheral vascular disease 37 ( 3.6%) 34 ( 6.5%) 0.015
Dementia 42 ( 4.1%) 26 ( 5.0%) 0.518
Diabetes mellitus 350 (34.5%) 163 (31.3%) 0.24
Hypertension 658 (64.8%) 253 (48.7%) < 0.001
COPD 66 ( 6.5%) 82 (15.8%) < 0.001
Mechanical ventilation 744 (73.3%) 457 (87.9%) < 0.001
Potassium (mmol/L) 4.5 (4.0-5.1) 4.5 (3.9–5.4) 0.131
Bicarbonate (mmol/L) 17.0 (14.0–20.0) 17.0 (13.0–21.0) 0.479
Phosphorous (mmol/L) 5.2 (3.9–6.5) 5.8 (4.7–7.5) < 0.001
Body mass index (Kg/m2) 23.7 (21.1–26.3) 23.7 (20.8–26.2) 0.5
Systolic pressure (mmHg) 113.0 (100.0-129.0) 106.0 (93.0-117.0) < 0.001
Diastolic pressure (mmHg) 61.0 (51.0–70.0) 57.0 (49.0–66.0) < 0.001
WBC 12630.0 (7960.0-18850.0) 11095.0 (4660.0-17287.5) < 0.001
Hemoglobin (g/L) 9.4 (8.4–10.8) 9.2 (8.1–10.3) 0.001
Blood urea nitrogen (mmol/L) 48.0 (33.0–70.0) 52.0 (33.0-76.2) 0.172
Albumin (g/L) 2.7 (2.3-3.0) 2.5 (2.2–2.9) < 0.001
eGFR (ml/min per 1.73 m2) 24.5 (15.7–38.1) 29.0 (19.8–38.2) < 0.001
Urine output (ml/2 h) 40.0 (10.0-110.0) 20.0 (0.0–75.0) < 0.001
SOFA scores 12.0 (9.0–14.0) 14.0 (12.0–16.0) < 0.001
CRRT_dose (ml) 36.9 (34.5–39.9) 36.9 (33.3–39.9) 0.091
AKI stage 249 (24.5%) 119 (22.9%) 0.514

766 (75.5%) 401 (77.1%)
Abbreviation: COPD: chronic obstructive pulmonary disease; WBC: white blood cell; eGFR: estimated glomerular filtration rate; AKI: acute kidney injury. The category 
risk factors are shown as n (%), while continuous risk factors are shown as median (1th -3th )
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for constructing the model. As part of the training pro-
cess, 5-fold cross-validation was utilized to identify the 
optimum hyperparameters and avoid overfitting. The 
generalizability of the ML model was examined using the 
validation set. Several metrics (area under the receiver 
operating characteristic curve (AUROC), F1 score, accu-
racy, sensitivity, specificity, and precision) were used to 
assess the predictive performance of various ML models 
[23]. An AUROC closer to 1 indicates that the classifier 
has good discrimination and prediction value. The best-
performing classifier was determined by the metrics of 
the validation set. The statistical analyses were performed 
using R software version 4.05 (https://www.rproject.
org/), and P < 0.05 (double) was considered to indicate 
statistical significance.

Results
Baseline characteristics
According to our inclusion criteria, a total of 1535 
patients were included in this study. (Table  1). Among 
them, 1144 patients were in the training set, and 391 
patients were in the validation set (Supplement Table 2). 
The median age of the patients in the training cohort was 

66 (54–74) years; 61.6% were men; 26% (419) had stage 2 
AKI; the median eGFR was 26.6 (17.2–38.5) ml/min/1.73 
m2, and the median SOFA score was 12 (10–14). The 
median age of the patients in the validation group was 63 
(50–70) years, 61.1% were men, 17.9% had stage 2 AKI, 
the median eGFR was 25.5 (16.6–36.8) ml/min/1.73 m2, 
and the median SOFA score was 13 (10–15).

Comparison of risk factors for 10-day mortality after 
initiation of CRRT
A total of 520 (33.9%) patients died after the initiation of 
CRRT within 10 days. Table  1 shows that patients who 
died within 10 days had lower rates of congestive heart 
failure (13.5%/21.8%) and hypertension (48.7%/64.8%) 
(P < 0.01) and greater rates of peripheral vascular disease 
(6.5%/3.6%), COPD (15.8%/6.5%), and mechanical ven-
tilation (87.9%/73.3%) (P < 0.01). Those who died within 
10 days had greater phosphorus (5.8/5.2 mmol/L), eGFR 
(29/24.5 ml/min/1.73 m2), and SOFA scores (14/12) and 
lower systolic pressure (106/113 mmHg), diastolic pres-
sure (57/61 mmHg), haemoglobin (9.2/9.4 g/L), albumin 
(2.5/2.7 g/L), and urine output (20/40 ml/2 h) (P < 0.01).

Table 2  Comparison of risk factors of 90 days mortality after initiation of continuous renal replacement therapy (CRRT)
Variates Survival (n = 455) Death (n = 1080) p-value
Age (yr) 65.0 (51.5–72.0) 65.0 (53.8–73.0) 0.29
Gender(male) 270 (59.3%) 674 (62.4%) 0.285
Miocardial infarction 54 (11.9%) 121 (11.2%) 0.775
Congestive heart failure 89 (19.6%) 202 (18.7%) 0.749
Cerevascular diseases 49 (10.8%) 98 ( 9.1%) 0.349
Peripheral vascular disease 17 ( 3.7%) 54 ( 5.0%) 0.345
Dementia 20 ( 4.4%) 48 ( 4.4%) 0.99
Diabetes mellitus 170 (37.4%) 343 (31.8%) 0.039
Hypertension 313 (68.8%) 598 (55.4%) < 0.001
COPD 36 ( 7.9%) 112 (10.4%) 0.163
Mechanical ventilation 299 (65.7%) 902 (83.5%) < 0.001
Potassium (mmol/L) 4.5 (4.0–5.0) 4.5 (4.0-5.2) 0.45
Bicarbonate (mmol/L) 17.0 (14.0–20.0) 17.0 (14.0–20.0) 0.876
Phosphorous (mmol/L) 5.2 (3.9–6.2) 5.6 (4.3-7.0) < 0.001
Body Mass index (Kg/m2) 24.1 (21.5–26.8) 23.5 (20.8–25.9) 0.002
Systolic pressure (mmHg) 115.0 (102.0-132.0) 108.0 (95.0-121.0) < 0.001
Diastolic pressure (mmHg) 61.0 (52.0–71.0) 58.0 (49.0–68.0) < 0.001
WBC 13720.0 (9010.0-19420.0) 11355.0 (5400.0-17860.0) < 0.001
Hemoglobin (g/L) 9.6 (8.5–11.0) 9.3 (8.2–10.4) < 0.001
Blood urea nitrogen (mmol/L) 47.0 (32.5–63.0) 52.0 (34.0-75.2) 0.001
Albumin (g/L) 2.8 (2.4–3.2) 2.5 (2.2–2.9) < 0.001
eGFR (ml/min per 1.73 m2) 22.0 (15.1–35.5) 28.0 (17.9–39.0) < 0.001
Urine output (ml/2 h) 55.0 (13.5–120.0) 30.0 (2.0–85.0) < 0.001
SOFA scores 10.0 (8.0–13.0) 13.0 (11.0–15.0) < 0.001
CRRT_dose (ml) 36.8 (34.3–39.8) 37.0 (34.1–40.0) 0.592
AKI stage 103 (22.6%) 265 (24.5%) 0.465

352 (77.4%) 815 (75.5%)
Abbreviation: COPD: chronic obstructive pulmonary disease; WBC: white blood cell; eGFR: estimated glomerular filtration rate; AKI: acute kidney injury. The category 
risk factors are shown as n (%), while continuous risk factors are shown as median (1th -3th )

https://www.rproject.org/
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Comparison of risk factors for 90-day mortality after 
initiation of CRRT
A total of 1080 (68.8%) patients died within 90 days 
after the initiation of CRRT. Table 2 shows that patients 
who died within 90 days had a lower rate of diabetes 
(31.8%/37.4%) and hypertension (55.4%/68.8%) (P < 0.05) 
and a higher rate of mechanical ventilation (83.5%/65.7%) 
(P < 0.01). Those who died within 90 days had higher lev-
els of phosphorus (5.6/5.2 mmol/L), eGFR (28/22  ml/
min per 1.73 m2), and BUN (52/47 mmol/L) and SOFA 
scores (13/10) and lower BMIs (23.5/24.1  kg/m2), sys-
tolic pressure (108/115 mmHg), diastolic pressure (58/61 
mmHg), leukocyte count (11,355/13,720), haemoglobin 
(9.3/9.6  g/L), albumin (2.5/2.8  g/L), and urine output 
(30/55 ml/2 h) (P < 0.01).

The prediction performance of the established model on 
the validation set (10 days)
Patients who died within 10 days after the initiation of 
CRRT were labeled as class 1, whereas those who sur-
vived after 10 days were grouped as 0. Then, we devel-
oped multiple classifiers with different ML algorithms 
based on training sets. The validation set was used to 
test the generalizability of the constructed model OR 
was used to test the predictive power of the model. The 
AUROCs of the various models ranged from 0.51 to 0.80. 
Among the various ML algorithms, the RF model had 
the best prediction performance (Supplement Table  3) 
on the validation set (AUROC: 0.80, 95% CI: 0.74–0.84; 
Accuracy: 0.72, 95% CI: 0.67–0.76; F1-score: 0.59), while 

the MLP model had the weakest predictive performance 
(AUROC: 0.51, 95% CI: 0.31–0.70; Accuracy: 0.634, 95% 
CI: 0.584–0.682; F1-score: 0.41). Figure 1 shows the ROC 
curves of each model for mortality prediction. The clas-
sification results of the RF model for the validation set 
can be seen in the confusion matrix (Fig.  2), with 200 
of the predictions being correctly negative and 80 being 
correctly positive. The calibration curve (Fig.  3) dem-
onstrated that the difference between the predicted and 
observed risks fluctuated around the diagonal, indicating 
that the predicted risk of short-term mortality was gener-
ally consistent with the observed risk.

The prediction performance of the established model on 
the validation set (90 days)
The AUROC of the various ML models ranged from 
0.60 to 0.78. The RF model had the best prediction per-
formance (Supplement Table  4) on the validation set 
(AUROC: 0.78, 95% CI: 0.73–0.83; Accuracy: 0.73, 95% 
CI: 0.69–0.78; F1-score: 0.80), while the AdaBoost and 
KNN models had the worst (AUROC: 0.60, 95% CI: 0.55–
0.63; Accuracy: 0.73, 95% CI: 0.69-0.72-0.78; F1-score: 
0.83). Figure 1 shows the ROC curves of each model for 
mortality prediction. The confusion matrix (Fig. 2) shows 
the classification results of the RF model for the valida-
tion set, of which 80 correctly predicted negative and 207 
correctly predicted positive results. The calibration curve 
(Fig.  3) revealed that the predicted risk of short-term 
mortality was generally consistent with the observed risk. 
We utilized grid search for hyperparameter tuning, and 

Fig. 1  The receiver operating characteristic (ROC) curves of each model. (A) 10 days; (B) 90 days. Abbreviations: SVM: support vector machine; XGB: 
extreme gradient boost; MLP: multilayer perceptron; KNN: k-nearest neighbor
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the hyperparameter values used for all machine learning 
algorithms are provided in Supplement Table 5.

Important features
We utilized the mean decrease in Gini impurity to assess 
the extent to which risk factors contributed to short-
term and long-term mortality. According to Fig.  4, the 

SOFA score was the main contributing factor to short-
term mortality in CRRT patients. The five risk factors for 
short-term death were also WBC, systolic blood pres-
sure, phosphorus, and BUN. For long-term mortality, 
SOFA scores remained the most important risk factor 
contributing to long-term mortality in CRRT patients. 

Fig. 3  The calibration curve of the random forest model. A. 10 days; B. 90 days

 

Fig. 2  The confusion matrix of the validation set. A. 10 days; B. 90 days 1: positive outcome (death); 0: negative outcome (survival)
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However, the order of the top five risk factors changed to 
eGFR, WBC, systolic blood pressure, and serum ALB.

SHAP analysis
SHAP (SHapley Additive exPlanation) is a technique 
used to interpret the outputs of machine learning mod-
els. Figure 5 illustrates the SHAP values for the Random 
Forest model, which demonstrated the best performance 
in predicting outcomes. Each point represents a patient. 
The x-axis shows the SHAP values, indicating the impact 
of each feature on the prediction. Points to the right 

indicate an increased probability of death, while points 
to the left indicate a decreased probability. The y-axis 
lists all the features, and the color gradient from purple 
to yellow indicates the feature values from low to high, 
with dark purple representing low values and yellow 
representing high values. For both short-term (10-day) 
and long-term (90-day) mortality risk predictions, the 
SOFA score is the most critical predictor. High SOFA 
scores (shown in yellow) significantly increase the likeli-
hood of death, reflecting the severity of organ failure on 
patient prognosis. Low eGFR values (shown in purple) 

Fig. 5  SHAP Value Plot. A. 10 days; B. 90 days. Feature values are represented from low (purple) to high (yellow), with each feature’s impact on mortality 
risk increasing from left to right

 

Fig. 4  Ranking of feature importance according to the mean decreased GINI impurity. A. 10 days; B. 90 days
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are strongly associated with a higher risk of death, under-
scoring the importance of renal function in patient sur-
vival. Low serum ALB is linked to higher mortality risk 
across both time frames, indicating that malnutrition 
adversely affects both short-term and long-term survival. 
Systolic blood pressure (SBP) shows a significant correla-
tion between low blood pressure and increased mortal-
ity risk, consistent across both periods, highlighting the 
importance of blood pressure management in improving 
patient survival. Elevated levels of phosphorus and BUN 
contribute significantly to the increased long-term (90-
day) mortality risk, indicating metabolic imbalances and 
organ dysfunction in patients.

Discussion
Patients with AKI who undergo CRRT are at high risk of 
mortality. In our study, at 10 days and 90 days following 
the initiation of CRRT, the mortality rates were 33.1% 
and 66.8%, respectively. This finding is in line with the 
results of a secondary analysis of two multicenter ran-
domized controlled trials (AKIKI and IDEALICU) [24]. 
Given that the mortality rates for the short and long term 
are different and that there may be different risk factors 
that have contributed to the mortality rates for these 
two time periods, risk stratification tools for two distinct 
periods of mortality should be established. To our knowl-
edge, our study is the first to focus on constructing risk 
stratification tools and investigating risk factors for dif-
ferent periods of mortality in AKI patients after the ini-
tiation of CRRT. The results of our study show that the 
RF model is the most accurate algorithm for predicting 
both short-term and long-term mortality rates. (10 days: 
ROC: 0.80, 95% CI: 0.74–0.84; 90 days: ROC: 0.78, 95% 
CI: 0.73–0.83). Previously, Daniel H. Li [25] constructed 
a prediction model based on traditional logistic regres-
sion to predict the risk of long-term (90-day) mortality 
in AKI patients who were undergoing RRT. Nonethe-
less, that study had poor predictive performance (AUC: 
0.61, 95% CI: 0.54–0.69) on external validation, which 
indicates that the external applicability of the model is 
poor. Zheng-hai Bai et al. [26] developed a nomogram 
for predicting mortality risk 28 days after the initiation of 
CRRT using multifactor Cox regression analysis, which 
has similar predictive performance (area under the curve 
(AUC): 0.78, 95% CI: 0.75–0.82) to that of our RF model. 
However, this study did not conduct external validation 
to verify the generalizability of the established model, so 
its external application at other centers is unclear. Com-
pared with these studies, our research examined the pre-
dictive ability of various ML models and revealed that 
the RF model outperforms traditional statistical analysis 
in forecasting both short-term and long-term mortality, 
and this performance was maintained through external 
validation.

Our study focused on predicting mortality risk in the 
CRRT modality rather than in the intermittent haemo-
dialysis (IHD) modality since several studies based on 
real-world data indicated that patients undergoing CRRT 
were at a greater risk of death than those receiving inter-
mittent haemodialysis (IHD) [24, 27]. An accurate risk 
stratification tool for these patients is needed. Interest-
ingly, we selected 10-day and 90-day mortality periods. 
Earlier research [12] showed that the death rate was 
highest in the first 10 days after the initiation of CRRT, 
and from 10 days to 90 days, the risk of death gradually 
decreased and remained at a low level thereafter. There-
fore, these two time periods may be important nodes 
for patient stratification. By identifying patients who are 
at a high risk of short-term death, clinicians can execute 
essential therapies to help them pass this period, and 
then, the prognosis of these patients will be considerably 
improved.

The ranking of important features was performed 
using the RF model after we determined that it was the 
best prediction algorithm. Notably, the SOFA score was 
the top risk factor for both 10-day mortality and 90-day 
mortality according to the feature importance ranking, 
indicating that it is an important prognostic factor for 
both short-term and long-term mortality risk evalua-
tion. This result is also consistent with previous tradi-
tional statistical analyses [28–30]. Several studies have 
investigated the predictive value of SOFA scores for early 
and long-term death risk in AKI patients undergoing 
CRRT. Using stepwise logistic regression, Herreweghe 
et al. reported that higher SOFA scores were associated 
with 2-day mortality after RRT initiation [12]. Daniel H. 
Li [25] used a stepwise model and reported that SOFA 
scores were associated with 90-day mortality after RRT 
initiation. Combined with our study, SOFA scores should 
be recommended as a key predictive factor for predict-
ing mortality risk (regardless of early or long-term mor-
tality) in AKI patients initiated with CRRT. In addition 
to SOFA score, the WBC count is also an important risk 
factor for both short-term and long-term mortality. It 
has previously been shown that WBCs are the primary 
cause of in-hospital mortality for patients with AKI who 
are receiving CRRT [31]. However, this study did not 
take into account the risk of short-term mortality. Our 
research, on the other hand, demonstrated that WBC 
counts are an excellent predictor of short-term mortality. 
This may be due to the greater likelihood of early death in 
AKI patients due to infection. It is also worth mentioning 
that the eGFR may be more useful for predicting long-
term mortality than for predicting short-term mortality. 
We hypothesize that this may be because a higher eGFR 
is associated with long-term AKI recovery and a lower 
rate of dialysis dependency. A single-center retrospec-
tive study also revealed that a lower eGFR was associated 
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with long-term renal and overall survival [32]. Aside 
from those listed above, other risk factors, such as the 
serum ALB or phosphorus concentration, may also have 
different effects on short-term and long-term mortality. 
This also shows the importance of developing classifica-
tion tools for both short-term and long-term mortality.

The limitations of our study should be acknowledged. 
For starters, the patients who were included were already 
undergoing CRRT, and those who were not were not 
included in the comparisons. Consequently, we can only 
determine the mortality risk of these individuals, but we 
have no idea if CRRT will be beneficial to them. Second, 
our data mostly originate from an electronic medical 
records database, which is a retrospective study, and the 
level of evidence is lower than that of a prospective study. 
Therefore, the model’s external applicability still has to 
be tested in future investigations. Our research objective 
is to predict the mortality risk of AKI patients undergo-
ing CRRT at different time points (10 days and 90 days). 
To achieve this, we utilized two separate classification 
analysis models. However, we also recognize that sur-
vival analysis might be a more intuitive choice as it can 
generate a risk curve over time (such as the Kaplan Meier 
curve) for each patient. Although survival analysis might 
provide more comprehensive information, we opted for 
classification analysis primarily due to its simplicity and 
intuitiveness, which are especially important for clini-
cians. In our 90-day risk model, approximately half of 
the “death” cases actually died within 10 days. This might 
suggest that this model is not identifying risk factors for 
long-term mortality. Nevertheless, we chose to include 
all death cases because our goal is to identify the mor-
tality risk of all AKI patients, regardless of whether they 
die within the first 10 days of CRRT. However, we also 
acknowledge that if a patient survives the first 10 days 
of CRRT, excluding early deaths could make the 90-day 
prediction model more accurately reflect the risk factors 
for long-term mortality. We also noted that three of the 
top five prognostic factors for short-term and long-term 
mortality are shared, which might reflect the central role 
of these factors in the mortality risk of AKI patients. This 
might suggest that while some risk factors are consis-
tently important throughout the disease process, other 
risk factors might only play a role at specific time inter-
vals. These differences could have significant implications 
for clinical decision-making and patient management.

Conclusion
In this study, we used various ML algorithms to develop 
two risk stratification tools for identifying AKI patients 
with a high mortality risk following the commencement 
of CRRT. The findings suggest that the risk factors for 
various periods of mortality may be distinct. In terms 
of both short-term and long-term mortality, the main 

causes of death were SOFA score and WBC count. The 
RF algorithm has the best performance in regard to pre-
diction, and this performance remains high even when 
it is subjected to external validation. In the future, addi-
tional external validation needs to be carried out to verify 
the external application of this model.
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