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Abstract

Background: Global longitudinal strain (GLS) has emerged as a superior method for detecting left ventricular (LV)
systolic dysfunction compared to ejection fraction (EF) on the basis that it is less operator dependent and more
reproducible. The 2-dimensional strain (2DS) method is easily measured and integrated into a standard echocardiogram.
This study aimed to determine the relationship between GLS and traditional and chronic kidney disease (CKD)-related
risk factors of cardiovascular disease (CVD) in patients with CKD.

Methods: A cross sectional study of patients with moderate CKD stages 3 and 4 (n = 136). Clinical characteristics,
anthropometric, biochemical data including markers of inflammation [C-reactive protein (CRP)], uremic toxins [indoxyl
sulphate (IS), p-cresyl sulphate (PCS)], and arterial stiffness [pulse wave velocity (PWV)] were measured. Inducible
ischemia was detected using exercise stress echocardiogram. GLS was determined from 3 standard apical views using
2-dimensional speckle tracking and EF was measured using Simpson’s rule. Associations between GLS and traditional
and CKD-related risk factors were explored using multivariate models.

Results: The study population parameters included: age 59.4 ± 9.8 years, 58 % male, estimated glomerular filtration rate
(eGFR) 44.4 ± 10.1 ml/min/1.73 m2, GLS −18.3 ± 3.6 % and EF 65.8 % ± 7.8 %. This study demonstrated that GLS
correlated with diabetes (r = 0.21, p = 0.01), history of heart failure (r = 0.20, p = 0.01), free IS (r = 0.24, p = 0.005) free PCS
(r = 0.23, p = 0.007), body mass index (BMI) (r = 0.28, p < 0.001), and PWV (r = 0.24, p = 0.009). Following adjustment for
demographic, baseline co-morbidities and laboratory parameters,GLS was independently associated with free IS, BMI
and arterial stiffness (R2 for model = 0.30, p < 0.0001).

Conclusions: In the CKD cohort, LV systolic function assessed using GLS was associated with uremic toxins, obesity
and arterial stiffness.
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Background
Global longitudinal strain (GLS) has emerged as an object-
ive and more reproducible imaging modality to quantify
subtle disturbances in left ventricular (LV) function [1].
GLS detects subendocardial contractility and viability which
often precedes an overt impairment of LV function

measured by ejection fraction (EF) [2]. It is increasingly
reported to be a powerful prognostic tool over other mea-
sures of systolic function in various clinical settings includ-
ing myocardial infarction, cardiomyopathy and valvular
heart disease [3–5]. In parallel with these observations,
GLS was shown to be a superior predictor of all-cause and
cardiovascular (CV) mortality in patients with CKD [6–8].
The pathogenesis of CV disease in CKD is complex

and uniquely different resulting in a progressive change
in myocardial composition and function [9]. Traditional
‘Framingham’ risk factors such as hypertension, diabetes
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mellitus, obesity and hypercholesterolemia are highly
prevalent in patients with CKD [10] and remain an im-
portant component of patient management; however,
they do not completely account for the accelerated CV
risk in CKD. Renal-specific disturbances known as ‘non
traditional risk factors’, including vascular calcification,
abnormal bone mineral metabolism (BMM), anemia,
hemodynamic overload, inflammation and uremic toxins
are putative contributors to cardiac remodeling [11–14].
Similar hemodynamic and metabolic changes also pre-
disposes to arterial stiffening [15]. Whilst arterial and
cardiac remodeling can occur in parallel in CKD, arterial
stiffness may lead to poor ventricular compliance and
hemodynamic decompensation [16, 17].
Early evidence suggests that GLS may have a role in

detecting uremic related cardiac remodeling. Kramann
et al. reported that strain parameters not only detected
LV contractile abnormalities but also correlated with the
severity of interstitial myocardial fibrosis and hyper-
trophy in rat models with uremic cardiomyopathy [8].
There is, however, a lack of information on the associ-
ation of GLS with CV risk factors in the CKD cohort.
Accordingly, the aim of this study was to characterize
the association of GLS with traditional and CKD-related
risk factors. The current study hypothesized that GLS
will be associated with traditional and CKD-related CV
risk factors in patients with CKD stage 3 and 4.

Methods
Study design
Patients aged 18 or over with an estimated glomerular
filtration rate (eGFR) of 25–60 ml/min per 1.73 m2, at-
tending the outpatient department of Princess Alexandra
Hospital Renal Unit (Brisbane, Australia), were invited to
participate. These patients were recruited as part of the
open-label randomized controlled trial Longitudinal
Assessment of Numerous Discrete Modifications of Ath-
erosclerotic Risk factors in Kidney disease (LANDMARK)
3 study, powered for vascular structure and function end-
points. The current study included 136 patients who com-
pleted the baseline visit and had cardiovascular imaging
prior to the intervention of exercise and dietary modification
and comprised of 84 % of the overall LANDMARK 3 study
population. The study protocol was approved by the Prin-
cess Alexandra Human Research Ethics Committee (HREC
2007/190) and was registered at www.anzctr.org.au (Regis-
tration Number ANZCTR12608000337370). All of the
participants provided written informed consent. Clinical,
biochemical and echocardiographic assessments were col-
lected at the time of enrollment for this study.

Clinical assessment
Demographic data, including an assessment of risk fac-
tor status and history of CV disease were recorded; all

prescribed and non-prescribed medications were docu-
mented. Hypertension and hyperlipidemia were defined
by the use of antihypertensive or lipid-lowering therapy,
respectively. Diabetes was defined by a history of this
diagnosis or use of oral hypoglycemic agents or insulin.
During the baseline visit, patients had anthropometric
assessment, including height (meters) and weight (kilo-
grams). Body mass index (BMI) was calculated as weight
divided by height squared. Overweight and obesity were
defined using World Health Organization (WHO) Classi-
fication [18]. Previous CV event was defined as a history
of documented myocardial infarction, coronary artery by-
pass surgery, percutaneous coronary intervention, or hos-
pital admission with acute coronary syndrome (ischemic
chest pain and/or electrocardiographic [ECG] changes
suggestive of ischemia with no elevation in cardiac en-
zymes), peripheral vascular disease including peripheral
revascularization procedure or amputation due to ische-
mia. Blood pressure (BP) was the average of three seated
measurements taken after a 5-minute rest.

Biochemical assessment
Blood for biochemical analyses was obtained from 10-hour
fasting venous samples taken at the baseline visit. Serum
concentrations of creatinine, albumin, urate, calcium
(corrected for albumin as total calcium − [(Albumin-
40)*0.02]), phosphate, parathyroid hormone (PTH),
glucose, C-reactive protein (CRP), hemoglobin, and
lipids [total cholesterol, low-density lipoproteins (LDL),
high-density lipoproteins (HDL) and triglyceride] were de-
termined using standard automated techniques. For this
study, eGFR was calculated using the Chronic Kidney
Disease- Epidemiology Collaboration (CKD-EPI) equation
[19]. Uremic toxins, indoxyl sulphate (IS) and p-cresyl
sulphate (PCS), total and free, were measured using the
latest ultra- performance liquid chromatography and
fluorescence detection method [20].

Exercise stress echocardiogram and vascular imaging
All patients underwent baseline 2-dimensional transtho-
racic echocardiography, and six standard views were ac-
quired digitally in a stress protocol. A suitable treadmill
protocol for each patient was selected based on Duke Ac-
tivity Status Index. Patients exercised to maximal capacity,
aiming for an age predicted heart rate of >85 %. Echocar-
diography was repeated immediately post exercise to look
for regional abnormalities indicative of inducible ischemia.
The resting echocardiographic parameters and stress echo
images were analysed off-line side by side by an experi-
enced cardiologist to determine any wall motion abnor-
malities provoked by stress.
GLS measurements were performed offline using com-

mercially available dedicated automated software (EchoPAC
PC, version 11, GE Healthcare, Horten, Norway). Speckles
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were tracked frame by-frame throughout the LV wall dur-
ing the cardiac cycle and basal, mid, and apical regions of
interest were created. Segments that failed to track were
manually adjusted by the operator. GLS was calculated as
the mean strain of all 18 segments. Previous studies have
demonstrated that healthy individuals have GLS ranging
from −16 to −19 % [21, 22]. A cut off at −16 % has been
shown to provide important risk stratification and prognos-
tic value [23]. Therefore, in our study we defined impaired
GLS as > −16 % (a less negative value reflects a more im-
paired GLS). Intra- and inter-observer variation for GLS
and EF were assessed by intra-class correlation co-efficient
(ICC) and compared using Z-scores and Bland Altman
plots as published elsewhere [24]. End-diastolic and
end-systolic volumes were used to calculate EF by
Simpson biplane method from the apical 4- and 2-
chamber views [25]. LV mass was calculated with the
formula: LV mass = 0.8 × {1.04 [([LV internal dimension +
septal wall thickness + posterior wall thickness] 3 − LV
internal dimension3)] + 0.6 g. Left ventricular mass was
indexed to height2.7, and left ventricular hypertrophy
(LVH) was defined as ≥51 g/m2.7 for both sexes [26]. Dia-
stolic function was assessed using indices of LV relaxation
[E/A; ratio of early (E) and late (A) diastolic transmitral
flow velocities and e’; septal mitral annular peak velocities]
and LV compliance (E/e’).
Aortic pulse wave velocity (PWV), expressed in me-

ters/second (m/s), was measured using a non-invasive
tonometer (SphygomoCor 2000; AtCor Medical, Sydney,
Australia) placed over the carotid and femoral arteries at
rest. Pressure signals were calibrated using brachial BP
and measurements were taken of the distance of the ca-
rotid and femoral pulses from a fixed point (the supraster-
nal notch). The PWV was then calculated using the foot-
to-foot method, gated to the cardiac cycle using a 3-lead
electrocardiograph [27].

Statistical analysis
Descriptive statistics were used to represent characteristics
at the entry of the study. The data were assessed for nor-
mality of distribution and transformed as appropriate.
CRP, urine protein-to-creatinine ratio, PTH, PWV, IS and
PCS were log transformed. Results were expressed as
frequencies and percentages for categorical variables,
mean ± standard deviation (SD) for normally distributed
variables and median (interquartile range) for non-
normally distributed variables. Analysis was carried out by
dividing the patients into 2 groups; one with preserved
and the other with impaired GLS. Differences between the
2 groups were analysed by chi-square test for categorical
data, unpaired t-test for continuous normally distributed
data and Wilcoxon ranksum test for continuous non-
normally distributed data. A sensitivity analysis was done
by dividing patients according to above and below the

median values of GLS (−18.4 %) to determine whether the
observed associations were still robust utilizing a different
threshold. The degree of association between GLS as a
continuous variable and the variables of interest was
assessed using Pearson’s correlation for continuous nor-
mally distributed variables and Spearman’s correlation for
categorical and non-normally distributed variables. Inde-
pendent associations with GLS were assessed using step-
wise multivariable regression analysis with backward
elimination. To further evaluate the relationship between
GLS and PWV, a series of linear regression models were
constructed using GLS as a dependent variable. The first
model included PWV as the sole predictor. Subsequent
models were constructed by first adding traditional risk
factors as predictors, then CKD-related risk factors, and fi-
nally echocardiographic parameters. Multi-colinearity was
tested using variable inflation factor measurement. Data
were analysed using a standard statistical software pro-
gram (Stata 13; www.stata.com). P-values less than 0.05
were considered statistically significant for all described
analyses.

Results
Clinical characteristics
The study included 136 participants (58 % male with a
mean age of 59.4 ± 9.8 years and eGFR of 44.4 ±
10.1 mL/min/1.73 m2). In this cohort, 67.6 % were obese
(BMI > 30 kg/m2), 42.7 % had diabetes, 94.9 % had
hypertension and 39.7 % had a previous cardiac event.
Participants were stratified according to preserved and
impaired GLS: preserved GLS ≤ −16 % and impaired
GLS > −16 % (a less negative GLS value reflects a more
impaired GLS). The association between GLS and clin-
ical characteristics based on cardiac risk factors are
shown in Table 1. Participants with impaired GLS had a
higher prevalence of diabetes and obesity, higher BMI,
uremic toxin (free PCS) and aortic PWV. There was a
trend towards an association between inducible cardiac
ischemia and impaired GLS (p = 0.05). However, impaired
GLS was not associated with age, gender, hypertension,
previous CV events or other ‘CKD-related’ risk factors.
There were also no differences between the GLS groups in
the use of cardiac/anti-hypertensive medications.

Relationship between GLS and with indices of LV
structure and function
Mean EF was 65.8 ± 7.8 % and mean GLS was −18.3 ±
3.6 %. Notably, 49 % of participants had LVH, primarily
with concentric hypertrophy. Table 2 presents the asso-
ciation of GLS and echocardiographic parameters. Im-
paired GLS was associated with lower EF, higher left
ventricular mass index (LVMI), higher left ventricular
end systolic volume (LVESV), poorer left ventricular re-
laxation and compliance (assessed using e’ and E/e’).
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Table 1 Clinical characteristics of 136 patients according to preserved and impaired GLS

Preserved GLS Impaired GLS p

(GLS≤ −16 %) (GLS > −16 %)

N = 106 N = 30

Traditional risk factors

Age (years) 58.9 ± 10.1 61.1 ± 8.3 0.3

Male (%) 58(55) 21(70) 0.1

Current or previous smoker (%) 70(66) 20(67) 0.9

Diabetes mellitus (%) 38(36) 20(67) 0.003

Fasting Glucose (mmol/L) 6.6 ± 3.0 7.9 ± 3.9 0.04

Hypertension (%) 102(96) 27(90) 0.1

Hypercholesterolemia (%) 70(67) 22(73) 0.7

-Total Cholesterol (mmol/L) 4.5 ± 0.9 4.3 ± 1.4 0.3

-LDL (mmol/L) 2.6 ± 0.9 2.4 ± 1.1 0.4

Previous CV events (%) 40(37.7) 14(46.7) 0.3

History of HF (%) 2(1.9) 3(10) 0.07

Body Mass Index (BMI) (kg/m2) 32.4 ± 6.4 35.8 ± 6.2 0.008

Normal: BMI <25 6(5.7) 0(0) 0.03

Overweight: 25 ≤ BMI < 30 (%) 33(31) 5(17)

Class 1 Obesity: 30≤ BMI < 35 (%) 39(37) 9(30)

Class II and III: Obesity BMI≥ 35 (%) 28(26) 16(53)

Blood Pressure (BP)(mmHg)

Systolic BP 137 ± 19 142 ± 27 0.3

Diastolic BP 81 ± 11 82 ± 14 0.7

Inducible Ischemia on ESE (%) 6(6) 5(17) 0.05

CKD related risk factors

eGFR (ml/min/1.73 m2) 44.3 ± 10.1 44.4 ± 10.4 0.9

Urinary protein-to-creatinine ratio (g/mol) 39(11–100) 19(14–88) 0.9

CRP (mg/L) 3.3(1.4-6.8) 4.4(2.4-7.3) 0.2

Albumin (g/L) 37.6 ± 3.6 37.4 ± 4.7 0.8

Urate (mmol/L) 0.46 ± 0.1 0.45 ± 0.1 0.6

Hemoglobin (g/L) 132 ± 15 131 ± 16 0.9

Corrected calcium (mmol/L) 2.35 ± 0.1 2.33 ± 0.1 0.3

Phosphate (mmol/L) 1.11 ± 0.17 1.15 ± 0.16 0.2

PTH (pmol/L) 8(6–13) 12(7–16) 0.2

Free indoxyl sulphate (μmol/L) 0.31(0.22-0.50) 0.37(0.30-0.51) 0.07

Free P-cresyl sulphate (μmol/L) 1.38(0.71-2.14) 1.90(1.43-2.61) 0.01

Pulse wave velocity (m/s) 9.0(7.3-10.7) 10.4(9.1-13) 0.03

Medication

ACEi/ARB (%) 88(84.6) 26(89.7) 0.5

Βeta blockers (%) 41(39.4) 11(37.9) 0.9

Calcium channel blockers (%) 49(47) 15(51.7) 0.7

Diuretics (%) 39(38.7) 14(48.3) 0.4

Data are mean ± standard deviation, median (interquartile range) or number (%)
GLS; global longitudinal strain, LDL; low density lipoprotein, CV; cardiovascular, HF; heart failure, CKD; chronic kidney disease, eGFR; estimated glomerular filtration
rate, CRP; C-reactive protein, PTH; parathyroid hormone, ACEi; angiotensin converting enzyme inhibitor, ARB; angiotensin receptor blocker, ESE; exercise
stress echocardiogram
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There was no association between GLS and left atrial
(LA) volume or LV geometry.

Traditional and CKD-related risk factors as predictors of
GLS
Table 3 represents the bivariate and adjusted associa-
tions between GLS and relevant CV risk factors. In bi-
variate analysis, GLS correlated with several important
traditional risk factors including history of diabetes,
heart failure (HF) and BMI. In addition, GLS also corre-
lated with CKD-related risk factors (Fig. 1a-c) including
free IS (r = 0.24, p = 0.005), free PCS (r = 0.23, p = 0.007)
and PWV (r = 0.24, p = 0.009). Using stepwise linear re-
gression adjusting for demographic, traditional and
CKD-related risk factors, GLS remained independently
associated with aortic PWV, free IS and BMI (R2 for
model = 0.30, p < 0.0001).

Left ventricular –arterial association
To further distinguish the association between GLS and
arterial stiffness, we compared regression and squared
correlation coefficients for these parameters adjusting
for traditional risk factors, CKD-related risk factors and
echocardiographic parameters (Table 4). There was a
statistically significant association between GLS and aor-
tic PWV, which remained following adjustment for

relevant traditional risk factors (Model 2: age, gender,
diabetes, systolic BP, diastolic BP, HF, BMI, inducible is-
chemia) and CKD-related risk factors (Model 3: addition
of eGFR, CRP, corrected calcium and uremic toxins to
Model 2). The independent association between GLS
and PWV also persisted following adjustment for rele-
vant echocardiographic parameters (Model 4: addition of
EF, LVMI and E/e’ to Model 3) with a decrease in the
correlation coefficient.

Sensitivity analysis
The associations between GLS, clinical characteristics and
indices of LV structure and function were repeated with a
GLS cut –off at median value of −18.4 % (Additional file 1:
Table S1A and S2A). Participants with lower GLS (> −
18.4 %) were still found to have higher BMI, uremic toxins
(free IS and free PCS) and aortic PWV.

Discussion
This study showed in patients with established CKD stage
3 and 4, LV systolic function assessed by GLS was inde-
pendently associated with aortic PWV, uremic toxins and
BMI. Other traditional risk factors did not demonstrate an
association with GLS. Importantly, to our knowledge this
is the first study to identify the highly significant associ-
ation between aortic stiffness and GLS.
There are few studies that have assessed clinical fac-

tors associated with GLS in the general population. The
current study explored the associations between risk fac-
tors and GLS in CKD. In a meta-analysis, Yingchoncharoen
et al. found systolic BP was an important source of
variation in GLS values [28]. Dalen et al. have also re-
ported that among healthy individuals increasing age and
male gender were associated with worse GLS [29]. The
current findings did not show significant associations
between GLS and SBP, age or gender. There are several
possible explanations for these differences including our
study cohort consisted of CKD patients that have many
distinctive characteristics compared to the general popula-
tion. A history of hypertension was universal and BP was
well controlled in this study cohort. In addition, historical
values of BP readings were not available for comparison
and the relatively small sample size could account for the
lack of association between GLS and BP seen in this
study.
CKD is a unique risk factor for cardiac remodeling;

studies have demonstrated that this occurs early and is
significantly worse in CKD patients compared to non-
CKD [30, 31]. The structural changes are characterized
by cardiomyocyte cell loss and hypertrophy, increased
wall stress, dilatation or thinning of ventricular wall, scar
formation and myocardial fibrosis which progresses to a
maladaptive response and results in functional decom-
pensation [32, 33]. Previous work has also demonstrated

Table 2 Echocardiographic characteristic according to impaired
and preserved GLS

Preserved GLS Impaired GLS p

(GLS≤ −16 %) (GLS > −16 %)

N = 106 N = 30

Ejection fraction (%) 67.6 ± 6.9 59.5 ± 7.5 <0.001

LVESV (ml) 25.7 ± 11.7 33.2 ± 20.8 0.01

LVEDV (ml) 75.4 ± 23.9 80.1 ± 33.6 0.4

LVESD (mm) 2.81 ± 0.53 3.01 ± 0.83 0.1

LVEDD (mm) 4.77 ± 0.58 4.79 ± 0.87 0.9

LVMI (g/m2.7) 50.3 ± 11.7 56.3 ± 20.7 0.04

RWT 0.49 ± 0.12 0.51 ± 0.11 0.3

LVH (LVMI≥ 51 g/m2.7) 53(50) 16(53) 0.8

- eccentric LVH 8(15) 2(13)

- concentric LVH 45(85) 14(87)

LV compliance

- E/e’ 12.3 ± 4.2 15.5 ± 10.9 0.02

LV relaxation

- E/A 1.0 ± 0.4 0.9 ± 0.3 0.2

- e’ (cm/s) 0.06 ± 0.01 0.05 ± 0.01 0.007

LA volume (ml) 61.5 ± 19.4 62.0 ± 23.2 0.9

GLS; global longitudinal strain, LVESV; left ventricular end systolic volume, LVEDV;
left ventricular end diastolic volume, LVESD; left ventricular end systolic diameter,
LVEDD; left ventricular end diastolic diameter, LVMI; left ventricular mass index,
RWT; relative wall thickness, LVH; left ventricular hypertrophy, LA; left atrial
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that hemodynamic and metabolic changes associated
with the uremic milieu can result in endothelial dysfunc-
tion and a cascade of vascular injury in this cohort [34–36].
Endothelial dysfunction is a major pathogenic mechanism
for exaggerated atherosclerosis and arteriosclerosis result-
ing in reduced vascular and myocardial compliance, in-
creased vascular calcification and stiffening [37]. Arterial
stiffness, assessed using PWV, has been widely described
and is associated with adverse CV outcome in CKD
[38, 39]. It has been hypothesized that arterial stiffness may
have deleterious effects on LV filling pressure resulting in
greater LV wall stress and stiffness and subsequent injury
to the subendocardium which is highly sensitive to wall
stress and myocardial oxygen demand [40]. As GLS quanti-
fies longitudinal contraction, especially in the subendocar-
dial fibers, it may be a more sensitive marker of systolic
dysfunction occurring prior to overt clinical disease [2, 41].
In this study, the independent association of arterial stiff-
ness and GLS persisted following adjustment for inducible
ischemia, LVMI, EF and indices of diastolic function.
Whilst classically vascular stiffness is directly related to
ventricular stiffness and diastolic function, our study indi-
cates that LV systolic function can be compromised in re-
sponse to ventricular- vascular stiffening in patients with
moderate CKD.
The present study also demonstrated that increasing

BMI was associated with worsening GLS in patients with
moderate CKD. Obesity is an established risk factor for
cardiomyopathy and is a growing problem in CKD.
Obesity results in various metabolic and neuro-humoral
alterations that can augment myocardial remodeling.
Excessive free fatty acids through alteration of fatty acid
β-oxidation rates has been shown to increase myocardial
oxygen consumption and impair myocardial contractility
[42]. Obesity is related to activation of inflammatory cy-
tokines, especially tumour necrosis factor (TNF), that
contribute to fibrotic changes of the myocardium [43].
Activation of the sympathetic and renin-aldosterone sys-
tem is also widely demonstrated in obese persons and
can further facilitate cardiac damage [44]. Some of these
factors co-exist or are attenuated in CKD patients [45].
As a result, there are numerous maladaptive changes of
the myocardium that overlap between CKD and obesity,
including abnormal LV relaxation, hypertrophy and inter-
stitial fibrosis [46].
CKD- related risk factors are increasingly thought to

amplify the multifaceted mechanisms of cardiovascular
disease. Accordingly, this study showed a novel and inde-
pendent association between the free circulating concen-
trations of uremic toxin IS and worsening GLS in this
cohort with moderate CKD. Protein bound uremic toxins,
such as IS and PCS, have been shown to accumulate with
progression of CKD and are associated with adverse CV
outcomes [47]. IS and PCS are both by-product of bacterial

Table 3 Bivariate and Multivariate association with Global
Longitudinal Strain

Variable Bivariate
Analysis

Multivariate Model (R2 = 0.30,
n = 114 p< 0.0001)

r p #Â coefficient
(95 % CI)

p

Traditional risk factors

Age (years) 0.01 0.9 −0.06(−0.13,0.01) 0.1

Gender (Male) 0.15 0.09 0.92(−0.23,2.07) 0.1

Smoking history 0.0004 0.99

Hypertension −0.09 0.3

Diabetes 0.21 0.01

Hypercholesterolemia 0.06 0.47

Previous CV events 0.07 0.43

HF 0.2 0.01

BMI (kg/m2) 0.28 <0.001 0.1(0.02,0.2)

0.02 Peripheral systolic
BP (mmHg)

0.08 0.3 −0.28(−0.07,0.01) 0.1

Peripheral diastolic
BP (mmHg)

0.14 0.1 0.06(−0.002, −0.13)

0.06 Fasting glucose
(mmol/L)

0.1

0.2

Inducible ischemia on
ESE (%)

0.14 0.1 2.05(−0.03,4.12)

0.05 CKD- related risk factors

eGFR (ml/min/1.73 m2) 0.04 0.6

Urine PCR (g/mol)^ 0.08 0.4

CRP (mg/L)^ 0.16 0.07

Albumin (g/L) 0.01 0.9

Calcium (mmol/L) −0.13 0.2 −4.8(−9.6,0.06)

0.05 Phosphate (mmol/L)

0.09 0.3

PTH (pmol/L)^ 0.1 0.3

Urate (mmol/L) −0.1 0.9

Hemoglobin (g/L) 0.03 0.7

Free ICS (μmol/L)^ 0.24 0.005 0.9(0.07,1.68)

0.03 Free
PCS

(μmol/L)^

0.23 0.007

PWV (m/s)^ 0.24 0.009 3.29(0.53,6.03)

0.02

CI; confidence interval, HF; heart failure, BMI; body mass index, BP; blood pressure;
CKD; chronic kidney disease, eGFR; estimated glomerular filtration rate, ESE;
exercise stress echocardiogram, PCR; protein-to-creatinine ratio, CRP; C-reactive
protein, PTH; parathyroid hormone, ICS; indoxyl sulphate, PCS; p-cresyl sulphate;
PWV pulse wave velocity
^log transformed
#The coefficient notes the per unit change in GLS
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protein fermentation in the large bowel and are not effi-
ciently cleared in the presence of kidney disease. Although
these toxins are primarily protein-bound, their free frac-
tion, which is the unbound metabolically active compo-
nent, increases with deterioration of kidney function [48].
Further, these toxins have been closely linked to the syn-
thesis of inflammatory mediators and up-regulation of in-
flammation among CKD patients [49, 50]. In vitro studies
demonstrate exposure to free IS and PCS results in activa-
tion of the Nuclear Factor-kappa B (NF-kB) pathway [49]
and exposure to IS in particular stimulates mitogen-
activated protein kinase (MAPK) pathways, with subse-
quent fibrotic, oxidative and pro-inflammatory effects on
the myocardium [14].
Myocardial ischemia is a pivotal factor for cardiac re-

modeling in CKD and GLS was previously reported to
provide prognostic information on myocardial ischemia
and infarct size [51]. This study observed a trend towards

an association between GLS and myocardial ischemia
(p = 0.05).
This investigation is a comprehensive analysis of CV risk

factors and GLS. However, a cause-effect relationship was
unable to be identified due to the cross-sectional nature of
the study. In this study traditional risk factors were well
controlled which may have limited our ability to detect as-
sociations between these parameters and GLS. Moreover,
the study was limited to subjects with an eGFR of 25 –
60 ml/min/1.73 m2 and included only 30 patients with
impaired GLS. Even though a large number of patient
characteristics were adjusted for, the possibility of residual
confounding cannot be excluded. Larger studies are re-
quired to further explore associations with GLS in CKD.

Conclusions
This study demonstrated the associations of multiple
traditional and CKD-related risk factors with LV systolic

Fig. 1 a-c: The association between global longitudinal strain (GLS) and a aortic pulse wave velocity (PWV), b free p-cresyl sulphate and c free
indoxyl sulphate

Table 4 Multivariate regression models for GLS: assessing the independent contribution of aortic stiffness

Model R2 #Â coefficient (95 % CI) p

1: Unadjusted PWV 0.06 2.9(0.72,5.04) 0.009

2: 1+ traditional risk factors* 0.26 3.2(0.57,5.81) 0.01

3: 2+ CKD-related risk factors** 0.30 3.34(0.54,6.15) 0.02

4: 3+ echo parameters*** 0.44 2.3(0.48,4.06) 0.01

*Traditional risk factors include age, gender, diabetes, heart failure, BMI, systolic BP, diastolic BP, inducible ischemia
**CKD related risk factors include eGFR, CRP, free IS, free PCS, corrected calcium
***Echocardiogram parameters: EF, E/e’, LVMI
#The coefficient notes the per unit change in GLS, PWV; pulse wave velocity, CKD; chronic kidney disease, CI; confidence interval
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function assessed using GLS in patients with CKD. LV
systolic function assessed using GLS was associated with
uremic toxins, obesity and arterial stiffness. Future stud-
ies are required to assess whether therapeutic strategies
to modify these CV risk factors can result in improved
LV function.

Additional file

Additional file 1: Table S1. A: Clinical characteristics of 136 patients
according to GLS values above and below the median. Table S2.
A: Echocardiographic characteristic according values above and below
the median.
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