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Abstract
Background There is a need to develop accurate and reliable non-invasive methods to evaluate chronic kidney 
disease (CKD) status and assess disease progression. Given it is recognized that dysregulation in metabolic pathways 
occur from early CKD, there is a basis in utilizing metabolomic biomarkers to monitor CKD progression. Volatile 
Organic Compounds (VOCs), a form of metabolomic biomarker, are gaseous products of metabolic processes in 
organisms which are typically released with greater abundance in disease conditions when there is dysregulation in 
metabolism. How urinary VOCs reflect the abnormal metabolic profile of patients with CKD status is unknown. Our 
study aimed to explore this.

Methods Individuals aged 18–75 years undergoing kidney biopsy were included. Pre-biopsy urine samples were 
collected. All biopsy samples had an interstitial fibrosis and tubular atrophy (IFTA) grade scored by standardized 
assessment. Urine supernatant was extracted from residue and sampled for stir bar sorptive extraction followed 
by Gas chromatography–mass spectrometry (GC-MS) analysis. Post-processing of GC-MS data separated complex 
mixtures of VOCs based on their volatility and polarity. Mass-to-charge ratios and fragment patterns were measured 
for individual VOCs identification and quantification. Linear discriminant analysis (LDA) was performed to assess the 
ability of urinary VOCs in discriminating between IFTA 0 (‘no or minimal IFTA’ i.e. <10%, IFTA), IFTA 1 (‘mild IFTA’ i.e. 
10–25% IFTA) and IFTA ≥ 2 (‘moderate or severe IFTA’ i.e. >25% IFTA). Linear regression analysis adjusting for age, sex, 
estimated glomerular filtration rate, diabetes mellitus (DM) status, and albuminuria was conducted to determine 
significantly regulated urinary VOCs amongst the groups.

Results 64 study participants (22 individuals IFTA 0, 15 individuals IFTA 1, 27 individuals IFTA ≥ 2) were included. There 
were 34 VOCs identified from GC-MS which were statistically associated with correct classification between the IFTA 
groups, and LDA demonstrated individuals with IFTA 0, IFTA 1 and IFTA ≥ 2 could be significantly separated by their 
urinary VOCs profile (p < 0.001). Multivariate linear regression analysis reported 4 VOCs significantly upregulated in 
the IFTA 1 compared to the IFTA 0 group, and 2 VOCs significantly upregulated in the IFTA ≥ 2 compared to the IFTA 
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Background
An increase in life expectancy and an increasing preva-
lence of diabetes mellitus and obesity has amounted to a 
greater number of individuals affected by chronic kidney 
disease (CKD), with more than 10% of the global popu-
lation affected by this condition currently [1]. By 2040, 
CKD is projected to emerge as the fifth-leading cause 
of mortality worldwide [2]. Early diagnosis is important 
to allow for timely intervention which may reduce the 
excess morbidity and mortality in patients with CKD.

Histopathological evaluation of kidney biopsy tis-
sue remains the gold standard approach which accu-
rately reflects any presence of kidney pathology. Serially 
performing kidney biopsies to monitor kidney status 
is not ideal however, as it is invasive and costly. Tradi-
tional serum and urine-based tests such as estimated 
glomerular filtration rate (eGFR) and urinary albumin, 
whilst considered convenient routinely performed tests 
to determine kidney function, do have limitations when 
aiming to accurately assess kidney disease status [3–5]. 
There remains a need to develop reliable non-invasive 
methods to evaluate kidney disease status. To this end, 
the emergence of novel proteomic and metabolomic 
techniques to determine specific biomarkers which 
inform on the metabolic and kidney disease status of an 
individual has taken significant strides [6–8].

Utilization of volatile organic compounds (VOCs) as 
non-invasive metabolomic biomarkers to evaluate meta-
bolic and kidney status has received growing interest 
over recent years [9–12]. VOCs are gaseous products 
of metabolic processes in organisms which are conven-
tionally released with greater abundance in disease con-
ditions when there is dysregulation in metabolism [13]. 
Due to the kidneys’ extraction of soluble wastes from the 
bloodstream and pre-concentration capabilities, urine 
has considerable value as a source of VOCs which may 
reflect the state and function of the kidneys, as well as 
other organs and pathologies. More than 400 human 
urinary VOCs – ranging across different organic chem-
istry functional groups (e.g. alcohols, benzenes, ketones, 
hydrocarbons, pyrroles, furans, aldehydes, terpenes, 
sulfur-containing compounds (isocyanates, sulfides), and 
O- and N-heterocyclic compounds – have been previ-
ously identified in normal physiological conditions and 

in various pathological conditions [14]. Whether the 
expression levels of VOCs in human urine can play a con-
siderable role in accurately assessing CKD status remains 
unknown to date. Our study aimed to evaluate whether 
urinary expression levels of VOCs are significantly asso-
ciated with the degree of tubulointerstitial fibrosis in the 
kidney, as reported by kidney biopsy.

Methods
Study participant recruitment and ethical considerations
Adult individuals of either sex aged between 18 and 75 
years of age under the care of the Department of Renal 
Medicine at Royal North Shore Hospital or North Shore 
Private Hospital, Sydney, Australia referred for kidney 
biopsy were included in this study. Individuals receiv-
ing kidney replacement therapy were excluded from this 
study. Informed consent was obtained from all study par-
ticipants. Data collection in this study was carried out 
in accordance with relevant local guidelines and regula-
tions, and collection of human data was approved by the 
human ethics committee at Royal North Shore Hospital 
(Ref: HREC/17/HAWKE/471).

Evaluation of kidney biopsy tissue for interstitial 
fibrosis and tubular atrophy grading to determine study 
participant groups
The procurement of kidney biopsy tissue was performed 
in the Medical Day Procedure Unit at Royal North Shore 
Hospital. Prior to commencing the procedure, written 
consent was obtained from study participants to collect 
the pre-biopsy urine sample for purposes of this study, 
and to obtain access to the kidney biopsy tissue, which 
was otherwise performed for clinical indications. Tissue 
obtained from kidney biopsies were subsequently trans-
ferred to the histopathology department and assessed 
as per standard protocols to determine interstitial fibro-
sis and tubular atrophy (IFTA) grading. Kidney biopsy 
samples were processed for light microscopic evaluation 
via paraffin-embedded sections, supplemented by special 
and immune histochemical (IHC) stains. Some samples 
were reserved for immunofluorescence and electron 
microscopic studies if indicated. Light microscopy assess-
ment included a minimum of two hematoxylin and eosin 
(H&E), two periodic acid-Schiff (PAS), two Masson’s 

1 group (p < 0.05). Significantly upregulated urinary VOCs belonged to one of four functional groups - aldehydes, 
ketones, hydrocarbons, or alcohols.

Conclusions We report novel links between urinary VOCs and tubulointerstitial histopathology. Our findings suggest 
the application of urinary VOCs as a metabolomic biomarker may have a useful clinical role to non-invasively assess 
CKD status during disease progression.

Keywords Chronic kidney disease, Volatile organic compounds, Translational diagnostics, Interstitial fibrosis and 
tubular atrophy, Non-invasive diagnosis
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trichrome (trichrome), and two Jones methenamine sil-
ver (silver) stains in complementary fashion. H&E stains 
provided a general overview of all structures, cytoplas-
mic and nuclear features, PAS stains highlighted tubular 
and glomerular basement membranes, trichrome stains 
accentuated fibrous tissue and fibrin, if present, and silver 
stains highlighted the glomerular and tubular basement 
membranes, and also sclerosis. The biopsy assessment 
was conducted blindly by three accreditated pathologists 
from the NSW Health Pathology Laboratory, Depart-
ment of Anatomical Pathology, Northern Sydney Local 
Health District, Sydney, Australia. Kidney biopsy tissue 
was assessed as having IFTA 0 (‘no or minimal IFTA’ i.e. 
<10%, IFTA), IFTA 1 (‘mild IFTA’ i.e. 10–25% IFTA) and 
IFTA ≥ 2 (‘moderate or severe IFTA’ i.e. >25% IFTA).

Study participants’ demographic alongside clinical and 
biochemical data were acquired from the Royal North 
Shore Hospital PowerChart Database, summarized using 
appropriate descriptive statistics and compared between 
the three groups. For demographic and clinical variables 
with symmetric normal distributions, the mean and stan-
dard deviation were reported. For variables that were 
skewed or ordinal, the median and interquartile range 
were used for statistical purposes. Proportions were also 
presented for categorical variables. Continuous variables 
between the groups were compared using the Analysis 
of Variance (ANOVA) test (if normally distributed) or 
Kruskal-Wallis test (if the distribution was non-paramet-
ric). Categorical variables were compared using the Chi-
square test or Freeman-Halton extension of the Fisher’s 
exact test accounting for sparsely distributed data.

Collection of urine samples and transferring sample for stir 
bar sorptive extraction
Using urine bottles with capacity of up to 100  ml, spot 
urine samples were collected from adult individuals who 
fulfilled the study criteria. Each collected urine sample 
was placed on ice immediately after collection for trans-
portation to the Renal Research Laboratory, Kolling Insti-
tute of Medical Research and were centrifuged for 20 min 
at 4℃ to isolate urine supernatant from residue. Urine 
supernatant were stored at -80  °C and defrosted over-
night at 4 °C before further sampling. 5 ml of urine was 
transferred to a 20 ml headspace vial and 3 µl of 15ppm 
bromobenzene in methanol internal standard (IS) was 
added along with a conditioned polydimethylsiloxane 
phase stir bar (Twister, 10 mm x 0.5 mm film thickness; 
Gerstel, Mülheim an der Ruhr, Germany). The headspace 
vial was capped and Stir Bar Sorptive Extraction (SBSE) 
proceeded, with the stir bar spun at 800 rpm for 2 h. The 
stir bar was then removed, rinsed with double distilled 
water and patted dry with a lint free tissue before analy-
sis. Two blank samples consisting of 5 ml of double-dis-
tilled water, spiked with the same IS were run with each 

cohort of samples. To determine retention indices, 1  µl 
of C8-C20 homologous n-alkanes (containing approxi-
mately 40  mg/l of each alkane) was injected onto sepa-
rate, conditioned SBSE. All reagents were sourced from 
Sigma-Aldrich (Sydney, Australia).

Gas chromatography–mass spectrometry analysis
Thermal desorption (TD) of the stir bars was done using 
a Gerstel Thermal Desorption Unit (TDU; Gerstel, Mül-
heim an der Ruhr, Germany). SBSE stir bars were placed 
into glass thermal desorption liners that were inserted 
into the TDU for analysis. Upon insertion into the TDU, 
the samples were purged with ultra-high purity helium 
(BOC Ltd, North Ryde, NSW, Australia) at 35  °C for 
1 min to eliminate air from the sample and inlet. Samples 
were then heated by the TDU at 12  °C/s to 250  °C with 
a helium flow of 50  ml/min. TD products were carried 
by the helium through to a programmed temperature 
vaporization (PTV) inlet (CIS-4; Gerstel) installed in an 
Agilent 7890GC (Agilent Technologies Pty Ltd, Mul-
grave, Australia), which was used in solvent mode dur-
ing the TD. The PTV inlet, containing a glass liner filled 
with Tenax TA, was held at 30  °C during the TD using 
liquid CO2 (BOC Ltd) as the cryogen. After 5  min of 
TD, the CIS-4 was heated at 12 °C/s to 250 °C and held 
at that temperature for 3  min while the TD products 
were injected into the GC without splitting. TD prod-
ucts were separated on a HP-5ms capillary column (30 m 
x 0.25 mm, 0.25 μm film thickness; Agilent), which was 
connected to a mass selective detector (Model 5975  C; 
Agilent). Ultra-high purity helium was used as carrier gas 
(flow rate through the HP-5ms column was 2.3 ml/min). 
The initial oven temperature of the GC was 40  °C, held 
for 2 min, then heated at a rate of 4 °C/min to 250 °C and 
held for 5 min. The temperature of the Gas chromatog-
raphy-mass spectrometry (GC-MS) interface was 280 °C, 
the MS ion source 230 °C and the quadrupole 150 °C. The 
detector, in electron impact mode (70  eV), scanned the 
range of 35–300 m/z. Operation of the GC-MS was con-
trolled by Agilent Chemstation (version E.02.01.117) and 
the TDU by Maestro (version 1.4.36.16; Gerstel).

Quality Control
Pooled urine quality control (QC) samples were gen-
erated for each of the three cohorts (IFTA 0; IFTA 1; 
IFTA ≥ 2) by mixing an equal volume of urine of each 
study sample to make a total of 30  ml of urine. This 
allowed for 6 × 5 ml QC samples for each cohort. These 
were extracted and analyzed as described for the study 
samples.



Page 4 of 20Wu et al. BMC Nephrology          (2024) 25:352 

Gas chromatography–mass spectrometry post processing 
of urinary volatile organic compound data
Post-processing of GC-MS data to separate complex 
mixtures of VOCs based on their volatility and polar-
ity, and measuring mass-to-charge ratios and fragment 
patterns for individual VOC identification and quantifi-
cation was performed. Chromatograms were batch pro-
cessed by metaMS (version 2.1.1) [15], hosted on the 
Workflow4Metabolomics Galaxy Server [16]. metaMS 
outputs a data matrix of aligned mass spectra with their 
corresponding peak area and a mass spectral pattern file. 
The maximum peak area of aligned mass spectra of the 
two water blanks run in every batch of samples were sub-
tracted before further analysis. Mass spectra were con-
sidered reproducible if they were present in four out of 
six QC samples, the presence in the QC samples had a 
coefficient of variation < 30% and the dispersion ratio (a 
measure of variance in the QC samples to those of the 
urine samples) was less than 50% [17]. The mass spectra 
were identified against the NIST14 mass spectral library 
in NIST MS Search (NIST MS Search v.2.2; NIST, Gaith-
ersburg, MD) using a match factor threshold of 700, and 
closeness to available retention index value (using non-
isothermal Kovats’ Retention Indices from the definition 
of van den Dool and Kratz, for a semi-standard non-polar 
column) [18].

Statistical analysis of post-processed urinary volatile 
organic compound data
Expression levels of identified VOCs were compared 
across the 3 study participant groups. To determine the 
importance of VOCs and their presence to differentiate 
IFTA status, linear discriminant analysis (LDA), a super-
vised learning technique, was used to distinguish the 
groups. The Mahalanobis distance between each group 
was calculated to validate the LDA model. Leave-one-out 

(LOO) cross validation was performed to determine the 
classification correctness rate of the VOCs across the 3 
IFTA groups.

A number of statistical methods were used, including 
descriptive statistics, one-way ANOVA with post hoc 
Bonferroni correction, and Kruskal–Wallis test accord-
ing to the data types and distributions. Associations 
between the expression levels of identified urinary VOCs 
and IFTA grading were then evaluated by linear regres-
sion analyses. Linear relationships between the depen-
dent and independent variables, multivariate normality 
(via Q-Q plots of the residuals), and multicollinearity 
were checked before implementing the regression mod-
els. For eligible VOCs, two linear regression models 
were performed – the univariate model and a multivari-
ate model adjusting for age, sex, estimated glomerular 
filtration rate (eGFR), diabetes mellitus (DM) status (i.e. 
no DM or DM), and albuminuria (i.e. no albuminuria, 
microalbuminuria or macroalbuminuria) of study partici-
pants. Covariates were selected a priori. In the multivari-
ate model, a secondary analysis evaluating between the 
expression levels of identified urinary VOCs and covari-
ates was also completed. Coefficient values, standard 
error (SE) values and 95% confidence intervals (95%CI) 
were reported for each model. All statistical tests were 
2-sided, and p < 0.05 was considered statistically signifi-
cant. Statistical analyses were performed using Stata 16 
(StataCorp MP, College Station, TX, USA).

Results
Characteristics of study participants
The relevant demographic, clinical and biochemistry 
characteristics of study participants are presented in 
Table 1. The three study groups included 22 individuals 
diagnosed with IFTA 0, 15 individuals diagnosed with 
IFTA 1, and 27 individuals diagnosed with IFTA ≥ 2 upon 

Table 1 Relevant characteristics of the study participants by IFTA status (n = 64)
All participants IFTA 0

(n = 22)
IFTA 1
(n = 15)

IFTA ≥ 2
(n = 27)

p-value*

Age in years, mean (SD) 46 (16) 38 (13) 50 (14) 51 (17) 0.007
Sex in n (%) 0.771
Female 31 (48%) 12 (39%) 7 (22%) 12 (39%)
Male 33 (52%) 10 (30%) 8 (24%) 15 (46%)
eGFR in ml/min/1.73m2, mean (SD) 65 (26) 90 (0) 71 (18) 40 (15) <0.001
Diabetes in n (%) 0.113
With diabetes 6 (9%) 0 3 (50%) 3 (50%)
Without diabetes 58 (91%) 22 (38%) 12 (21%) 24 (41%)
Albuminuria in n (%)^
No albuminuria 29 (45%) 22 (100%) 2 (13%) 5 (19%) <0.001
Microalbuminuria 18 (28%) 0 (0%) 4 (27%) 14 (52%)
Macroalbuminuria 17 (27%) 0 (0%) 9 (60%) 8 (29%)
eGFR: Estimated glomerular filtration rate; IFTA: Interstitial fibrosis and tubular atrophy; SD: Standard deviation

*p-values were adjusted by Bonferroni’s correction
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evaluation of kidney biopsy. There were statistically sig-
nificant differences in age, level of eGFR and albuminuria 
among the three groups (both p < 0.05), while sex and the 
presence of diabetes displayed no statistically significant 
differences between the three groups. As such, study par-
ticipants with more severe IFTA were older, had lower 
eGFR and more severe albuminuria, as expected, com-
pared to the other two groups.

Characteristics of post-processed urinary volatile organic 
compound data
There were 34 urinary VOCs which were identified fol-
lowing GC-MS post-processing. A summary of the 
expression levels in relation to each identified urinary 

VOC across the three IFTA groups is described in Table 2. 
The expression levels of 29 urinary VOCs have appeared 
with a ‘zero’ value in one or two IFTA groups, and 5 uri-
nary VOCs had mean values different from a ‘zero’ value 
for all three IFTA groups. These 5 urinary VOCs are 
Benzeneacetaldehyde, α-methyl-; Benzaldehyde, 4-pro-
pyl-; Phenol, 2,5-bis(1,1-dimethylethyl)-; Hexamethylene 
diacrylate; and 2(3 H)-Furanone, dihydro-5-(2-octenyl)-, 
(Z)-. Amongst these 5 urinary VOCs, there were statis-
tically significant differences in the Phenol, 2,5-bis(1,1-
dimethylethyl)- levels between the three IFTA groups. 
Compared to study participants with IFTA 0, those with 
IFTA 1 and IFTA ≥ 2 had statistically significantly higher 
Phenol, 2,5-bis(1,1-dimethylethyl)- levels. The Phenol, 

Table 2 Characteristics of post-processed urinary volatile organic compound data by IFTA status (GC-MS peak area; n = 34)
Compound IFTA 0

(n = 22)
IFTA 1
(n = 15)

IFTA ≥ 2
(n = 27)

p-value*

Mean (SD) Mean (SD) Mean (SD)
2,3-Butanedione 0 0 255,635 (484396) <0.001
m/p-xylene 0 31,079(28600) 40,663 (102840) <0.001
4-Heptanone 869,378 (804062) 487,512 (900704) 0 <0.001
Styrene 0 53,015 (41151) 132,887 (320523) <0.001
2-Heptanone 0 25,230 (40867) 0 <0.001
2-Heptanone, 4-methyl- 0 0 47,073 (52061) <0.001
Benzaldehyde 0 0 133,970 (353300) <0.001
Dimethyl trisulfide 0 0 144,442 (274141) <0.001
Benzene, 1,2,4-trimethyl- 0 20,059 (15274) 0 <0.001
Eucalyptol 0 10,123 (10887) 0 <0.001
Benzeneacetaldehyde 0 11,595 (8828) 0 <0.001
Benzaldehyde, 4-methyl- 0 19,657 (26858) 37,934 (66294) <0.001
Benzeneacetaldehyde, α-methyl- 28,315 (49689) 95,472 (108403) 115,515 (267576) 0.378
Nonanal 0 0 200,984 (310859) <0.001
p-Mentha-1,5-dien-8-ol 0 5725 (12494) 3411 (7159) 0.016
Cyclohexanol, 5-methyl-2-(1-methylethyl)- 0 0 137,948 (361046) <0.001
Pentanenitrile, 5-(methylthio)- 0 8892 (30567) 5338 (13114) 0.072
Benzaldehyde, 2,5-dimethyl- 0 75,705 (93371) 101,796 (141317) <0.001
4-(2-Furyl) pyridine 0 0 37,285 (111075) <0.001
Benzaldehyde, 4-propyl- 63,858 (21117) 110,480 (97065) 126,138 (140007) 0.953
1-Decanol 0 387,312 (424772) 0 <0.001
Benzenamine, 3,5-dichloro- 0 23,736 (37229) 32,300 (78139) 0.003
Propofol 0 0 28,265 (96039) 0.026
Benzene, (isothiocyanatomethyl)- 23,113 (39377) 0 0 0.002
2(3 H)-Furanone, 5-hexyldihydro- 0 123,646 (79831) 0 <0.001
1-Naphthalenecarboxaldehyde 4153 (9168) 0 0 0.018
Phenol, 2,5-bis(1,1-dimethylethyl)- 401,288 (160456) 905,390 (525181) 1,716,810 (188809) <0.001
Benzoic acid, 4-ethoxy-, ethyl ester 0 3390 (4868) 15,596 (24557) <0.001
Hexamethylene diacrylate 365,007 (187078) 240,518 (168062) 467,793 (618420) 0.288
2(3 H)-Furanone, dihydro-5-(2-octenyl)-, (Z)- 21,247 (16245) 29,239 (47547) 35,220 (56719) 0.962
Benzyl Benzoate 0 64,092 (152849) 209,976 (719202) 0.010
Caffeine 0 0 492,162 (616067) <0.001
Lidocaine 0 110,275 (427094) 25,769 (101469) 0.444
Oxybenzone 0 0 9656 (42628) 0.012
IFTA: Interstitial fibrosis and tubular atrophy; SD: Standard deviation

*p-values were obtained via the Kruskal-Wallis Test
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2,5-bis(1,1-dimethylethyl)- level among people with 
IFTA ≥ 2 was significantly higher than those with IFTA 1 
(all p < 0.05).

Evaluating the separation of the groups of urinary volatile 
organic compounds by linear discriminant analysis and 
leave-one-out cross validation
LDA results demonstrated three well-separated groups 
(i.e. individuals with IFTA 0, individuals with IFTA 1, 
and individuals with IFTA ≥ 2) (Fig. 1). This finding indi-
cates the three IFTA groups are easily separable by their 
urinary VOC profile. LDA confirmed the pre-identified 
34 urinary VOCs were statistically associated with the 
correct classification of study participants with IFTA 0, 
study participants with IFTA 1, or study participants with 
IFTA ≥ 2 (p < 0.001).

The Mahalanobis distance values were 176, 24, and 
162 respectively between study participants with IFTA 0 
and IFTA 1; between study participants with IFTA 0 and 
IFTA ≥ 2, and between study participants with IFTA 0 
and IFTA ≥ 2 (all p < 0.001). Therefore, the current model 
displayed a very good discrimination of the three groups, 
particularly between individuals with IFTA 0 and IFTA 
1, and between individuals with IFTA 1 and those with 
IFTA ≥ 2.

According to the LOO cross-validation results 
(Table  3), 86.4% of study participants (19 of 22 people) 

with IFTA 0 were classified correctly by their urinary 
VOCs profile; 86.7% of study participants (13 of 15 peo-
ple) with IFTA 1 were classified correctly by their uri-
nary VOCs profile; and 74.1% of study participants with 
IFTA ≥ 2 (20 of 27 people) were classified correctly by 
their urinary VOCs profile.

Associations between individual urinary volatile organic 
compounds with IFTA status and covariates
Results from linear regression analysis evaluating asso-
ciations between IFTA grading amongst the three study 
participant groups and expression levels of identified uri-
nary VOCs are presented in Table 4. There were 5 VOCs 
from the univariate model and 4 VOCs from the multi-
variate model which were significantly upregulated in the 
IFTA 1 compared to the IFTA 0 group (p < 0.05), of which 
2-heptanone; Benzene, 1,2,4-trimethyl; Benzeneacetal-
dehyde; and 2(3  H)-furanone, 5-hexyldihydro were sig-
nificantly upregulated VOCs in both the univariate and 
multivariate analyses. There were 12 VOCs from the uni-
variate model and 2 VOCs from the multivariate model 
which were significantly upregulated in the IFTA ≥ 2 
compared to the IFTA 1 group (p < 0.05), of which 2-hep-
tanone, 4-methyl and Benzaldehyde, 4-methyl were sig-
nificantly upregulated VOCs in both the univariate and 
multivariate analyses. There are 2 VOCs (Benzene (iso-
thiocyantomethyl) and Benzaldehyde, 2,5-dimethyl) in 
the univariate model which were positively associated 
with IFTA progression across all stages (p < 0.05), while 
no VOCs in the multivariate model displayed such statis-
tical association.

On evaluating associations between identified urinary 
VOCs and adjusted covariates within the multivariate 
linear regression model (Table  4), there were 2 VOCs 
(4-Hepatanone; and Benzoic acid, 4-ethoxy, ethyl ester) 
which were downregulated and 2 VOCs (Benzene (iso-
thiocyantomethyl); and 1-Napthalenecarboxaldeyde) 
which were upregulated with the male sex. There were 
3 VOCs (Benzaldehyde, 4-propyl; 2-heptanone; and 
Benzaldehyde, 4-methyl) which were positively associ-
ated with decline in eGFR levels. There were 3 VOCs ( 
2,3-butanedione; Benzeneacetaldehyde; and 2(3  H)-
Furanone, 5-hexyldihydro) which were positive associ-
ated with DM status. Benzeneacetaldehyde was positively 
associated with albuminuria status.

Discussion
This study is the first that has evaluated the associations 
between expression levels of urinary VOCs and kidney 
tubulointerstitial histopathology. It is particularly sig-
nificant in a CKD context, given IFTA is the hallmark 
of CKD. Overall, our results identified 34 VOCs which 
enabled classification between individuals with no tubu-
lointerstitial disease, mild tubulointerstitial disease and 

Table 3 Correct classification rate based on the LOO cross 
validation method
IFTA group Number of study participants correctly classified
IFTA 0 86.4%
IFTA 1 86.7%
IFTA ≥ 2 74.1%
IFTA: Interstitial fibrosis and tubular atrophy; LOO: Leave-one-out

Fig. 1 Linear discriminant analysis demonstrating individuals with IFTA 0, 
IFTA 1 and IFTA ≥ 2 could be significantly separated by their urinary VOCs 
profile. IFTA: Interstitial fibrosis and tubular atrophy
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moderate/severe tubulointerstitial disease. Our multi-
variate regression analysis model evaluating the asso-
ciation between expression levels of urinary VOCs and 
CKD adjusted for age, sex, eGFR, diabetic and albumin-
uria status, given these covariates were determined to 
be significantly associated with VOCs expression and 
CKD progression from previous studies [19–21]. In the 
multivariate analysis, we identified 4 VOCs significantly 
upregulated in the mild IFTA compared to the no IFTA 
group and 2 VOCs significantly upregulated in the mod-
erate/severe IFTA compared to the mild IFTA group.

Metabolic dysregulation that occurs with CKD pro-
gression is primarily characterized by oxidative stress and 
inflammation [22]. Increased production of reactive oxy-
gen species (ROS) results in oxidative damage to lipids, 
proteins and DNA through their reactive properties [23]. 
Emerging evidence suggests ROS also function as impor-
tant secondary messengers in cellular signalling pathways 
[24, 25]. For one, cytoplasmic ROS induces the activity of 
AMP-activated protein kinase, which has a crucial role in 
glucose and lipid metabolism, cell survival, growth, and 
inflammation, all of which are affected in CKD [24, 26]. 
Oxidative stress can also activate the transcription factor 
NF-κB, which induces the expression of cytokines and 
chemokines to regulate inflammatory responses in the 
kidneys [27]. The inflammatory cascade in CKD is char-
acterized by the generation and/or accumulation of pro-
inflammatory cytokines (e.g. tumour necrosis factor-α 
and interleukin-1) from intrinsic and/or extrinsic kidney 
damage not limited to uraemia, dyslipidaemia, malnutri-
tion, infection and gut microbiota, resulting in increased 
blood flow, upregulation of chemical mediators and leu-
kocyte infiltration [28]. Prior investigations established 
physiological links between VOCs and oxidative stress, 
lipid and amino acid metabolism, and inflammation [29, 
30]. Hence, there is a basis in CKD for utilizing metabo-
lomic markers such as VOCs to capture the extent of 
oxidative stress and inflammation, and translationally 
inform on the degree of CKD progression.

The majority of the 34 identified urinary VOCs in our 
study, and all of the significantly upregulated urinary 
VOCs belonged to one of four key organic chemistry 
functional groups - aldehydes, ketones, hydrocarbons, 
and alcohols. Urinary aldehydes can be exogenous or 
endogenous in origin. They can be produced during lipid 
peroxidation via the beta-cleavage reaction of lipid alk-
oxyl radicals [31]. It is well-known that there are lipid 
metabolic disturbances in patients with kidney disease 
[32]. Therefore, abnormal urinary aldehyde levels in 
these conditions may be explained by the lipid peroxi-
dation damage that occurs. Ketones typically originate 
from exogenous sources and from the decarboxylation 
of oxo-acids [33, 34]. In healthy humans, ketones are 
mainly formed in hepatocytes from acetoacetate during 
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the decarboxylation of excess acetyl-CoA [34]. Human 
breath, blood and urine all contain ketones in the form of 
acetone [34]. Heptanone in urine is supposedly the prod-
uct of beta-oxidation of 2-ethylhexanoic acid, a metabolic 
product of the plasticizer di-(2-ethylhexyl)-phthalate 
[10]. Impairment of kidney function may reduce the fil-
tration of ketones, leading to decreased concentration of 
ketones detected in the urine of kidney disease patients 
[35]. There is emerging evidence nevertheless, which 
observed increased urinary ketone (2-pentanone) levels 
in kidney disease aetiologies such as idiopathic membra-
nous nephropathy (IMN) [36]. Further study is needed 
to delineate the intricacies that are linked between kid-
ney pathology and ketone physiology. Hydrocarbons are 
thought to be the by-product of cholesterol biosynthe-
sis [37, 38]. Change in levels of urinary VOCs stemming 
from the hydrocarbon group (i.e. benzaldehydes and car-
bonyl groups) in kidney disease may indicate disorders 
in tryptophan metabolism and alterations in pyruvate, 
glycine, serine, and threonine metabolisms, respectively 
[39]. Alcohols originate from aliphatic alcohol in human 
tissue fluids, and various processes formed from acetal-
dehyde metabolism or exogenous intake [40]. Its role in 
oxidative stress and inflammation pathways in kidney 
disease is well-established [41].

Although there were no previous studies which evalu-
ated associations between expression of urinary VOCs 
and CKD as defined by tubulointerstitial pathology, 
urinary VOCs have been previously studied for their 
potential as biomarkers in multiple glomerular dis-
eases such as mesangial proliferative glomerulonephri-
tis, Immunoglobulin A nephropathy, IMN and minimal 
change disease [36, 42–44]. In the preliminary studies 
that were conducted, a different panel of significantly 
upregulated (or downregulated) VOCs with progress-
ing disease severity were identified, in comparison to 
the identified VOCs from our study [36, 42–44]. Wang 
et al. [42] evaluated urine samples in 15 mesangial pro-
liferative glomerulonephritis (MPGN) patients, 21 
Immunoglobulin A nephropathy (IgAN) patients and 15 
healthy controls. Five VOCs (Carbamic acid, monoam-
monium salt; Carbon disulfide; Silanediol, dimethyl-; 
2  H-1,4-Benzodiazepin-2-one, 7-chloro-1,3-dihydro-5-
phenyl-1-(trimethylsilyl)- and Butylated Hydroxytolu-
ene) had significantly elevated expression levels in the 
MPGN group compared with the control group, whilst 
3 VOCs (Carbamic acid, monoammonium salt; Carbon 
disulfide and 2  H-1,4-Benzodiazepin-2-one,7-chloro-
1,3-dihydro-5-phenyl-1-(trimethylsilyl)-) were found at 
increased expression levels in the IgAN group compared 
to normal controls. In addition, 5 VOCs (Tartronic acid; 
Carbamic acid; Sulfide, allyl methyl; Hydrogen azide and 
Benzeneethanamine, N-[(pentafluorophenyl)methy-
lene]-.beta,4-bis[(trimethylsilyl)oxy]-) were significantly 

increased in IgAN patients compared with MPGN 
patients, suggesting these urinary VOCs may be specific 
biomarkers which differentiate between the two condi-
tions. 4-heptanone, 2-pentanone and pyrrole were iden-
tified at decreased urinary levels in IgAN and MPGN 
patients compared to the control groups. Wang et al. [43] 
also aimed to detect urinary VOCs which could distin-
guish between patients with idiopathic membranous 
nephropathy (IMN) and normal controls. The investiga-
tors assessed the urine collected from 63 IMN patients 
and 15 normal controls, in which 6 VOCs (Carbamic 
acid, monoammonium salt; 2-pentanone; 2,4-dimethyl-
pentanal; Hydrogen azide; Thiourea and 4-heptanone) 
displayed significantly higher expression levels in IMN 
patients compared to normal controls. The same inves-
tigator group [36] also collected urine samples from 38 
minimal change disease (MCD) patients and 15 healthy 
controls. They identified 6 VOCs (Trans-2,2-dimethyl-
4-decene; Pyrrole; Carbamic acid, monoammonium salt; 
1-butyne, 3,3-dimethyl-; Diisopropylamine and 4-hepta-
none) that are present at reduced urinary expression lev-
els in MCD patients. Further work is needed to validate 
the use of these urinary VOCs as biomarkers to predict 
MCD status and disease progression. A more recently 
conducted study by Ligor et al. [44], which separated and 
identified urinary VOCs via gas chromatography time-
of-flight mass spectrometry, aimed to determine uri-
nary VOC profiles between 27 patients diagnosed with 
glomerular diseases and 20 healthy controls. Amongst 
those diagnosed with glomerular disease, there were 
4 VOCs (Methyl hexadecanoate; 9-hexadecen-1-ol; 
6,10-dimethyl-5,9-undecadien-2-one and 2-pentanone) 
found to be at elevated urinary expression levels.

Otherwise, links between exhaled air VOCs from 
human breath with CKD were recently investigated. 
Romani et al. [45] examined the utility of selected ion 
flow tube-mass spectrometry (SIFT-MS) to measure 
breath VOCs in CKD patients and healthy subjects, 
and evaluated the possible correlation between breath 
VOC expression levels with the presence of CKD and 
CKD progression as determined by the Kidney Disease 
Improving Global Outcomes guideline diagnostic cri-
teria [46]. The investigators enrolled 68 Stage I-IV CKD 
patients (all were receiving conservative therapy) and 54 
healthy subjects. Analysis of the VOCs from exhaled air 
of the enrolled subjects was performed by SIFT-MS. They 
observed increased breath VOCs expression levels for 
numerous VOCs in CKD compared to healthy subjects 
and with progressing CKD severity, albeit these were dif-
ferent VOCs from the ones identified in our study. The 
most relevant results by receiver operating character-
istic curves were observed for trimethylamine (TMA), 
acetone, ammonia, and dimethyl sulfide. Romani et al. 
[45] noted that an individual’s breath TMA concentration 
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superior to 26 parts per billion by volume characterizes a 
6.11 times greater risk of having CKD, compared to those 
with lower levels of breath TMA concentration. More-
over, they detected an increased concentration of acetone 
and ammonia in CKD patients compared to healthy sub-
jects. SIFT-MS is considered a superior mass spectrome-
try option for measuring nitrogen- and sulfur-containing 
VOCs, which are more challenging to measure when 
using other mass spectrometry modalities. Future stud-
ies evaluating urinary VOCs within a CKD context using 
SIFT-MS is anticipated.

Whilst our study findings provide novel evidence into 
the associations between urinary VOCs and CKD, there 
remain important gaps in our knowledge base which 
require evaluation. For one, the exact mechanisms for 
the generation of most urinary VOCs is unclear at a 
molecular level, and they could be perturbed in many 
physiological and pathological states outside of tubuloin-
terstitial disease alone, Although we adjusted for several 
potential confounding factors in our analyses, there may 
be other factors challenging to control, not limited to 
dietary habits, physical stress and environmental expo-
sure to toxins, which could affect the accuracy of urinary 
VOCs profiling [47]. Hence, further studies with larger 
clinical cohorts are required to validate our data, adjust-
ing for other potential covariates that may be relevant to 
kidney disease. Another issue relates to the vast quantity 
of urinary VOCs that were found to be potentially use-
ful biomarkers of CKD across different IFTA stages, also 
considering there may be other clinically significant uri-
nary VOCs that remain unidentified currently. Further 
evidence to specify and narrow towards the key urinary 
VOCs that could be confidently applied in clinical prac-
tice to predict CKD progression is required. While most 
urinary VOCs and other metabolomic studies reported 
to date used GC-MS as the analytical method, comple-
mentary analysis could be performed by reversed-phase 
liquid chromatography-mass spectrometry (RP-LC-MS), 
hydrophilic interaction liquid chromatography-mass 
spectrometry (HILIC-LC-MS), and capillary electro-
phoresis-mass spectrometry (CE-MS) methods as well 
[48]. This would broaden the range of potential disease 
markers that could be investigated. Alternative types of 
mass spectrometry analysis approaches could also be 
considered to improve sensitivity of metabolite detec-
tion but this must be balanced against their increasing 
price, operating costs and complicated operation in a 
clinical setting [49]. Hence, improving biosensing soft-
ware platforms to detect clinically useful urinary VOCs 
is an attractive proposition where ongoing technological 
developments are foreseeable. For one, the feasibility of 
metal oxide biosensor platforms to determine urinary 
VOCs with significant predictive capability for detect-
ing genitourinary cancers (i.e. renal cell carcinoma, 

transitional cell carcinoma and prostate cancer) has been 
recently demonstrated to good levels of accuracy. Future 
studies could perhaps consider extending its use for this 
purpose in CKD [50]. Furthermore, a mass spectrome-
try-based electronic nose (MS-EN) approach possesses 
tremendous potential but has been seldomly applied for 
urinary VOCs and so far, has not been explored within in 
CKD yet though it has been trialled within the context of 
kidney cancer [51, 52]. This is also a potential avenue of 
further research to be considered.

Conclusions
Our study demonstrated that the urinary expression 
levels of various aldehydes, ketones, hydrocarbons and 
alcohols are significantly associated with tubulointersti-
tial histopathology, which suggests urinary VOCs may 
indeed have a clinically useful role in CKD as a metabolo-
mic biomarker. Additional studies are required to validate 
our findings in a larger cohort and examine the potential 
of utilizing urinary VOCs to reliably assess CKD progres-
sion in clinical practice.
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