
RESEARCH ARTICLE Open Access

Validation of two prediction models of
undiagnosed chronic kidney disease in
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Abstract

Background: Chronic kidney disease (CKD) is a global challenge. Risk models to predict prevalent undiagnosed
CKD have been published. However, none was developed or validated in an African population. We validated the
Korean and Thai CKD prediction model in mixed-ancestry South Africans.

Methods: Discrimination and calibration were assessed overall and by major subgroups. CKD was defined as
‘estimated glomerular filtration rate (eGFR) <60 ml/min/1.73 m2’ or ‘any nephropathy’. eGFR was based on the
4-variable Modification of Diet in Renal Disease (MDRD) formula.

Results: In all 902 participants (mean age 55 years) included, 259 (28.7 %) had prevalent undiagnosed CKD. C-statistics
were 0.76 (95 % CI: 0.73–0.79) for ‘eGFR <60 ml/min/1.73 m2’ and 0.81 (0.78-0.84) for ‘any nephropathy’ for the Korean
model; corresponding values for the Thai model were 0.80 (0.77-0.83) and 0.77 (0.74-0.81). Discrimination was better in
men, older and normal weight individuals. The model underestimated CKD risk by 10 % to 13 % for the Thai and 9 %
to 93 % for the Korean model. Intercept adjustment significantly improved the calibration with an expected/observed
risk of ‘eGFR <60 ml/min/1.73 m2’ and ‘any nephropathy’ respectively of 0.98 (0.87-1.10) and 0.97 (0.86-1.09) for the
Thai model; but resulted in an underestimation by 24 % with the Korean model. Results were broadly similar for CKD
derived from the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) formula.

Conclusion: Asian prevalent CKD risk models had acceptable performances in mixed-ancestry South Africans. This
highlights the potential importance of using existing models for risk CKD screening in developing countries.
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Background
Chronic kidney disease (CKD) is increasingly common
worldwide, especially in Sub-Saharan Africa [1]. CKD
poses a real public health challenge related to its many
complications including end-stage of renal disease
(ESRD), cardiovascular diseases (CVD) and premature
mortality [2]. Early stages of CKD are clinically silent,
with many affected persons being detected at advanced
stages, when expensive renal replacement therapies are
inevitable [3]. In many developed countries, CKD detec-
tion in early stage has improved since the adoption of

the Kidney Disease Outcomes Quality Initiative (KDOQI)
[4] classification system. However, in most developing
countries, especially Africa, uptake of screening remains a
challenge [5, 6]. Indeed, the limited data on CKD preva-
lence in African countries reflects low disease awareness
on this continent, due to the lack of routine testing of
at-risk populations including those in the early stages of
CKD [6].
Screening for CKD, followed by implementation of

interventions or strategies to prevent or delay transitions
to ESRD (requiring replacement therapy i.e., dialysis or
kidney transplant) as well as cardiovascular complica-
tions can potentially reduce the disease burden and
costs. Current recommendations suggest the screening
of individuals at risk of CKD on the basis of risk factors
such as age, sex, diabetes mellitus, hypertension,
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dyslipidemia, high-normal urinary albumin excretion,
family history of kidney failure or concurrent cardio-
vascular disease (CVD), rather than to quantify the cu-
mulative effect of several risk factors [3, 4]. Algorithms
to assess the overall/global CKD risk by simultaneously
incorporating various risk factors have been developed
and tested, and may facilitate the care for CKD in rou-
tine clinical practice [7]. These risk models would also
be an ideal tool for large-scale CKD risk stratification.
However, as the equations for estimating glomerular
filtration rate (eGFR), the CKD risk estimation models
tend to be population-specific. Only a few of the exist-
ing CKD risk prediction algorithms have been validated
in different populations across the world, and none of
those has been tested in African populations [7]. Indeed,
external validation is very important in the process of
adopting prediction models in clinical or public health
practice, as it enables their possible generalization [8].
To facilitate the adoption of CKD risk models as a risk

stratification tool in African populations, we evaluated
and compared the performance of two previously
described prediction models for undiagnosed CKD [9, 10],
in mixed-ancestry South Africans.

Methods
Study population and design
The Cape Town Bellville-South study cohort served as
the basis for the model validations. Baseline assessments
were conducted from 2008 to 2011, with standardized
collection of information on medical history, cardio-
metabolic risk factors and serum chemistries [11]. The
study was approved by the Ethics Committee of the
Cape Peninsula University of Technology, Faculty of
Health and Wellness Sciences (CPUT/HW-REC 2008/
002 and CPUT/HW-REC 2010). The study was con-
ducted according to the Code of Ethics of the World
Medical Association (Declaration of Helsinki). All partic-
ipants signed written informed consent after all the
procedures had been fully explained in the language of
their choice.

Identification of prediction models to validate
The models of interest, that predict prevalent undiag-
nosed CKD, were identified from a recent systematic re-
view [7], with an update of the search in up to July 2014,
to identify possible new models. We mainly focused on
models developed using non-invasively measured vari-
ables, especially those available in the Bellville-South co-
hort. Two prevalent undiagnosed CKD prediction models
developed from cross-sectional studies were selected;
namely the Korean and Thai models [9, 10]. These models
were developed on samples of 6565 participants aged
30 years or more for the Korean and 3459 participants
aged 18 years or more for the Thai model. Both models

defined CKD on the basis of eGFR using the Modification
of Diet in Renal Disease (MDRD), Table 2. Of the two
models, only the Korean one has been previously exter-
nally validated once [10].

Outcomes
We used two definitions of kidney disease in accordance
with the definitions applied in the original studies of
models: eGFR <60 ml/min/1.73 m2 (only) and ‘any ne-
phropathy’ including any of the stages I to V of the Kidney
Disease: Improving Global Outcomes Chronic Kidney
Disease (KDIGO) classification [3].

Baseline assessments
Participants received a standardized interview and phys-
ical examination during which blood pressure was mea-
sured according to the World Health Organisation
(WHO) guidelines [12] using a semi-automated digital
blood pressure monitor (Rossmax PA, USA) on the right
arm in the sitting position. Anthropometric measure-
ments were performed three times and their average
used for analysis: weight (kg), height (cm), waist (cm)
and hip (cm) circumferences. Participants with no his-
tory of doctor diagnosed diabetes mellitus underwent a
75 g oral glucose tolerance test (OGTT) as recom-
mended by the WHO [13]. Blood samples were obtained
after an overnight fast for the assessment of glucose,
glycated haemoglobin (HbA1C) certified by National
Glycohaemoglobin Standardisation Programme (NGSP),
creatinine (standardised assay), total cholesterol (TC), high
density lipoprotein cholesterol (HDL-c), and triglycerides
(TG). These parameters were determined by the Cobas
6000 Clinical Chemistry instrument (Roche Diagnostics,
Germany). Low density lipoprotein cholesterol (LDL-c)
was calculated using Friedewald formula [14]. Kidney
function was defined using estimated glomerular filtration
rate (eGFR) calculated using the four -variable Modifica-
tion of Diet in Renal Disease (MDRD) equation [15, 16].
The MDRD equation was primarily used to define kidney
function, consistent with what was done in the original
models; however, we also considered the Chronic Kidney
Disease Epidemiology Collaboration (CKD-EPI) equation
for GFR estimation [17].

Handling of missing data
Some of the predictors included in the tested models
were not evaluated in the Bellville South study. These in-
clude anaemia (included in the Korean model) and kid-
ney stones (component of the Thai model), which were
consequently excluded from the validation. History of
cardiovascular disease used as a predictor in the Korean
model was inconsistently evaluated in our sample; hence
the use of statin was considered as a proxy for cardio-
vascular disease. We opted to exclude participants with
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missing data on all other predictors, given the challenges
of applying advanced imputation techniques for missing
data in validation studies of risk models.

Statistical methods
The CKD risk models of interest were validated in the
overall sample, and then in subgroups, using the original
formulas and with and without any recalibration. The
predicted probability of undiagnosed CKD for each par-
ticipant was estimated using the relevant predictors for
each model (Table 1 & Additional file 1: Table S1) [9,
10]. Models’ performance was assessed through discrim-
ination and calibration. Discrimination (ability of the
model’s to distinguish those with prevalent undiagnosed
CKD from those without the conditions) was assessed
with C-statistic and non-parametric methods [18].
Calibration (agreement between the probability of the
outcome of interest as estimated by the model, and the
observed outcome frequencies) was assessed graphically
by plotting the predicted risk against the observed

outcome rate, supplemented with the Hosmer and Leme-
show goodness of fit test [19, 20]. The agreement between
the expected (E) and observed (O) CKD rates (E/O) was
assessed overall and within pre-specified groups of partici-
pants. The 95 % confidence intervals (CIs) for the ex-
pected/observed probabilities (E/O) ratio were calculated
assuming a Poisson distribution [19]. We also calculated
the Yates slope (difference between mean predicted prob-
ability of CKD for participants with and without prevalent
CKD, with higher values indicating better performance)
and the Brier score (squared difference between predicted
probability and actual outcome for each participant with
values ranging between 0 for a perfect prediction model
and 1 for no match in prediction and outcome) [21, 22].
To determine optimal cut-off for maximising the potential
effectiveness of a model, the Youden’s J statistic (Youden’s
index) was used to determine the best threshold [23], with
sensitivity and specificity determined for each threshold.
To minimize differences in CKD prevalence between

the development and test populations, and thus improve

Table 1 Characteristics of participants by sex in the Bellville South cohort

Characteristics Overall Men Women P-value

N 902 211 691

Age, years (SD) 55 (15) 56 (15) 53 (14) 0.068

Body mass index, kg/m2 (SD) 29.9 (7.2) 26.2 (6.2) 31.0 (7.1) <0.0001

Waist circumference, cm (SD) 97 (15) 94 (15) 98 (15) 0.002

Hypertension, n (%) 449 (49.8) 104 (49.3) 346 (49.9) 0.871

Diabetes, n (%) 252 (27.9) 63 (29.8) 189 (27.3) 0.478

Statin use, n (%) 45 (5.0) 16 (7.6) 29 (4.2) 0.048

Smoking, n (%) 363 (40.2) 108 (51.2) 255 (36.9) 0.0002

Systolic blood pressure, mmHg (SD) 123 (19) 127 (18) 122 (19) 0.004

Diastolic blood pressure, mmHg (SD) 75 (12) 76 (12) 74 (13) 0.041

Height, m (SD) 1.59 (0.09) 1.68 (0.08) 1.56 (0.07) <0.0001

Fasting blood glucose, mmol/L (SD) 6.4 (3.1) 6.6 (3.8) 6.4 (2.8) 0.355

HbA1c, % (SD) 6.3 (1.4) 6.4 (1.7) 6.2 (1.3) 0.307

Total cholesterol, mmol/L (SD) 5.6 (1.2) 5.3 (1.1) 5.7 (1.2) <0.0001

High density lipoprotein cholesterol, mmol/L (SD) 1.3 (0.3) 1.2 (0.3) 1.3 (0.3) 0.0009

Weight, kg (SD) 75 (18) 74 (17) 75 (18) 0.175

Triglyceride, mmol/L (SD) 1.5 (0.9) 1.5 (0.9) 1.5 (0.9) 0.543

Creatinine, μmol/l (SD) 83 (20) 94 (20) 80 (19) <0.0001

Median urinary albumin/creatinine (ACR), mg/mmol [25th-75th percentiles] 0.73 [0.41-1.56] 0.67 [0.32-1.82] 0.75 [0.44-1.50] 0.126

Albuminuria (ACR > =30), n (%) 21 (2.3) 4 (1.2) 17 (2.5) 0.634

Estimated glomerular filtration rate (eGFR, MDRD), ml/min/1.73 m2 (SD) 71.5 (19.4) 76.6 (20.2) 69.9 (18.8) <0.0001

Chronic kidney disease (CKD, eGFR (MDRD) < 60), n (%) 259 (28.7) 42 (19.9) 217 (31.4) 0.001

CKD (eGFR (MDRD) < 60 and/or albuminuria), n (%) 268 (29.7) 42 (19.9) 226 (32.7) 0.0004

eGFR (CKD-EPI), ml/min/1.73 m2 (SD) 77.5 (20.6) 80.7 (19.9) 76.6 (20.8) 0.011

Chronic kidney disease (CKD, eGFR (CKD-EPI) < 60), n (%) 186 (20.6) 35 (16.6) 151 (21.8) 0.098

CKD (eGFR (CKD-EPI) < 60 and/or albuminuria), n (%) 196 (21.7) 35 (16.6) 161 (23.3) 0.038

CKD-EPI, Chronic Kidney Disease Epidemiology Collaboration; MDRD, Modification of Diet in Renal Disease; SD, standard deviation
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Table 2 Overview of the tested models of prevalent chronic kidney disease (CKD) prediction and their performance for the original model and the intercept adjusted model,
based on MDRD equation defined CKD

Characteristics Korean risk score [10] Thai risk score [9] Bellville South

Authors Kwon et al. Thakkinstian et al.

Year published 2011 2011

Country South Korea Thailand

Validation Internal, External Internal

Sample size 6565 3459

Design Cross-sectional Cross-sectional

Age range ≥30 years ≥18 years

Population Korean Thai

Definition of of CKD eGFR (MDRD)≤ 60
ml/min per 1.73 m2

stage I-V based on
eGFR (MDRD)

Development
c-statistic

0.83 0.77

Predictors

Age Yes Yes Yes

Sex Yes No Yes

Anemia Yes No No

Hypertension Yes Yes Yes

Diabetes Yes Yes Yes

History of CVD Yes No No (statin use)

Proteinuria Yes No Yes

Kidney stone No Yes No

Performance Original Adjusted Original Adjusted

Outcome eGFR < 60 Any CKD eGFR < 60 Any CKD eGFR < 60 Any CKD eGFR < 60 Any CKD

E/O (95 % CI) 0.07 (0.07-0.08) 0.07 (0.06-0.08) 0.76 (0.67-0.86) 0.76 (0.67-0.85) 0.90 (0.79-1.01) 0.87 (0.77-0.98) 0.98 (0.87-1.10) 0.97 (0.86-1.09)

Brier score 0.265 0.274 0.164 0.161 0.166 0.166 0.165 0.164

Yates slope 0.026 0.029 0.208 0.225 0.191 0.199 0.200 0.211

C-statistic (95 % CI) 0.797 (0.765-0.829) 0.811 (0.780-0.842) 0.797 (0.765-0.829) 0.811 (0.780-0.842) 0.760 (0.726-0.793) 0.772 (0.739-0.805) 0.760 (0.726-0.793) 0.772 (0.739-0.805)

Best threshold 0.03 0.02 0.30 0.31 0.27 0.27 0.31 0.32

Sensitivity (%) 82 84 82 84 73 74 73 74

Specificity (%) 67 68 67 68 72 73 72 73

CI: confidence interval, CKD; chronic kidney disease, CVD: cardiovascular disease, E/O: expected/observed
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performance, models were recalibrated to the test-
population-specific CKD prevalence using intercept ad-
justment [24]. The calculated correction factor is based
on the mean predicted risk and the prevalence in the valid-
ation set and is the natural logarithm of the odds ratio of
the mean observed prevalence and the mean predicted risk
[24]. The main analysis focused on the overall cohort, and
subgroups analyses were by sex, age (<60 vs. ≥60 years)

and BMI (<25 kg/m2 vs. ≥25 g/m2). Additionally, we con-
ducted sensitivity analyses, to assess all the aforementioned
aspects of model using the CKD-EPI equation [17] to
estimate kidney function and define CKD.
For all analyses, we used the statistical software R

Version 3.0.3 [2014-03-04] (The R Foundation for statis-
tical computing, Vienna, Austria). A p-value <0.05 was
used to characterize statistically significant results.

Fig. 1 Receiver operating characteristic curves (ROC) showing the discrimination of the Korean model. The yellow band around curve represents the
95 % confidence interval; the diagonal line at 45° is the line of no discrimination. Figure panels are for the outcome of CKD (eGFR < 60 ml/min/
1.73 m2) for the left panels and ‘any nephropathy (eGFR < 60 ml/min/1.73 m2 or proteinuria) for the right panels, and for MDRD defined CKD (upper
panels) and CKD-EPI defined CKD (lower panels)
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Results
Participants’ characteristics
Of the 1285 participants screened in the Bellville South
cohort, 383 were excluded because of missing data on
predictor variables or renal function. Therefore, the final
analytic sample included 902 participants. The excluded
participants (Additional file 1: Table S2) were more likely
to be men, younger, taller and to have hypertension,

higher systolic or diastolic blood pressure, lower total
cholesterol or serum creatinine, but a higher eGFR.
The characteristics of study participants stratified by

sex are presented in Table 1. Overall, compared to women,
men were less obese (both by BMI and abdominal circum-
ference), but had lower total cholesterol, HDL cholesterol,
and lower prevalence of CKD defined as eGFR < 60 ml/
min/1.73 m2 or as eGFR <60 ml/min/1.73 m2 and/or

Fig. 2 Receiver operating characteristic curves (ROC) showing the discrimination of the Thai model. The yellow band around curve represents the
95 % confidence interval; the diagonal line at 45° is the line of no discrimination. Figure panels are for the outcome of CKD (eGFR < 60 ml/min/
1.73 m2) for the left panels and ‘any nephropathy (eGFR < 60 ml/min/1.73 m2 or proteinuria) for the right panels, and for MDRD defined CKD
(upper panels) and CKD-EPI defined CKD (lower panels)
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albuminuria. Systolic or diastolic blood pressure, height,
serum creatinine, eGFR and proportion of smokers were
significantly higher in men than in women.

Prediction of prevalent undiagnosed CKD in the overall
sample
A total of 259 participants (28.7 %) had undiagnosed
CKD (eGFR < 60 ml/min/1.73 m2). When using the
eGFR < 60 ml/min/1.73 m2 and/or albuminuria as the
definition of CKD, nine additional patients (solely
women) would have the condition (Table 1). Table 2 and
Figs. 1 and 2 show the discriminative ability of two pre-
diction models selected. The C-statistic was 0.760 (95 %
CI: 0.726-0793) for the Korean model for predicting
‘eGFR < 60 ml/min/1.73 m2’ and 0.811 (0.780-0.842) for
‘any nephropathy’; corresponding figures were 0.797
(0.765-0.829) and 0772 (0.739-0.805) for the Thai model.
In all pairwise comparisons, the Korean model always
had significantly better discrimination than the Thai
model (all p < 0.0001).
CKD was slightly under estimated by the Thai model

by 10 % (95 % CI: 1-21 %) and 13 % (2 %-23 %) for
‘eGFR < 60 ml/min/1.73 m2’ and ‘any nephropathy’ re-
spectively. However, it was largely underestimated by the
Korean model by 93 % (92-93 %) for ‘eGFR < 60 ml/min/
1.73 m2’ and ‘any nephropathy’ (Table 2). The calibration
curves are shown in Figs. 3 and 4. The curves were
steeper for the Korean model and always above the
diagonal line of perfect calibration, indicating a system-
atic risk underestimation. With the Thai model, the

curve was parallel to and always above the diagonal line.
It was mostly closer to this line in lower risk strata than
in the upper ones, suggesting a selective risk underesti-
mation among participants at high risk. The Yates slope
and Brier score are also presented in Table 2.

Prediction of prevalent undiagnosed CKD in subgroups
The C-statistic varied widely across complementary sub-
groups (Table 3). The two models had a better discrim-
ination among men than women, with a C-statistic of
0.856 (0.792-0.920) for the Korean model, and 0.834
(0.770-0.899) for the Thai model, irrespective of the
CKD definition used. The C-statistic was lower in younger
participants (age <60 years), with values of 0.678 (0.615-
0.741) and 0.689 (0.626-0.751) for the ‘eGFR <60 ml/min/
1.73 m2’ and ‘any nephropathy’ respectively for the Korean
model, and 0.608 (0.550-0.666) and 0.619 (0.561-0.676)
for the Thai model. The two models showed an
improved discrimination of CKD in lean participants
(BMI <25 kg/m2) than in overweight and obese partici-
pants (BMI ≥25 kg/m2).
The overall calibration as expressed by the E/O ratio

varied across subgroups depending on the model. Both
models overestimated CKD risk in men and underesti-
mate it in women. The Thai model (‘eGFR <60 ml/min/
1.73 m2’ and ‘any nephropathy’) overestimates CKD risk
among younger participants, and both models underesti-
mate the risk among older participants. The Thai model
overestimates the risk of CKD in the BMI subgroups
(Table 3).

Fig. 3 Calibration curves for the Korean model before (upper panels) and after intercept adjustment (lower panels), for the outcome of CKD (eGFR <
60 ml/min/1.73 m2) for the first and third column and ‘any nephropathy’ (eGFR < 60 ml/min/1.73 m2 or proteinuria) for the second and left columns.
For each figure panel the broken diagonal line at 45° represents the ideal calibration. Participants are grouped into percentiles across increasing
estimated probability. The vertical lines at the bottom of the graph depict the frequency distribution of the calibrated probabilities. eGFR is from
MDRD equation (1st and 2nd columns) and CKD-EPI equation (3rd and 4th columns)
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Recalibration through intercept adjustment
After recalibration through intercept adjustment, there
was an almost perfect risk estimation by the Thai
model for both CKD outcomes, with E/O of 0.98
(0.87-1.10) for ‘eGFR < 60 ml/min/1.73 m2’ and 0.97
(0.86-1.09) for ‘any nephropathy’ (Fig. 3), and calibra-
tion curve mostly following the diagonal line of perfect
calibration (Fig. 4). However, the Korean model still
slightly underestimated CKD risk by 24 % (33–15) for
both outcomes. The Hosmer-Lemeshow test indicated
a disagreement between the predicted and observed
prevalence of undiagnosed CKD after intercept adjust-
ment (all p < 0.0001), although there was attenuation
in comparison with the original model (Additional file
1: Table S3).

Optimal threshold for defining high risk of CKD
The optimal threshold for the intercept adjusted Thai
model was 0.31 and 0.32 respectively for ‘eGFR < 60 ml/
min/1.73 m2’ and for ‘any nephropathy’. Corresponding
performance measures were 73 % and 74 % for sensitiv-
ity, and 72 % and 73 % for specificity. Optimal thresh-
olds for the intercept adjusted Korean model were 0.30
for ‘eGFR < 60 ml/min/1.73 m2’ and 0.31 for ‘any ne-
phropathy’. Accompanying performance measures were
82 % and 84 % for sensitivity, and 67 % and 68 % for
specificity (Table 2).

Sensitivity analysis – models validation for chronic kidney
disease defined by CKD-EPI equation predicted glomerular
filtration rate
The results obtained with the CKD-EPI equation were
broadly similar to the one obtained using the CKD-
MDRD equation to define CKD. Table 4 and Figs. 1 and 2
show the discriminative ability of the prediction models
using the CKD-EPI equation. The C-statistic was 0.850
(0.821-0.880) for the Korean model for predicting ‘eGFR
< 60 ml/min/1.73 m2’ and 0.863 (0.835-0.891) for ‘any ne-
phropathy’; corresponding figures were 0.808 (0.775-
0.842) and 0.820 (0.788-0.852) for the Thai model. Direct
comparisons of the C-statistics indicated significant differ-
ence between the Thai and the Korean models (p < 0.0001
for CKD and p < 0.0001 for any CKD).
CKD was slightly overestimated by the original Thai

model and broadly underestimated by the original
Korean model, as indicated by E/O ratio (Table 4). The
calibration curves for the Thai and Korean models
(Figs. 3 and 4), as well as the Yates slope and Brier score
(Table 4) indicated systematic risk overestimation and
underestimation, respectively. As for prediction in sub-
groups (Table 5), the two models had a better discrimin-
ation (C-statistic) among men than women, in older
participants (age <60 years) compared to younger ones,
and in lean participants (BMI <25 kg/m2) than in over-
weight and obese participants (BMI ≥25 kg/m2). The Thai
models overestimated CKD risk in men but overestimates

Fig. 4 Calibration curves for the Thai model before (upper panels) and after intercept adjustment (lower panels), for the outcome of CKD (eGFR <
60 ml/min/1.73 m2) for the first and third column and ‘any nephropathy’ (eGFR < 60 ml/min/1.73 m2 or proteinuria) for the second and left columns.
For each figure panel the broken diagonal line at 45° represents the ideal calibration. Participants are grouped into percentiles across increasing
estimated probability. The vertical lines at the bottom of the graph depict the frequency distribution of the calibrated probabilities. eGFR is from
MDRD equation (1st and 2nd columns) and CKD-EPI equation (3rd and 4th columns)

Mogueo et al. BMC Nephrology  (2015) 16:94 Page 8 of 14



Table 3 Discrimination and calibration statistics for chronic kidney diseases risk model performance in subgroups of participants by gender, age and body mass index (BMI); for
the outcome of CKD based on MDRD equation predicted glomerular filtration rate with or without proteinuria

Models (outcome) Men Women Age < 60 years Age ≥ 60 years BMI < 25 kg/m2 BMI≥ 25 kg/m2

Thai model (eGFR < 60 ml/min/1.73 m2) E/O (95 % CI) 1.49 (1.10-2.02) 0.88 (0.77-1.00) 1.13 (0.90-1.42) 0.91 (0.79-1.05) 0.98 (0.76-1.26) 0.98 (0.85-1.12)

Brier score 0.127 0.177 0.121 0.238 0.128 0.180

Yates slope 0.267 0.190 0.0.032 0.083 0.259 0.175

C-statistic (95 % CI) 0.834 (0.770-0.899) 0.752 (0.714-0.790) 0.608 (0.550-0.666) 0.626 (0.567-0.685 0.854 (0.802-0.906) 0.723 (0.681-0.765)

Korean model (eGFR < 60 ml/min/1.73 m2) E/O (95 % CI) 0.99 (0.73-1.34) 0.72 (0.63-0.82) 0.68 (0.54-0.85) 0.80 (0.69-0.92) 0.75 (0.59-0.97) 0.76 (0.66-0.88)

Brier score 0.112 0.179 0.116 0.243 0.129 0.177

Yates slope 0.246 0.199 0.049 0.087 0.259 0.186

C-statistic (95 % CI) 0.856 (0.792-0.920) 0.784 (0.747-0.821) 0.678 (0.615-0.741) 0.668 (0.610-0.726) 0.869 (0.814-0.923) 0.766 (0.727-0.806)

Thai model (eGFR < 60 ml/min/1.73 m2

or proteinuria)
E/O (95 % CI) 1.53 (1.13-2.08) 0.87 (0.76-0.99) 1.15 (0.92-1.43) 0.89 (0.78-1.03) 0.96 (0.75-1.23) 0.97 (0.85-1.12)

Brier score 0.127 0.175 0.123 0.233 0.125 0.179

Yates slope 0.267 0.205 0.040 0.092 0.276 0.184

C-statistic (95 % CI) 0.834 (0.770-0.899) 0.768 (0.732-0.805) 0.619 (0.561-0.676) 0.646 (0.587-0.704) 0.870 (0.821-0.919) 0.734 (0.693-0.775)

Korean mdel (eGFR < 60 ml/min/1.73 m2

or proteinuria)
E/O (95 % CI) 1.02 (0.75-1.38) 0.71 (0.62-0.80) 0.69 (0.55-0.86) 0.78 (0.68-0.91) 0.74 (0.58-0.95) 0.76 (0.66-0.87)

Brier score 0.112 0.176 0.116 0.235 0.125 0.175

Yates slope 0.246 0.219 0.059 0.104 0.284 0.201

C-statistic (95 % CI) 0.856 (0.792-0.920) 0.801 (0.766-0.836) 0.689 (0.626-0.751) 0.696 (0.640-0.753) 0.886 (0.834-0.937) 0.778 (0.740-0.817)

eGFR, estimated glomerular filtration rate; E/O, Expected/Observed event rate; 95 % CI: 95 % confidence interval
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Table 4 Performance for the original model and the intercept adjusted model in the overall population based on CKD-EPI equation defined chronic kidney disease

Performance Korean risk score [10] Thai risk score [9]

Model Original Adjusted Original Adjusted

Outcome eGFR < 60 Any CKD eGFR < 60 Any CKD eGFR < 60 Any CKD eGFR < 60 Any CKD

E/O (95 % CI) 0.10 (0.09-0.12) 0.10 (0.09-0.11) 0.80 (0.69-0.92) 0.79 (0.69-0.91) 1.25 (1.08-1.44) 1.18 (1.03-1.38) 1.04 (0.91-1.21) 1.03 (0.90-1.19)

Brier score 0.187 0.197 0.123 0.123 0.128 0.128 0.126 0.127

Yates slope 0.034 0.036 0.212 0.230 0.236 0.243 0.213 0.225

C-statistic (95 % CI) 0.850 (0.821-0.880) 0.863 (0.835-0.891) 0.850 (0.821-0.880) 0.863 (0.835-0.891) 0.808 (0.775-0.842) 0.820 (0.788-0.852) 0.808 (0.775-0.842) 0.820 (0.788-0.852)

Best threshold 0.02 0.02 0.22 0.22 0.25 0.27 0.22 0.23

Sensitivity (%) 81 82 81 82 71 72 71 72

Specificity (%) 82 82 82 82 85 86 85 86

CKD; chronic kidney disease, eGFR, estimated glomerular filtration rate; E/O, Expected/Observed event rate; 95 % CI: 95 % confidence interval

M
ogueo

et
al.BM

C
N
ephrology

 (2015) 16:94 
Page

10
of

14



Table 5 Discrimination and calibration statistics for chronic kidney diseases (CKD) risk model performance in subgroups of participants by gender, age and body mass index
(BMI), for the outcome of CKD based on CKD-EPI equation predicted glomerular filtration rate with or without proteinuria

Models (outcome) Men Women Age < 60 years Age ≥ 60 years BMI < 25 kg/m2 BMI≥ 25 kg/m2

Thai model (eGFR < 60 ml/min/1.73 m2) E/O (95 % CI) 1.38 (0.99-1.92) 0.97 (0.82-1.13) 2.14 (1.49-3.08) 0.84 (0.72-0.99) 0.96 (0.72-1.28) 1.08 (0.91-1.27)

Brier score 0.105 0.132 0.056 0.242 0.106 0.133

Yates slope 0.254 0.206 0.019 0.076 0.246 0.199

C-statistic (95 % CI) 0.850 (0.787-0.912) 0.802 (0.764-0.840) 0.573 (0.479-0.667) 0.614 (0.556-0.673) 0.872 (0.820-0.923) 0.784 (0.742-0.826)

Korean model (eGFR < 60 ml/min/1.73 m2) E/O (95 % CI) 0.88 (0.63-1.23) 0.78 (0.82-1.13) 1.25 (0.87-1.80) 0.72 (0.61-0.84) 0.73 (0.55-0.98) 0.83 (0.91-1.27)

Brier score 0.098 0.131 0.049 0.247 0.110 0.128

Yates slope 0.221 0.208 0.031 0.082 0.231 0.203

C-statistic (95 % CI) 0.887 (0.835-0.939) 0.842 (0.807-0.876) 0.676 (0.587-0.766) 0.674 (0.617-0.730) 0.891 (0.844-0.937) 0.833 (0.797-0.870)

Thai model (eGFR < 60 ml/min/1.73 m2

or proteinuria)
E/O (95 % CI) 1.44 (1.03-2.01) 0.95 (0.81-1.10) 2.05 (1.45-2.90) 0.84 (0.97-0.72) 0.95 (0.72-1.25) 0.82 (0.70-0.97)

Brier score 0.106 0.133 0.059 0.240 0.106 0.135

Yates slope 0.259 0.220 0.038 0.085 0.264 0.208

C-statistic (95 % CI) 0.850 (0.787-0.912) 0.817 (0.781-0.853) 0.611 (0.517-0.705) 0.632 (0.574-0.690) 0.887 (0.839-0.935) 0.793 (0.753-0.834)

Korean mdel (eGFR < 60 ml/min/1.73 m2

or proteinuria)
E/O (95 % CI) 0.92 (0.66-1.29) 0.77 (0.66-0.89) 1.20 (0.85-1.70) 0.71 (0.61-0.83) 0.72 (0.55-0.95) 0.82 (0.70-0.97)

Brier score 0.097 0.130 0.051 0.241 0.108 0.128

Yates slope 0.229 0.230 0.055 0.100 0.257 0.218

C-statistic (95 % CI) 0.887 (0.835-0.939) 0.858 (0.825-0.890) 0.709 (0.622-0.797) 0.700 (0.645-0.755) 0.907 (0.864-0.950) 0.844 (0.808-0.880)

eGFR, estimated glomerular filtration rate; E/O, Expected/Observed event rate; 95 % CI: 95 % confidence interval
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the risk of CKD in the obese BMI subgroups; and the
Korean model tended to overestimate risk in men
(Table 5).
After recalibration through intercept adjustment, CKD

risk was estimated better by both models for both CKD
outcomes, but more so for the Thai model that the Korean
one. The Hosmer-Lemeshow test indicated disagreement
between the predicted and observed prevalence of undiag-
nosed CKD (all p < 0.0001) though there was attenuation
in comparison with the original model (Additional file 1:
Table S3).

Discussion
To our knowledge, our study is the first conducted in
Sub-Saharan Africa on CKD risk prediction models. In
the South African cohort of Bellville South, the two
models had a good-to-acceptable discrimination for the
presence of undiagnosed CKD, with a better perform-
ance in older age group, men and normal weight partici-
pants. Calibration was also acceptable for the Thai
model while substantial risk underestimation was ob-
served with the Korean model, with however improve-
ment after recalibration through intercept adjustment. At
the optimal threshold derived from our sample, both
models had good sensitivity and acceptable specificity to
select participants who are more likely to be diagnosed
with CKD via biological tests. The performance of the
models was not significantly influenced by the methods
used to defined impaired kidney function, CKD-MDRD or
CKD-EPI equations. Interestingly, both models are based
on non-invasively measurable predictors in routine clinical
and community-based settings. Altogether, our study sug-
gests that, with little additional efforts models developed
in Asians to screen the risk of prevalent undiagnosed
CKD, can be adapted to accurately serve the same purpose
in African populations; therefore obviating the need to de-
velop new models from scratch in the African settings.

Comparison with other external validation studies
Compared to other external validation studies of CKD
risk models, we found the highest discrimination values
[7]. We also used multiple metrics of performance as-
sessment compared to existing validations studies. Fur-
thermore, the same group of investigators who developed
original models has mainly conducted the extant valid-
ation studies. This tends to be methodologically inferior
and quantitatively insufficient to provide good indicators
of models’ behavior in various populations. The variation
in model performance across subgroups in our study may
simply reflect differences in the distribution of the disease
and its risk factors. For instance, overestimation observed
among of males and youngsters in our population may
simply reflect the predominance of these groups in our
population. Also, that the discrimination ability of models

is better in older participant is unsurprising as CKD oc-
currence is strongly related to aging [1].

Implications and uses of CKD risk models in the African
context
A recent overview of CKD studies conducted in Africa
has reported a pooled CKD prevalence of 13.9 %, with
no difference between urban and rural studies [25].
Those seen with CKD in community based studies in
Africa are more likely to be people not previously
diagnosed with the condition; in line with the poor de-
tection rates already reported in Africa for major non-
communicable diseases such as hypertension [26] and
diabetes mellitus [27]. This reflects the lack of or the
insufficient ongoing effort to screen people for CKD
and common NCDs in this setting. Furthermore,
hospital-based studies have reported unacceptable rates
of patients referrals with CKD to nephrologists, usually
at the terminal stage of the disease, including even
among patients receiving ongoing care from other non-
nephrologist physicians [28]. The scope of needs and
challenges in term of CKD risk screening and preven-
tion in Africa therefore is broad and invites both health
facilities based and community based actions.
The investigated risk models have potential applica-

tions in the prevention and management of CKD in
Africa. Indeed, CKD is a silent disease that usually pre-
sents at the ESRD stage with limited chances of survival.
Though the tested models have not been investigated for
improvement of outcomes in routine practice, their per-
formances indicate that these could be used to boost the
detection of CKD in Africa both in clinical practice and
at a larger scale in low-income settings. Practitioners can
use the derived risk from these tools to detect CKD
followed by timely referral to a renal physician, and
make recommendations on behavioral changes in high–
risk patients who are ultimately not found to have the
condition. Indeed, communication of risks to patient
using valid tools may motivate them to adhere to healthy
habits and prescribed therapies. Using these models, cli-
nicians may be able to increase the frequency of moni-
toring to individual risk. Considering the prohibitive
costs of renal replacement therapy in this environment,
early detection and/or prevention of progression of CKD
are an imperative for countries in this region. However,
how to best achieve this is still unclear, especially in low-
income setting. Indeed, easy to use and inexpensive tools
may be useful as the numbers of and complexity of
predictors and cost of measurement would limit applic-
ability in various settings.

Strengths and limitations
Our study has strengths including a community-based
sample, and the rigorous and detailed external validation
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approaches. However, the limitations of this study need
to be mentioned. The approaches used to account for
predictors that were completely missing (e.g., proxy vari-
ables, predictor omission) could decrease discrimination
of the models. It is well known that deletion of partici-
pants with missing values (frequent in large studies)
leads to biased results [18]. Our sample was limited in
terms of the race/ethnicity variability, thus our results
might not be generalizable to all African countries or
ethnic groups. The definition of CKD was based on the
MDRD equation. The MDRD equation may provide less
accurate estimates of GFR, compared with estimates
derived from the more recent CKD-EPI equation. Our
sensitivity analyses however suggest that the models’
performance was equally acceptable-to-good regardless
of the kidney function estimator used. Also, more risk
predictions tools could have been tested in our popula-
tion, but this was not done due to the lack of necessary
information on key variables.

Conclusion
Our study has highlighted the acceptable performance of
CKD risk models developed in Asian population when
applied to an African population. Given the strong need
for reliable and convenient tool for identifying undiag-
nosed or predicting future CKD in a cost-effective man-
ner, especially low-income settings like Africa where
CKD prevalence is galloping particular, the tested
models can be effectively used in a stepwise approach to
identifying people with undiagnosed CKD. However, the
assessment of the impact of risk model use on patient
outcomes is needed before it being incorporated into
routine clinical practice guidelines.

Additional file

Additional file 1: Validation of two prediction models of
undiagnosed chronic kidney disease in mixed-ancestry South
Africans.
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