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Abstract 

Background  Lipid droplets (LD) in renal clear cell carcinoma (ccRCC)play a crucial role in lipid metabolism 
and immune response modulation. The purpose of this study was to create a LD-related signature to predict progno-
sis and guide the immunotherapy and targeted therapy in ccRCC patients.

Methods  We conducted a comprehensive analysis using transcriptional profiles and clinical data obtained from The 
Cancer Genome Atlas (TCGA). LD-related genes were identified from existing literature and the GeneCards database, 
and differentially expressed genes were determined. Sequentially, we conducted Cox regression analysis and Lasso 
regression analysis, to establish a prognostic risk model. The performance of the risk model was evaluated using 
Kaplan–Meier (KM) analysis and time-dependent receiver operating characteristic (ROC) analysis. Additionally, gene 
set enrichment analysis (GSEA), ESTIMATE, CIBERSORT, and immunophenoscore (IPS) algorithm were used to assess 
the tumor microenvironment (TME) and treatment response.

Results  We constructed a risk signature with four LD-related genes in the TCGA dataset, which could be an inde-
pendent prognostic factor in ccRCC patients. Then, patients were classified into two risk groups and exhibited 
notable differences in overall survival (OS), progression-free survival (PFS), and TME characteristics. Furthermore, we 
developed a comprehensive nomogram based on clinical features, which demonstrated good prognostic predictive 
value. According to the results of GSEA analysis, immune-related pathways were found to be significantly enriched 
in the high-risk group. Additionally, the high-risk group displayed high levels of immune cell infiltration, TMB and IPS 
scores, indicating better efficacy of immune checkpoint inhibitors (ICIs). Finally, high-risk demonstrated reduced 
IC50 values compared to the low-risk counterpart for specific targeted and chemotherapeutic drugs, suggesting 
that the patients receiving these targeted drugs in high-risk group had better treatment outcomes.

Conclusions  Our findings suggested that the LD-related gene signature could potentially predict the prognosis 
of ccRCC patients. Additionally, it showed promise for predicting responses to immunotherapy and targeted therapy 
in ccRCC patients. These insights might potentially have guided the clinical management of these patients, but fur-
ther validation and broader data analysis are needed to confirm these preliminary observations.
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Introduction
Renal cell carcinoma (RCC), a common malignant tumor 
of renal cells and renal tubular epithelial cells, constitutes 
3% of all malignant diseases and is one of the most lethal 
malignancies in the urinary system [1]. Clear cell renal 
cell carcinoma (ccRCC), as the predominant subtype, 
accounts for 75–80% of all RCC cases and displays high 
invasiveness and recurrence rates [1–3].The incidence 
and mortality rates of ccRCC have seen a rapid rise in 
recent decades. Currently, surgical resection combined 
with adjuvant systemic therapy is the primary treatment 
method for ccRCC patients, but many patients experi-
ence tumor recurrence or metastasis after surgery [4]. In 
recent years, immune checkpoint inhibitors (ICIs) such 
as PD-L1, PD-1, and CTLA-4 have made progress in 
the treatment of ccRCC [5]. Nevertheless, for metastatic 
RCC, about 75% of patients develop resistance to immune 
checkpoint blockade (ICB) therapy, and even those who 
initially respond well eventually face disease progression 
[6, 7]. Therefore, finding new reliable prognostic bio-
markers is crucial for developing immunotherapy.

Lipid droplets (LDs) are enveloped by a phospholipid 
monolayer and accompanied by LD surface proteins and 
function as organelles accountable for storing neutral 
lipids, mainly comprising cholesterol esters (CEs) and 
triglycerides (TGs) [8]. Previous studies have consist-
ently demonstrated the notable accumulation of LDs 
in specific cancer cells, suggesting their involvement in 
tumor proliferation, invasion, metastasis, and chemore-
sistance across various malignancies [9–11]. ccRCC is 
characterized by an anomalous buildup of lipid droplets 
within the cytoplasm. The lipid droplets in ccRCC tissues 
contain significantly higher levels of free cholesterol and 
esterified cholesterol, approximately 8 times and 35 times 
higher than those in normal kidney tissues, respectively. 
Lipid accumulation is closely associated with disease pro-
gression [12–14]. Additionally, ccRCC, as one of the solid 
tumors characterized by extensive immune infiltration, 
manifests substantial leukocyte infiltration and displays a 
close correlation with immune responses [15]. LDs play 
an active role in immune metabolism and immune signal 
transduction as primary respondents of innate immunity. 
Furthermore, they serve as central hubs for metabolic-
immune system integration, consequently contributing 
to anti-tumor immunity [16–18]. Therefore, LDs may be 
implicated in immune cell infiltration within KIRC tis-
sues and possess therapeutic potential for tumor man-
agement. However, the gene set associated with LDs in 
KIRC has not been systematically investigated.

In the study, we established novel characteristics of LD-
related genes based on the TCGA cohort. Subsequently, 
and then developed a prognostic model to explore the 
clinical relevance and potential prognostic implications 
of these genes in ccRCC. Our primary objective was to 
assess the clinical prognosis of KIRC and explore possible 
implications for immune-related and targeted therapies.

Materials and methods
Exploration of the lipid droplets associated genes
A systematic search was conducted on the PubMed data-
base using the search term "lipid droplet-associated pro-
tein," with the final search executed on November 27, 
2023. Publications containing the keyword "LD" were 
gathered, and factors linked explicitly to LDs or asso-
ciated with organelles interacting with LDs, including 
mitochondria, endoplasmic reticulum, and the Golgi 
apparatus, were selected. No restrictions were applied to 
publication dates. From this search, we obtained 58 genes. 
Additionally, we retrieved 104 LD-associated genes from 
GeneCards (https://​www.​genec​ards.​org/) using the key-
words "LD-associated genes" and "LD-associated protein," 
with a relevance score ≥ 7 as the filtering criterion. Finally, 
we compiled a set of 162 genes associated with LDs from 
both databases.

Data collection
Clinical and transcriptome data from 539 ccRCC and 72 
healthy kidney specimens were obtained from The Can-
cer Genome Atlas (TCGA) data portal. After removing 
duplicate samples, a total of 530 KIRC samples were col-
lected. Among these, 513 samples with overall survival 
time (OS) greater than 0 days were randomly divided 
into a training set of 333 cases and a testing set of 180 
cases, ensuring similar distributions of clinical features 
(Table  S4). Additionally, the predictive performance of 
the model was validated using the E-MTAB-1980 data-
set, which includes 101 samples, and the ICGC dataset, 
which includes 90 samples.

Identification and enrichment analysis of differentially 
expressed genes
LD-associated differentially expressed genes (DEGs) 
between the tumor and normal samples in the TCGA-
KIRC cohort were identified using the "limma" R pack-
age, with thresholds of |log2 fold change|> 1 and P < 0.05. 

https://www.genecards.org/
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These DEGs were then subjected to Gene Ontology (GO) 
[19]  and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) [19]  enrichment analysis using the R package 
"clusterProfiler" [20].

Development and validation of a risk model based 
on LD‑associated Genes in KIRC
We performed univariate Cox regression analysis to assess 
the association between LD-associated genes and the 
prognosis of KIRC. LD-related genes with negligible con-
tribution were removed through least absolute shrinkage 
and selection operator (LASSO) analysis [21]. Next, we 
developed a risk model using multivariate Cox regression 
analysis. The risk score was calculated using the formula, 

n
i=1

expi ∗ coefi , where expi and coefi represented gene 
expression levels and regression coefficients, respectively. 
Subsequently, four genes were selected to construct an LD-
related gene signature, and their differential expression was 
validated using the TCGA database, UALCAN and HPA 
databases (https://​www.​prote​inatl​as.​org/; https://​ualcan.​
path.​uab.​edu/​index.​html). Then, KIRC patients were strati-
fied into high-risk and low-risk groups according to the 
median risk score. We confirmed the effectiveness of the 
risk model in separating groups using principal component 
analysis (PCA). The predictive performance of the signature 
was evaluated by time-dependent receiver operating char-
acteristic (ROC) curves and Kaplan–Meier (K-M) curves.

Relationship between risk model and clinical 
characteristics
To assess the association between the risk model and 
clinical/pathological factors (age, sex, stage, grade, and 
T), we performed univariate and multivariate Cox regres-
sion analyses. Additionally, we analyzed differences in 
risk scores across various clinical features. Stratified 
analyses were conducted to evaluate the prognostic sig-
nificance of the risk score in different clinicopathological 
subgroups.

Development and evaluation of the nomogram
We developed a nomogram to predict OS in KIRC based 
on independent prognostic factors. To assess its accuracy, 
calibration curves at 1, 3, and 5 years and ROC curves 
were used. Decision curve analysis (DCA) was performed 
to compare the net benefit of the comprehensive nomo-
gram against a model with only clinical variables.

Gene set enrichment analysis (GSEA)
GSEA was conducted using the "clusterProfiler" R pack-
age to delineate the Gene Ontology (GO) and Kyoto 

Encyclopedia of Genes and Genomes (KEGG) pathways 
between different risk groups in the TCGA-KIRC dataset 
[22]. An adjusted p-value < 0.05 was considered statisti-
cally significant.

Immune infiltration analysis
The ESTIMATE algorithm was used to calculate stro-
mal, immune, and estimate scores for all TCGA-KIRC 
cases [23]. ssGSEA and Microenvironment Cell Popula-
tions (MCP) methods were applied to analyze immune-
related functions and immune cell infiltration between 
high- and low-risk groups [24, 25]. We also compared 
immune checkpoint expression between the two risk 
groups to assess potential utility in immunotherapy.

Somatic variant analysis and mutation landscape
Somatic mutation data for KIRC patients were obtained 
from the TCGA database to calculate individual TMB 
scores [26]. We then compared TMB differences 
between high- and low-risk groups and conducted sur-
vival analysis. The mutation landscape of KIRC patients 
was visualized using a waterfall plot with the "maftools" 
R package [27].

IPS analysis
The Immunophenoscore (IPS) is a recognized predic-
tor of immune checkpoint inhibitor (ICI) response 
[28, 29]. Using IPS data from The Cancer Immunome 
Atlas (TCIA) (https://​tcia.​at/), we assessed potential 
differences in immunotherapy response between high- 
and low-risk groups.

Comparisons of drug sensitivity
We used the "pRRophetic" R package to evaluate the 
risk model’s predictive value for sensitivity to targeted 
and chemotherapeutic drugs [30, 31].

Statistical analysis
Statistical analyses were conducted using R software 
(version 4.2.2). Wilcoxon’s signed-rank test was uti-
lized to assess distinctions between two groups, while 
Kaplan–Meier curves and log-rank tests were employed 
to scrutinize survival disparities among various risk 
groups. A two-sided p-value < 0.05 was considered sta-
tistically significant.

Result
Identification of genes associated with lipid droplets based 
on the TCGA dataset
A total of 162 genes associated with lipid droplets 
(LDs) were identified through literature search and 
database analysis. Table  S1 displays the genes associ-
ated with lipid droplets retrieved from the literature. 

https://www.proteinatlas.org/
https://ualcan.path.uab.edu/index.html
https://ualcan.path.uab.edu/index.html
https://tcia.at/
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We utilized the "limma" R package to conduct differ-
ential expression analysis on these 162 genes in KIRC. 
P-value < 0.05 was considered indicative of significant 
differential expression and set a fold change threshold 
of |log2 FC|> 1. The analysis identified 134 genes with 
significant expression changes, comprising 59 upregu-
lated genes and 75 downregulated genes. (Table  S2). 
The data was visualized using a heatmap (Fig. 1A). GO 
enrichment analysis demonstrated a close correlation 
between genes associated with lipid droplets and sev-
eral functions, including lipid localization, lipid stor-
age, lipase activity, carboxylic ester hydrolase activity, 
O-acyltransferase, lipid droplets and endocytic vesicles 
(Fig. 1B-D). KEGG enrichment evaluation verified that 

these genes were related to the PPAR signaling path-
way, endocytosis and fat digestion absorption (Fig. 1E). 
The findings indicated that the gene set we identified 
was associated with lipid metabolism, further validat-
ing the role of lipid droplets and lipid metabolism in 
the progression of ccRCC.

Construction of a risk model
First, we conducted univariate Cox regression analy-
sis on the 134 DEGs in the training dataset, identify-
ing 64 genes significantly associated with OS (P < 0.05). 
(Table  S3) LASSO Cox regression analysis was applied 
to select these survival-related genes (Fig.  2A-B), fol-
lowed by univariate and multivariate Cox regression 

Fig. 1  Functional enrichment analysis based on DEGS: A Differential expression heatmap of 134 DEGs. GO analysis (B) BP: biological processes, 
C MF: molecular function. D CC: cellular components. E KEGG pathway analysis
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Fig. 2  Construction of LD-related genes risk model: A LASSO coefficient profiles of the 71 genes in the train dataset. B Selection of the optimal 
parameter (lambda) in the LASSO model. C Univariate and (D) multivariate Cox regression analysis of the four LD-associated genes in the risk mode. 
Risk scores and survival status of KIRC patients among diverse risk groups of (E) TCGA cohort and (F) E-MTAB-1980 cohort
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analysis for these genes (Fig. 2C-D). Finally, a risk model 
based on four genes associated with lipid droplets was 
constructed in the train datase. The risk score was 
computed by considering both the coefficients and the 
expression levels of the four genes: (0.820 * expression 
of AUP1) + (0.264 * expression of SERPINF1) + (0.717 
* expression of DGAT2) + (-0.286 * expression of 
METTL7A). Subsequently, these patients were stratified 
into distinct risk groups based on a median risk score 
of -0.1087. The heatmap and risk curve showed a sig-
nificant increase in the mortality rate of patients in the 
high-risk group in the TCGA-KIRC and E-MTAB-1980 
cohorts (Fig.  2E-F). The results suggested that the risk 

score might have potential as a prognostic biomarker 
for indicating the survival outcomes of ccRCC patients.

Evaluation of the risk signature of LD‑related genes
The process of selecting lipid droplet-associated genes 
for bioinformatics analysis was conducted. Primarily, 
PCA analysis of train dataset showed the signature had 
good performance in clustering. (Fig. 3A) Subsequently, 
the prognostic accuracy of the risk model was validated 
using entire datasets, train datasets, test datasets, ICGC 
datasets and MTAB-1980 datasets. The K-M plots dem-
onstrated that ccRCC patients with a high-risk score 
exhibited reduced Progression-Free-Survival (PFS) in the 
TCGA-KIRC cohort (Fig. 3B-D), as well as lower OS in 

Fig. 3  Validating the performance of the risk model: A PCA analysis of risk model analyses in the TCGA dataset. B-D PFS curves, E–G Kaplan– Meier 
curves and H-J the AUCs of the time-dependent ROC curves for the entire dataset, the train dataset and the test dataset
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the TCGA-KIRC (Fig. 3E-G). Moreover, excellent results 
were observed in the area under the ROC curve (AUC) 
at 1-, 3-, and 5-year intervals. The values in the entire 
cohort were 0.764, 0.704, and 0.713 (Fig. 3H); in the train 
cohort, they were 0.761, 0.715, and 0.702 (Fig. 3I); in the 
test cohort, they were 0.751, 0.721, and 0.741 (Fig.  3J). 
The model’s predictive ability was evaluated using ROC 
and Kaplan–Meier curves in the two datasets. Within 
the datasets of E-MTAB-1980 and ICGC, Kaplan–Meier 
curves elucidate inferior survival outcomes within the 
high-risk cohort, and the results of the time-dependent 
ROC curve analysis also indicate that the model pos-
sesses a predictive capability. (Figure S1) The findings 
indicate that our model exhibited high sensitivity and 
specificity in diverse datasets, enabling accurate prog-
nosis prediction for patients with KIRC. Therefore, we 
further visualized the expression differences and survival 
probabilities of these genes in TCGA-KIRC samples. We 
found significant disparities in both aspects for these four 
genes (Figure S2). Additionally, we obtained validation 
from the UALCAN and HPA websites showing the dif-
ferential expression and prognostic significance of these 
four genes in KIRC tissues (Figure S3).

Relationships between the risk model and clinical features
Univariate and multivariate Cox regression analyses 
were conducted on the entire dataset’s risk score and 
clinical features (Figs. 4A-B). To address potential con-
founding factors, variables such as age, gender, tumor 
stage, T, M, and N were included as comprehensively 
as possible in the multivariate Cox regression model. 
The results showed that our risk model could indepen-
dently predict KIRC prognosis. Furthermore, the AUC 
result of 0.704 demonstrates the good predictive ability 
of the risk score (Fig. 4C). Box plots revealed that Stage, 
Grade, T, M and N had high risk scores (Figure S4). To 
assess the clinical advantage of the LD-related genes 
signature, four independent prognostic indicators (risk 
score, stage, age, T) derived from the multivariate Cox 
analysis were further explored in the nomogram anal-
ysis. The results showed that as the total risk score 
increased, the prognosis worsen (Fig.  4D). Calibration 
curves indicated that the nomogram performed simi-
larly to the ideal model in predicting prognosis prob-
ability (Fig. 4E). Moreover, the time-varying ROC curve 
underscored the precision of the nomogram in fore-
casting prognosis (Fig.  4F). The application of deci-
sion curve analysis (DCA) was employed to evaluate 
the clinical applicability of the nomogram and revealed 
that compared to single clinical characteristics, the 
nomogram can generate more net benefits (Fig.  4G). 
Additionally, we further conducted stratified analyses 
to validate the prognostic value of the risk scores in 

subgroups characterized by different clinical features, 
demonstrating the robustness of our findings. The sur-
vival analysis of distinct subgroups according to the 
clinical features showed significant differences between 
two risk groups except for G1 + 2, and the patients in 
high-risk groups had poorer OS (Figs. 5A-M).

Exploration the potential mechanisms between the two 
risk groups by GSEA
The GO assessment results showed enrichment of terms 
such as " humoral immune response mediated by cir-
culating immune”,"mmunoglobulin production”,"T-cell 
receptor complex", "antigen binding " and " humoral 
immune response” (Fig.  6A). KEGG results revealed a 
high pathway enrichment including "cytokine-cytokine 
receptor interaction", "hematopoietic cell lineage", "allo-
graft rejection", "graft versus host disease " and "type I 
diabetes mellitus” (Fig. 6C). These results suggested that 
the high-risk group was notable enriched in immune-
related processes.

Immune landscape variations between the two‑risk groups
The GSEA outcomes indicated that the risk model had 
a strong correlation with the immune response. To con-
firm this conclusion, we conducted immune analysis 
employing to investigate the tumor microenvironment in 
the TCGA-KIRC cohort by the ESTIMATE and CIBER-
SORT algorithms., ESTIMATE analysis revealed that the 
high-risk group had higher StromalScore, ImmuneScore 
and ESTIMATEScore (Fig. 7A). In addition, we system-
atically evaluated 22 types of immune cells and immune 
functions using ssGSEA. The deconvolution algorithm 
CIBERSORT showed that the high-risk group had sig-
nificantly higher proportions of Plasma cells, T cells 
CD8, T cells follicular helper, T cells regulatory, NK cells 
activated and Macrophages M0 (Fig.  7B). Furthermore, 
the majority of immune Function aspects ADCS, APC 
co-stimulation, CCR chemotaxis, Cytolytic activity, T_
cell_co-inhibition, and co-stimulation—exhibited higher 
scores within the high-risk group, whereas the Type II 
IFN Response displayed elevated scores in the low-risk 
group (Fig.  7C). We quantified cytotoxic lymphocytes, 
CD8 + T cells, B cells, endotheliocytes, mononuclear 
cells, neutrophils, myeloid dendritic cells and fibroblasts 
using MCF counter. B lineage, CD8 T cells, and Cytotoxic 
lymphocytes and Fibroblasts increased in the high-risk 
group, while Endothelial cells, Neutrophils, and NK cells 
increased in the low-risk group (Fig.  7E-K). Moreover, 
the risk score was positively correlated with B lineage, 
CD8 T cells, Cytotoxic lymphocytes, and fibroblasts, but 
negatively correlated with myeloid dendritic cells, NK 
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cell endotheliocytes, and neutrophils (Fig.  7D). These 
findings suggested significant disparities in the immune 
landscape between the high- and low-risk groups.

Correlations between somatic mutation and risk model
TMB stands as an emerging biomarker that is progres-
sively employed for predicting patient prognosis. We 
divided patients with TMB information into high-risk and 

low-risk groups, further classifying samples as H-TMB 
and L-TMB based on the median TMB score. (Table S5) 
The analysis showed that patients in the high-risk group 
had higher TMB (Fig.  8A) and poorer OS (Figs.  8B). 
The combination of TMB and risk score seemed to have 
good risk stratification (P < 0.001, Fig.  8C) The muta-
tion information and frequencies of the 15 genes in two 
risk groups were shown in Figs.  8D-E. Among these 

Fig. 4  Development and assessment of the nomogram. A Univariate and (B) multivariate Cox regression analyses of the risk score and clinical 
characteristics. C Comparison of ROC curves among clinical feature and risk score. D The nomogram and the (E) calibration curve analyses were 
performed to predict 1-, 3-, and 5-year OS according to risk score. F The time-dependent ROC curves of the nomogram. G DCA of the clinical 
usefulness of the constructed nomogram
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genes, the mutation rates of VHL (Von Hippel-Lindau 
Tumor Suppressor), PBRM1 (Polybromo 1), and TTN 
(Titin) exceeded 10% in both groups, which was consist-
ent with previous research in KIRC. In addition, four 
prevalent checkpoint genes (LAG3, CTLA-4, TIGIT, and 
PDCD1) exhibited a significant elevation in the high-risk 
group and were positively correlated with the risk score 
(Figs. 8F-G). The findings indicated that individuals in the 
high-risk group might experience potential benefits from 
immunotherapy.

Comparisons of drug sensitivity
To ascertain whether increased TMB within the high-
risk group corresponds to improved outcomes with ICIs 
treatment, we evaluated the immunotherapy response in 
the two risk groups using the IPS algorithm.The patients 
in the high-risk group with checkpoint inhibitor treat-
ment had notable therapeutic advantages (Figs.  9A-D). 
We also analyzed the therapeutic efficacy of targeted 

drugs and common chemotherapy drugs in the risk 
model to investigate the clinical utility of LDs in precise 
ccRCC treatment. By comparing the IC50 of the drug 
in the ccRCC sample, individuals in the high-risk group 
showed higher sensitivity to chemotherapy drugs (such 
as 5-fluorouracil and cisplatin) and targeted drugs such 
as alpelisib, dabrafenib and entinostat (Figs. 9E-L). There-
fore, the risk model possibly helped predict sensitivity to 
ICIs and targeted therapy in KIRC.

Discussion
The accumulation of LD in tissues other than adipose tis-
sue has been recognized as a novel cancer hallmark [11]. 
LDs can interact with various organelles through mem-
brane contact sites, regulating oxidative stress, prevent-
ing toxic substance accumulation in the endoplasmic 
reticulum, participating in metabolic regulation, and so 
on [32–34]. Previous reports have indicated that LD con-
tent is higher in cancer cells and tissues, such as prostate 

Fig. 5  Kaplan–Meier curves of clinical subgroups. A age < 65, B age ≥ 65, C male, D female, E Grade 1 + 2, F Grade 3 + 4, G Stage I + II, H Stage III + IV, 
I T I + II, J T III + IV, K M1, L M0, M N0
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cancer, breast cancer and colorectal cancer, compared 
with normal cells and tissues [11]. Research has shown 
that the interaction between oncogenic and lipid metabo-
lism pathways regulates cancer cells’ LD balance [35]. 
Highly proliferative cancer cells increase the number 
of enzymes involved in lipid and cholesterol biosynthe-
sis, and the abundance of lipid droplets storing excess 
lipids and cholesterol is associated with tumor aggres-
siveness [36]. A growing body of evidence highlighted 
the close correlation between tumor immunity and lipid 
metabolism in ccRCC [37]. For example, studies have 
indicated that fatty acid metabolism-related mRNA sig-
natures are crucial in predicting survival prognosis and 

immunotherapy outcomes in ccRCC patients [38]. How-
ever, the exact role of lipid metabolism in ccRCC remains 
unclear. KIRC is an immunogenic tumor and its tumor 
immunity is closely associated with lipid metabolism 
[36, 39, 40]. Lipid droplets, important organelles in lipid 
metabolism and immune response, may contribute to 
ccRCC pathogenesis by regulating kidney tumor immune 
responses. However, there is still insufficient evidence 
regarding the functional role and clinical relevance of 
LD-related genes as a module signature in the context of 
precision medicine for KIRC. This study aimed to estab-
lish a LD-related signature as a promising biomarker and 
indicator for risk stratification, prognostic prediction, 

Fig. 6  Gene set enrichment analyses between the high- and low- risk groups. GO enrichment analyses in the high- risk group (A) and the low- risk 
group (B). KEGG pathway analyses in the high- risk group (C) and the low- risk group (D)
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and evaluating responses to immunotherapy and targeted 
therapy in ccRCC patients.

Firstly, we identified 162 LD-related genes from med-
ical literature and online databases, and then conducted 
GO and KEGG analyses based on 134 differentially 
expressed LD-related genes in TCGA database. The GO 
enrichment analysis revealed that these DEGs primarily 
participated in lipid storage, lipid metabolism, and the 

PPAR signaling pathway, which confirmed their asso-
ciation with lipids.

Risk score is commonly employed as a method to 
develop meaningful signatures. We constructed a risk 
signature with 4 LD-related genes based on the train 
data set. Furthermore, the risk model was verified in test 
dataset, entire dataset, ICGC cohort and E-MTAB-1980 
cohort. The results showed that the low-risk group 

Fig. 7  The immune landscape between the two risk groups. A ImmuneScore, StromalScore and ESTIMATE score, between two risk groups. Immune 
cells (B) and immune functions (C) infiltration between the two risk groups. D Correlation between the risk scores and the immune cells. The 
different expression of B lineage cell (E), CD8 + T cell (F), cytotoxic lymphocytes (G), endothelial cells (H), fibroblasts (I), neutrophils (J), and NK cells 
(K) between the two risk groups by MCP counter
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exhibited superior OS and PFS compared to the high-risk 
group, and the AUC values showed good prognostic per-
formance. Both univariate and multivariate Cox regres-
sion analyses indicated that the T stage, clinical stages, 
age and risk score were predictive factors for individual 
survival outcomes in KIRC patients. The ROC curves 
also showed the accuracy of these predictive factors. 
Therefore, we developed a comprehensive nomogram 

by incorporating the signature with two clinical indica-
tors (age and pathological stage) for accurate predic-
tions. The results showed that the nomogram had good 
clinical applicability in estimating the survival rate of 
KIRC patients. Time-dependent ROC analysis demon-
strated the favorable predictive performance of the risk 
features for the 1-year, 3-year, and 5-year survival of 
KIRC patients in the TCGA database. The DCA analysis 

Fig. 8  Somatic mutational analyses between high- and low- risk groups. A TMB difference between the two risk groups. B Survival analysis of OS 
between H-TMB and L- TMB groups. C Survival analysis of OS stratified by TMB and risk groups. The 15 frequently mutated genes in the high-risk 
group (D) and low-risk group (E). F The correlationp between (F) risk scores and the expression levels of the immune checkpoints. G The different 
expression of tbetween the immune checkpoints between the two risk groups
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suggested the obtained nomogram may better guide clin-
ical decision-making.

In constructing the 4-gene risk signature, we 
observed high expression of AUP1 and SERPINF1 in 
KIRC samples, while DGAT2 and METTL7A were 
lowly expressed. After conducting a thorough litera-
ture review and analysis, we looked into the mecha-
nisms of four genes present in tumor tissues. Our 
findings revealed that AUP1 plays a crucial role in 
regulating the synthesis of cholesterol esters and fatty 
acids (FAs) in KIRC cells. It does so by targeting and 
regulating sterol O-acyltransferase 1, which ultimately 
leads to the progression of KIRC [37]. The DGAT2 
involved in lipid synthesis is modulated by RNA-
SET2, consequently leading to an elevation in both 
triglyceride synthesis and the formation of lipid drop-
lets within ccRCC cells [41]. Significant associations 
were found between the low expression of METTL7A 
and poor prognosis in KIRC [42]. SERPINF1 (PEDF) 
exhibits a negative correlation with anti-angiogenesis 
and a positive correlation with low tumor grade and 

pT stage [43]. These results indicate that these genes 
play important roles in lipid metabolism and tumor 
progression. However, more research is necessary 
to establish the precise mechanisms by which these 
genes influence clear cell renal cell carcinoma. There-
fore, we further analyzed the molecular mechanisms 
between the two risk groups to speculate on potential 
mechanisms in KIRC. Based on KEGG and GO anno-
tation, our findings imply that LD-related genes have 
the potential to impact the progression and immune 
response of KIRC via immune pathways.

Several studies have shown that lipids can act as 
intracellular signaling molecules that affect the func-
tions of different immune cells, which has implica-
tions for the connection between lipid metabolism and 
tumor immunity. For instance, the reprogramming of 
lipid metabolism can indirectly influence immune cell 
functions, enhancing tumor immunotherapy [44–47]. 
ccRCC was recognized as an immunogenic tumor, with 
some patients potentially benefiting from ICIs, and the 
combination treatment of antiangiogenics and targeted 

Fig. 9  Drug sensitivity analysis between the low- and high-risk groups. (A-D) Comparisons of the IPS in the two risk groups. The sensitivity analysis 
of 5-luorouracil (E), cisplatin (F), axitinib (G), alpelisib (H), cediranib (I), dabrafenib (J), entinostat (K) ibrutinib between the low- and high-risk groups
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immunotherapy has been recognized as a first-line 
treatment option [48, 49]. Based on these consid-
erations and GSEA analysis results, we conducted an 
immunological analysis, uncovering patients in the 
high-risk group experienced decreased survival rates 
with increasing immune scores, consistent with prior 
research [50, 51]. CD8 + T cells, plasma cells, regula-
tory T cells and follicular helper T cells demonstrated 
elevated scores in the high-risk group, all of which are 
commonly associated with poor prognosis in ccRCC 
patients [52–54]. These findings further support the 
worse prognosis associated with the high-risk group, 
which also showed heightened scores for diverse 
immune functions, including T cell co-inhibition and 
co-stimulation, CCR and immunocheckpoints, with 
plasma cells and T cells serving essential roles in 
tumor immunity [55]. These conclusions suggested 
that the tumor microenvironment (TME) played a cru-
cial role in ccRCC treatment and tumor progression 
[56]. Recent studies on Necroptosis-Pyroptosis genes 
and necrosis-associated miRNA profiles in ccRCC fur-
ther demonstrated this point [57, 58].

Previous studies have indicated that TMB serves as a 
predictive biomarker for immune checkpoint inhibitor 
therapy [59, 60]. The elevated TMB found in the high-
risk group in our study suggested a higher probability 
of recognition by the immune system, which was con-
sistent with the elevated CD8 + T cell and plasma cell 
infiltration.. Additionally, the IPS-PD-1 + CTLA4 and 
IPS-CTLA4 scores were notably elevated in the high-risk 
group. The expression of CTLA4 was positively corre-
lated with risk scores and had elevated in the high-risk 
group. As such, these findings suggested that high-risk 
patients might have a better potential to benefit from 
immunotherapy. Additionally, patients in the high-risk 
group were more sensitive to alpelisib, dabrafenib and 
entinostat and were more likely benefit from these tar-
get therapy. In summary, our risk model could help pre-
dict KIRC patient sensitivity to targeted therapies and 
immunotherapies.

However, this study has several limitations. Firstly, 
our experiments involved a relatively small sample size 
and lacked cross-referencing to diverse multi-omics 
datasets. Therefore, in the future, we need to use larger 
datasets for further data analysis and mining. Secondly, 
the exact mechanisms by which these four genes affect 
the prognosis of ccRCC patients remain unclear. Fur-
ther research is needed to explore the correlations of 
these genes to validate the accuracy of ccRCC occur-
rence and prognosis prediction models, including 
functional analyses using animal models with knock-
out of candidate genes to determine whether the loss/

inhibition of lipid droplet-associated factors alters the 
metabolic profile, proliferation, and metastatic capabil-
ity of cells, as well as testing changes in sensitivity to 
commonly used ccRCC therapeutic drugs in cell lines 
with gene knockout or overexpression. Additionally, it 
is essential to recognize that this study is based on a 
retrospective design using public datasets, which intro-
duces several potential biases. For instance, samples in 
public datasets may not fully represent the target pop-
ulation, leading to selection bias. Different analytical 
tools and algorithms can yield varying results from the 
same data, and updates to public datasets may include 
new data or error corrections, resulting in data process-
ing bias. Lastly, our study lacks validation experiments. 
Given these limitations, we look forward to delving 
deeper and referencing different multi-omics databases 
in our future work, as well as conducting further vali-
dation experiments to analyze the specific mechanisms 
of the related genes in ccRCC to verify the reliability of 
our current findings.

Conclusion
In summary, we constructed a prognostic risk model 
using four LD-related genes. This model assisted in 
predicting the survival of ccRCC patients and dem-
onstrated potential application value in forecasting 
responses to targeted therapy and immunotherapy. 
However, comprehensive validation experiments and 
additional multi-omics data are needed to confirm 
these results.
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