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UT-B-deficient mice develop renal dysfunction
and structural damage
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Abstract

Background: Urea transporter UT-B is the major urea transporter in erythrocytes and the descending vasa recta in
the kidney. In this study, we investigated the effects of long-term UT-B deficiency on functional and structural
defect in the kidney of 16-and 52-week-old UT-B-null mice.

Methods: UT-B-knockout mice were generated by targeted gene disruption and lacked UT-B protein expression in
all organs. The urinary concentrating ability of mice was studied in terms of daily urine output, urine osmolality,
and urine and plasma chemistries. Changes in renal morphology were evaluated by hematoxylin and eosin
staining.

Results: The UT-B-null mice showed defective urine concentrating ability. The daily urine output in UT-B-null mice
(25 + 0.1 ml) was 60% higher and urine osmolality (985 + 151 mosm) was significantly lower than that in wild-
type mice (1463 + 227 mosm). The 52-week-old UT-B-null mice exhibited polyuria after water deprivation, although
urine osmolality was increased. At 52 weeks of age, over 31% of UT-B-null mice exhibited renal medullary atrophy

because of severe polyuria and hydronephrosis.

Conclusions: Long-term UT-B deficiency causes severe renal dysfunction and structural damage. These results
demonstrate the important role of UT-B in countercurrent exchange and urine concentration.
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Background

In mammals, most nitrogenous waste is excreted in
urine in the form of urea. Urea represents about 40-50%
of all urinary solutes in humans, and even more in
rodents [1,2]. Compared with the blood levels of sodium
and chloride, the blood urea level is relatively low (5-10
mmol/l with a normal-protein diet). The urinary urea
concentration may be 20-100 times higher than that in
the blood in humans, and up to 250 times higher in
mice. NaCl is usually not, or only modestly, concen-
trated in the urine (up to twice the plasma level). Potas-
sium, which is actively secreted in the collecting duct
lumen, is usually concentrated by 5-30 times the plasma
level. Thus, the solute concentrating effort of the kidney
is mainly devoted to concentrating urea [1,2]. Urea
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concentration is highly dependent on intrarenal urea
recycling and selective urea permeability, which are
mediated by urea transporters (UT) in the kidney [3,4].

UT-B is highly expressed in erythrocytes and in the
endothelium of the descending vasa recta throughout
the renal medulla [5]. In humans, UT-B has been shown
to carry the Kidd blood group antigen [6-9]. Mutations
in human UT-B significantly decrease urea permeability
in erythrocytes [9-11] and result in mild urinary concen-
trating defects [12]. UT-B-null mice, which also have a
urea-selective urine concentrating defect, offer an animal
model to characterize the role of UT-B in renal func-
tion, particularly urinary concentration [13].

The contribution of UT-B to countercurrent exchange
has been confirmed by comparing the responses to an
acute urea load and a chronic high-protein diet between
UT-B-null mice and wild-type mice [11]. That study
showed that the plasma urea level was significantly
higher whereas the urine urea level was significantly
lower in UT-B-null mice than in wild-type mice fed a
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normal protein diet. Acute urea infusion or chronic high
protein intake in UT-B-null mice did not increase the
urinary urea concentration and failed to increase the
concentration of non-urea solutes, as observed in wild-
type mice. These previous results suggest that intrarenal
urea recycling is very dependent on urea countercurrent
exchange, mostly involving UT-B [11,14]. However, the
long-term effects of impaired urea countercurrent
exchange on renal function and morphology are cur-
rently unclear.

Therefore, the goal of this study was to determine the
effects of long-term UT-B deficiency on renal function
and morphology in mice. In brief, we found that 52-week-
old UT-B-null mice exhibited remarkable polyuria,
although their urine concentrating ability was increased by
water deprivation. About 31% of the 52-week-old UT-B-
null mice had severe hydronephrosis and renal morpholo-
gical abnormalities. Taken together, the results of this
study indicate that long-term polyuria caused by UT-B
deficiency can result in severe renal functional and struc-
tural damage. Our data provide evidence that UT-B plays
an important role in the urine concentrating mechanism.

Methods

Mice

Transgenic UT-B-null mice were generated by targeted
gene disruption as previously reported [13]. UT-B-null
mice did not express detectable UT-B protein in any
organ. Female wild-type and UT-B-null mice at 16 and
52 weeks of age were used in this study. All mice had a
C57BL genetic background. Measurements were done in
litter-matched mice produced by intercrossing heterozy-
gous mice. All animal procedures were approved by the
Jilin University Committee on Animal Research.

Studies of urinary concentrating ability

Daily urine output was evaluated in mouse metabolic
cages (Harvard Apparatus, Holliston, MA). In some
experiments, urine samples were obtained from the
same mice under basal conditions (with unrestricted
access to food and water) and after 18 h of food and
water deprivation. Urine osmolality was measured by
freezing point osmometry (micro-osmometer, Precision
Systems Inc. Natick, MA). Blood samples were obtained
from the tail vein. Urine and plasma chemistries were
measured by the Clinical Chemistry Laboratory of Jilin
University, China.

Acute urea load

Adult female wild-type and UT-B-null mice (5 mice/
group, body weight 22-25 g) were adapted to metabolic
cages for 3 days before the urea-load experiment. The
acute urea-load experiments were done as previously
described [11]. In brief, during the acute urea-load
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experiment, urine was collected every 2 h after sponta-
neous voiding and/or bladder massage. The lower part
of the metabolic cage was removed and replaced by a
tray covered with Parafilm. Mouse bladders were emp-
tied by gentle abdominal massage. To avoid evaporation,
the Parafilm sheets were inspected every 10 min, and
any urine found on the sheets was collected and placed
in preweighed tubes containing a small amount of paraf-
fin oil to prevent evaporation. Urine collected from 8:00
to 10:00 am was defined as the basal period. The urea
load was administered just after urine collection at 10:00
am. Each mouse received an intraperitoneal injection of
300 pl of 1 M urea solution, corresponding to 300 pmol
of urea, about 10% of the daily urea excretion. Urinary
volume, urea and osmolalilty were measured. The urin-
ary urea concentration was measured with a urea assay
kit (BioAssay Systems. Hayward, CA).

Renal Morphology

Kidneys were fixed in situ by perfusion with 4% parafor-
maldehyde in phosphate-buffered saline. Fixed tissues
were processed by routine histological methods, and 6-
um-thick paraffin sections were stained with hematoxy-
lin and eosin.

Statistical analysis

Results obtained in UT-B-null mice were compared with
those in wild-type mice by Student’s ¢ test. One-way
analysis of variance (ANOVA) was used to compare
three groups, followed by Fischer’s post hoc test. One-
way repeated-measures ANOVA was used to compare
both genotypes in the dehydration study. Values of P <
0.05 were considered statistically significant.

Results

The urine concentrating ability of 52-week-old mice was
studied in metabolic cages. As previously reported [13],
UT-B deficiency resulted in a significant urinary concen-
trating defect. Figure 1A shows the daily urinary output.
At the age of 52 weeks, UT-B-null mice excreted about
60% more fluid than did wild-type mice of the same age.
The urine osmolality in UT-B-null mice (985 + 151
mosm) was significantly lower than that in wild-type
mice (1463 + 227 mosm, Figure 1B). After water depriva-
tion for 18 h, the urine osmolality was increased in UT-
B-null mice (1636 + 213 mosm) and wild-type (2143 +
165 mosm), which indicates that the urine concentrating
ability is defective in UT-B-null mice. The plasma urea
concentration was 52% higher in UT-B-null mice com-
pared with wild-type mice (Table 1), and was higher in
52-week-old UT-B-null and wild-type mice compared
with 16-week-old mice. The urine/plasma (U/P) concen-
tration ratio for creatinine was about 26% lower in UT-
B-null mice than in wild-type mice at the age of 52
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Figure 1 Urine concentrating ability in 52-week-old UT-B-null and wild-type mice. A: Twenty-four hour urine output (mean + SE, 5 mice/
group). B: Urine osmolality measured in mice given free access to food and water (basal) and after water deprivation for 18 h. *p < 0.01 versus

weeks, whereas the U/P concentration ratio for urea was
59% lower in UT-B-null mice than in wild-type mice
(Table 1). These results were consistent with those
reported for younger UT-B-null mice [15]. Plasma creati-
nine and creatinine clearance (an index of the glomerular
filtration rate) were similar in wild-type and UT-B-null
mice, suggesting that aging did not impact on glomerular
hemodynamics. Urea clearance was 34% lower in UT-B-
null mice than in wild-type mice (Table 1). In contrast,
the clearance of sodium, potassium and chloride was
similar in both groups of mice (data not shown).

To evaluate the contribution of UT-B to the excretion
of a urea load, UT-B-null and wild-type mice were given
an acute urea load of 300 pmol. Urea excretion increased

Table 1 Water and solute handling.

within the first 2 h after urea administration in both
groups in a very similar manner (Figure 2A). However,
these increases were associated with markedly different
changes in urinary flow rate (Figure 2B) and urea concen-
tration (Figure 2C) between the two genotypes. Wild-
type mice showed increases in urea concentration and
urinary osmolality after the first post-load period and
with a very small increase in urinary flow rate. In con-
trast, the urinary flow rate in UT-B-null mice almost
doubled with only modest increases in urinary urea con-
centration and urinary osmolality (Figure 2C, D). The
cumulative amount of urine excreted above the basal
level during the first 4 h after the urea load was 614 + 98
pl in UT-B-null mice compared with 408 + 24 pl in wild-

16 weeks old 52 weeks old
Wild-type UT-B-null Relative Wild-type UT-B-null Relative

difference difference

(KO/WT) (KO/WT)
Body weight, g 2412 +1.82 2442 + 1.10 1.01 37.08 + 1.77 36.26 + 2.31 0.98
Hydronephrotic kidneys/total kidneys 0/45 0742 0/33 12/39
Urine output, ml/day 241 £ 0.08 4.05 + 0.13* 1.68 156 + 0.11 25 011" 1.6
Urinary osmolality, 1622 + 87 1012 + 239* 0.62 1463 + 227 985 + 151* 0.67
mosm/kg H,0
Osmolar excretion, pumol/L 3741 £ 314 4171 £ 792 1.1 2295 £ 400 2533 + 281 1.1
Plasma creatinine, pmol/L 296 + 254 32+ 202 1.08 28,53 + 520 29.06 + 1.29 1.02
Urinary creatinine, mmol/L 249 + 042 1.20 £ 0.10% 048 328 +£0.18 262 + 025" 0.8
U/P creatinine 865+ 176 379 £50* 044 1210 £ 16.2 90.1 + 56 0.74
Creatinine clearance, ml/day 198.1 £ 393 156.8 + 22.1 0.79 188.1 £ 323 233.7 £ 239 1.24
Plasma urea, mmol/Il 1094 + 0.88 13.02 + 0.63* 1.19 1536 + 3.32 2339 + 622" 1.52
Urinary urea, mmol/L 904 + 20 545 + 15* 0.6 755 + 24 475 + 10" 0.63
Urea excretion, pmol/day 2083 + 125 2249 = 127 1.08 1166 + 55 1228 + 63 1.05
Urea clearance, ml/day 1983 + 26.3 169.5 + 10.2* 0.85 76.7 £83 504 + 58" 0.66
U/P Urea 8263 + 761 41.86 + 2.12% 0.51 4915 + 1.85 2031 + 136" 041

Values are means + SE of 5 mice/group. U/P: urine/plasma. Comparisons were made using Student’s t-test. *P < 0.05 versus 16-week-old wild-type mice, *P < 0.05

versus 52-week-old wild-type mice.
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Figure 2 Effect of acute urea loading on the urinary concentrating ability and renal urea handling in 52-week-old UT-B-null and wild-
type mice. An acute urea load (300 umol) was injected intraperitoneally after the first 2-h urine collection (time 0). A: Urea excretion. B: Urinary
output. C: Urinary urea concentration (Ues). D: Urinary osmolality (Uym). £ Excretion of non-urea solutes. F: Non-urea solute concentration (Upon-
urea SOlUtes). Two-way ANOVA (genotype and 2-h periods) indicated significant differences between the two genotypes at the indicated times

(Fisher's post hoc test).
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type mice at the age of 52 weeks. The excretion of non-
urea solutes remained almost unchanged in the two
groups (Figure 2E). Administration of exogenous urea
also improved the ability of the kidney to concentrate
other urinary solutes (non-urea solutes) in both wild-type
and UT-B-null mice (Figure 2F).

Some 52-week-old UT-B-null mice (~30%), but no
wild-type mice of the same age, showed marked tumor-
like swelling of the bilateral flanks. Flank swelling was
found to be caused by kidney enlargement (Figure 3A)
as the weight of the kidney in UT-B-null mice (7.54 +
0.27 kidney/body weight) were significantly greater than
those in wild-type mice (6.8 + 0.27) at the age of 52
weeks (P < 0.05).

Morphological evaluation of the kidneys from wild-
type mice showed a well demarcated cortex and papilla.
In contrast, the kidneys from UT-B-null mice (Figure
3B, C) showed medullary atrophy and cortical thinning.
Some 52-week-old mice had hydronephrosis and mark-
edly enlarged and transparent kidneys. Tissue morpho-
logical assessment also showed dilated renal collecting
ducts in 52-week-old UT-B-null mice (Figure 3D), but
not in wild-type mice at the same age.
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Discussion

UT-B deletion impairs urea concentration in the medul-
lary interstitium and leads to defective countercurrent
exchange. These outcomes decrease the osmolality of
fluid in the medullary interstitium. The urinary concen-
trating defect in UT-B-null mice demonstrates the
importance of the vasa recta in countercurrent exchange.
The vasa recta seems to more important in intrarenal
urea recycling than the thin descending limb of Henle
based on data obtained from UT-B- [11,13,14] and UT-
A2- [16] null mice. Older UT-B-null mice experience
long-term urea-selective urine concentration defects and
elevated blood urea concentrations, which may lead to
functional and morphological abnormalities. Indeed, we
have already reported heart block in 52 weeks old UT-B-
null mice [17]. Here, we add to those findings by report-
ing marked functional and morphological defects in the
kidney in 52-week-old UT-B-null mice.

The present study showed that the urinary concentrat-
ing ability in 52-week-old UT-B-null mice was similar to
that in 16-week-old UT-B-null mice, although urine
output was reduced in both genotypes at 52 weeks of
age compared with that at 16 weeks of age. Interestingly,

+/+

-/- hydronephrosis

1cm

+/+ -/- hydronephrosis

D
+/+ <

Figure 3 Renal morphology of UT-B-null mice. A: Gross structure of kidneys from wild-type (left) and UT-B-null (right) mice. B: Paraffin-
embedded sections of a normal kidney (left) and a hydronephrotic kidney (right). C: Medullary damage and cortex thinning (right) are apparent
on micro-morphologic images of the UT-B-null kidney but not in the wild-type kidney (left). D: High magnification images show collecting duct
dilation in the UT-B-null kidney (right) but not in the wild-type kidney (left).
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urine osmolality 52-week-old UT-B-null mice increased
substantially following water deprivation, albeit to a
level just lower than that in water-deprived 16-week-old
UT-B-null mice. Taken together, these results indicate
that older UT-B-null mice experience long-term urine
concentrating defects. However, fluid turnover and the
concentrations of the major plasma solutes were
unchanged in older versus younger UT-B-null mice.

Similar to a previous report [11], the administration of
a urea load increased urea excretion to a similar extent in
UT-B-null and wild-type mice, although this was asso-
ciated with markedly different changes in urine flow rate
and urinary urea concentration between the two geno-
types. The urinary urea concentration and urinary osmol-
ality increased in wild-type mice after the urea load, with
a slight increase in urine flow rate, which was probably
due to greater sequestration of urea in the inner medulla.
Urine output decreased in wild-type mice to less than
50% of the basal level. In contrast, the urinary urea con-
centration and urine osmolality increased modestly,
while the urine flow rate was significantly increased com-
pared with the basal level in 52-week-old UT-B-null
mice, because of the urine concentrating defect.

Almost one-third of the 52-week-old UT-B-null mice
exhibited marked tumor-like swelling of the bilateral
flanks. This flank swelling was caused by kidney enlarge-
ment as morphological examination of the kidneys from
UT-B-null mice showed medullary atrophy and cortical
thinning. Similar changes in renal morphology have been
seen in aquaporin-null mice, which exhibit polyuria as a
result of increased intrarenal pressure [15,18]. Most of the
52-week-old UT-B-null mice had dilated collecting ducts
in the renal cortex and medulla, which may result from
long-term polyuria, similar to that in aquaporin 2-null
mice [18]. The age-dependent medullary atrophy in UT-
B-null mice suggests that long-term urine concentrating
defects cause marked renal structural damage over time.

Conclusions

In conclusion, our results indicate that long-term UT-B
deficiency causes severe renal dysfunction and structural
damage, revealing important roles of UT-B in counter-
current exchange and urine concentration.
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