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Abstract

Background: Patients with chronic kidney disease have a markedly increased cardiovascular mortality compared
with the general population. Long chain n-3 polyunsaturated fatty acids have been suggested to possess cardioprotective
properties. This cross-sectional and comparative study evaluated correlations between hemodynamic measurements,
resistance artery function and fish consumption to the content of long chain n-3 polyunsaturated fatty acids in adipose
tissue, a long-term marker of seafood intake.

Methods: Seventeen patients with chronic kidney disease stage 5 + 5d and 27 healthy kidney donors were evaluated
with hemodynamic measurements before surgery; from these subjects, 11 patients and 11 healthy subjects had
vasodilator properties of subcutaneous resistance arteries examined. The measurements were correlated to
adipose tissue n-3 polyunsaturated fatty acids. Information on fish intake was obtained from a dietary questionnaire
and compared with adipose tissue n-3 polyunsaturated fatty acids.

Results: Fish intake and the content of n-3 polyunsaturated fatty acids in adipose tissue did not differ between
patients and controls. n-3 polyunsaturated fatty acid levels in adipose tissue were positively correlated to systemic
vascular resistance index; (r = 0.44; p = 0.07 and r = 0.62; p < 0.05, chronic kidney disease and healthy subjects
respectively) and negatively correlated to cardiac output index (r = −0.69; p < 0.01 and r = −0.50; p < 0.05, chronic
kidney disease and healthy subjects respectively). No correlation was observed between n-3 polyunsaturated fatty
acid levels in adipose tissue and vasodilator properties in resistance arteries. n-3 PUFA content in adipose tissue
increased with increasing self-reported fish intake.

Conclusions: The correlations found, suggest a role for n-3 polyunsaturated fatty acids in hemodynamic
properties. However, this is apparently not due to changes in intrinsic properties of the resistance arteries
as no correlation was found to n-3 polyunsaturated fatty acids.
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Background
Patients with chronic kidney disease (CKD) have a high
risk of cardiovascular disease (CVD) compared with the
general population and with declining renal function,
the risk of CVD increases [1]. In the general population,
cardiovascular mortality has been reduced substantially
during the past years, but in patients with CKD the high
mortality from CVD remains unchanged [2]. The mech-
anisms responsible for the accelerated atherosclerosis in
CKD are somewhat distinct from patients with classic
CVD with intima lesions. They include inflammatory
processes leading to vascular and myocardial fibrosis
and vascular media calcifications [3, 4]. Although renal
transplantation halts the progression of CVD, it still
remains the leading cause of death after renal transplant-
ation [5]. Large artery stiffness, as estimated by either
pulse wave velocity (PWV) or augmentation index, has
proved to be an independent predictor of CVD in pa-
tients with CKD [6].
Long chain n-3 polyunsaturated fatty acids (PUFA)

might have cardioprotective effects [7, 8], and several
studies have suggested a beneficial effect of long chain
n-3 PUFA on CVD, although data are not entirely con-
sistent [9–11]. The most important n-3 PUFA, eicosa-
pentaenoic acid 20:5 (EPA) and docosahexaenoic acid
22:6 (DHA), are primarily found in fatty fish and are also
available in fish oil supplements.
Several trials in non-CKD populations have addressed

whether n-3 PUFA supplementation has an effect on
arterial stiffness [12–14], and a meta-analysis concluded
that n-3 PUFA supplementation significantly reduces
arterial stiffness when determined as PWV or systemic
arterial compliance [15]. Studies on the immediate effect
of a large intake of n-3 PUFA have also proved an attenu-
ating effect on arterial stiffness [16]. Contradicting results
have emerged from trials testing the effect of n-3 PUFA
supplementation on the vascular endothelial function,
evaluated as flow-mediated dilatation of the brachial
artery. Thus, n-3 PUFA improved the endothelial func-
tion in patients with metabolic syndrome, whereas such
an effect could not be documented in healthy adults
[17, 18]. The resistance arteries of the body are of critical
importance for blood pressure regulation, organ perfusion
and peripheral vascular resistance [19] and are presumed to
be of major importance in the development of CVD.
Previous investigations have not shown difference in
morphology or vasoconstrictor response when compar-
ing CKD and control resistance arteries [20], whereas
studies on endothelial function have shown contradicting
results [21–24].
The aim of this explorative cross-sectional and compara-

tive study of patients with CKD stage 5 + 5d and healthy
kidney donors was to correlate n-3 PUFA concentration
in adipose tissue with arterial stiffness, cardiac output,

systemic vascular resistance and endothelium-mediated
vasodilatation in resistance arteries. Furthermore self-
reported fish intake was compared to n-3 PUFA con-
centration in adipose tissue.

Methods
Study population
A total of 18 patients with chronic kidney disease
stage 5 + 5d (CKD) and 27 healthy kidney donors were
included in the study. One patient was excluded from
statistical analysis because of missing values for n-3
PUFA in adipose tissue. Inclusion criteria were age
above 18 years and scheduled for either living related-
donor renal transplant (14 patients) or insertion of peri-
toneal dialysis catheter (3 patients) at the Department of
Nephrology, Aarhus University Hospital, Denmark, during
1st of November 2010 until the 31st of October 2011. In-
clusion ran consecutively and patients were approached
when an operation date was scheduled. Exclusion criteria
were severe congestive heart failure, persisting cardiac
arrhythmias, reduced pulmonary function, leg amputation,
severe psychiatric disease and acute infection. Three pa-
tients had diabetes mellitus, and 3 had previously docu-
mented CVD. Ahead of inclusion nine patients were not
on dialysis, while 8 were treated with peritoneal dialysis.
Median dialysis vintage was 294 days (range: 100–1154
days). All but one of the patients were treated with one or
more antihypertensive drug: ACE-inhibitor (6 patients),
angiotensin II receptor antagonist (7 patients), calcium
channel antagonist (13 patients), beta-blocker (8 patients),
furosemide (15 patients).
Patients prepared for living donor transplantation received

immunosuppressive therapy 2 days in advance: Prednisolone
20 mg/d, Tacrolimus 0.2 mg/kg/d and Mycophenolat mofetil
acid 1.5 g/d.
Twenty-seven healthy kidney donors who did not receive

any medication served as controls. Control subjects were
related to the patients (sibling, husband, wife, mother,
father or friend).
The day before surgery, the participants’ hemodynamic

data were measured along with height, weight and blood
pressure. The participants filled out a questionnaire
regarding fish intake, and fasting blood samples were
drawn on the day of surgery. During surgery, a 2 × 3 cm
biopsy from the abdominal wall containing skin, adipose
tissue and subcutaneous resistance arteries was removed.
Adipose tissue was submerged in liquid nitrogen and
stored in a −80 °C freezer prior to analysis of fatty acid
composition. Resistance arteries from the biopsy were iso-
lated and mounted for isometric force measurements.

Hemodynamic study
Seventeen patients with CKD and 27 healthy subjects were
part of the hemodynamic study. Blood pressure, pulse rate
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and cardiac output (CO) were measured with a portable
non-invasive device consisting of a three-way respiratory
valve with a mouthpiece and a rebreathing bag connected
to an infrared photoacuostic gas analyzer, a pulse oxymeter
and a device for automatic blood pressure measurement
(Innocor®, Innovision, Odense, Denmark). CO was mea-
sured by rebreathing a gas mixture of sulfahexafluoride
(SF6, 0.1%) and nitrous oxide (N20 0.5%) in an O2/N2

mixture. Rebreathing was done in 15 s with a gas volume
of 1.8 l and a respiratory breathing rate of 14–18 min−1.
Gas was sampled continuously from the mouthpiece and
analyzed on-line by the IR gas analyzer. A constant ventila-
tion rate and volume were ensured by synchrony between
the graphical tachymeter on the computer screen and the
study subject, who was instructed to empty the bag with
each breath. The rebreathing software calculated pul-
monary blood flow from the rate of uptake of N2O into
the blood (slope of regression line through logarithmic-
ally transformation of expiratory N2O concentration
plotted against time). The first two or three breaths
were excluded from analysis if total lung volume changes
measured by SF6 indicated incomplete gas mixing. After
correction for system volume changes using SF6 concen-
tration, the first two or three breath were excluded from
the analysis due to initial incomplete gas mixing. For the
majority of patients without pulmonary arterial-venous
shunt (SaO2 ≥ 98%) the measured pulmonary blood flow
value was considered equal to CO, whereas for patients
with pulmonary shunt, the shunt was calculated and
added to CO. The shunt fraction was calculated using
the oxygen concentration. The calculations were per-
formed under the assumption that gasses were mixed
completely, that equilibration of gasses between alveoli
and blood was rapid and that lung blood flow was
constant.
Systolic blood pressure and diastolic blood pressure were

measured using an automatic device connected to the
Innocor®. Systemic vascular resistance index (SVRi) was
calculated as: (Mean arterial blood pressure—central
venous pressure)/Cardiac output and indexed to body
surface. The measurement was performed twice, and
the mean value was used for data analysis.
Pulse wave velocity (PWV) and augmentation index

(AI) were measured in the supine position after 10 min
of rest. Carotid–femoral PWV was measured with
SphygmoCor® (AtCor Medical, TX, US), using the inte-
gral software.
Augmentation pressure was calculated as the differ-

ence between the second and first systolic peaks, and AI
was calculated as the augmentation pressure expressed
as percentage of pulse pressure. AI was measured for
aorta. All of the measurements were made in duplicate
by one trained study nurse, and the mean values were
used in the subsequent analysis.

Microvascular study
In the microvascular study, 11 patients with CKD and 11
healthy subjects were examined; the included patients
where those where dissection were successful and viable
vessels found. Skin and subcutaneous tissue samples were
taken during surgery and immediately placed in a 5 °C
physiological salt solution (PSS). In the biopsies, 2 mm long
resistance artery segments were dissected for measurement
of endothelium-dependent vasodilatation. The artery seg-
ments were mounted on two stainless steel wires (40 μm
diameter) in organ baths of a 4-channel wire myograph
(model 610M, Danish Myo Technology, Aarhus, Denmark)
or in a 2-channel wire myograph (model 410A, Danish
Myo Technology) for isometric force measurements. The
organ baths contained PSS at 37 °C, continuously bubbled
with 5% CO2 in air to keep pH at 7.4. After mounting, the
arteries equilibrated for 20 min before the elastic properties
were characterized by stepwise increasing the artery
circumference as previously described [25]. Experi-
ments were performed at 90% of L100; where L100 is
defined as the circumference of the relaxed artery
when exposed to a transmural pressure of 100 mmHg.
The artery viability was tested twice with 10 μM noradren-
aline (NA) before beginning the protocol. Upon precon-
striction with 3 μM NA, a concentration-response curve
was performed with increasing concentrations of the
endothelium-dependent vasodilator acetylcholine (ACh).
After washout and 20 min of rest, the experiment was
repeated in the presence of the cyclooxygenase(COX)-
inhibitor indomethacin (3μM), and after another 20
min of rest, the protocol was repeated in the presence
of indomethacin and the nitric oxide-synthase inhibitor
NG-nitro-L-arginine methyl ester (L-NAME) (100 μM).
Hence “total” endothelial function, non-COX-dependent
and non-COX/nitric oxide-dependent endothelial func-
tion was tested, while nitric oxide-dependent endothelial
function was calculated.
The composition of PSS: NaCl 119, KCl 4, KH2PO4

1.18, MgSO4 1.17, NaHCO3 25, CaCl2 1.6, EDTA 0.026,
glucose 5.5 (mM). Indomethacin was dissolved in ethanol,
all other chemicals in distilled water. Chemicals were ac-
quired from Sigma-Aldrich (St. Louis, MO, US).

Evaluation of fish intake
Self-reported fish intake was obtained using a previously
validated dietary questionnaire [26]. A score was given ac-
cording to fish consumption at lunch and dinner as follows:
1 = never eating fish; 2 = eating fish once a month; 3 = eat-
ing fish twice a month; 4 = eating fish once a week; 5 = eat-
ing fish 2 to 3 times a week; 6 = eating fish every day. Fish
scores were divided into three groups as low (2–5),
moderate (6–8) and high (9–12) fish intake for further
analysis.
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Analysis of fatty acid composition of adipose tissue
Adipose tissue samples were obtained from the abdom-
inal region and stored at −80 °C. Fatty acids were ex-
tracted in CHCl3/MeOH [27], dissolved in hexane and
transesterified using 0.5 M of sodium methoxide and
acetic acid [28]. Fatty acid analysis was performed by gas
chromatography using a Chrompack CP-9002 gas chro-
matograph (Chrompack Int, Middelburg, the Netherlands)
and expressed as percentage of total fatty acids.

Biochemistry
Estimated glomerular filtration rate (eGFR) was calculated
from the 4-point MDRD formula [29]. Asymmetric di-
methyl arginine (ADMA) was measured using ELISA (DLD
Diagnostika GmbH, Germany). All other biochemistry was
analysed at the Department of Clinical Biochemistry,
Aarhus University Hospital.

Statistics
Data in tables are presented as mean ± standard deviation.
Baseline characteristics were compared using Student’s t-
test or rank-sum when appropriated; gender was compared
using Fisher’s exact test. Normality was visual check of
quintiles of the individual variables against quintiles of
normal distribution and standardized normal probability
plot and using Sharpiro-Wilks test. All 3 tests should sug-
gest normality for it to be accepted. Only n-3 PUFA was
not normally distributed and had to be logarithmically
transformed and normality was confirmed by Sharpiro-
Wilks test. Log n-3 PUFA concentrations in adipose tissue
had equal median and variance for CKD patients and
healthy subjects, and were pooled and divided into three
fish intake groups, which were compared using Kruskal-
Wallis test. Correlation tests were conducted using linear
regression. Comparison of the regression coefficient for
healthy subjects and CKD patients was done as described
by the Educational Department of UCLA [30]. All statis-
tical analyses were performed using STATA v. 13 SE
(STATA Corp., TX, US).

Results
Study population
Baseline statistics are seen in Table 1. Fish score was simi-
lar in CKD patients and healthy subjects (CKD 7.5 ± 2.0,
n = 17 vs. healthy subjects 7.1 ± 2.4, n = 27). Content of
long chain n-3 PUFA in adipose tissue were comparable
between CKD patients and healthy subjects (CKD 0.25 ±
0.18%, n = 17 vs. healthy controls 0.29 ± 0.21%, n = 23).
PWV was higher in CKD patients (CKD 9.53 ± 4.08 m/s,

n = 15 vs. 7.24 ± 1.46 m/s, n = 25; p < 0.05), augmentation
index was lower in CKD patients (CKD 70.5 ± 22.6%, n =
15 vs. healthy subjects 86.3 ± 17.5%, n = 25; p < 0.01) while
cardiac output index and SVRi did not differ significantly
between CKD patients and healthy subjects (Cardiac output

index —CKD 3.25 ± 0.94 L/min/m2, n = 16 vs. healthy
subjects 2.81 ± 0.66 L/min/m2, n = 26; SVRi —CKD
30.9 ± 9.85 mmHg/(L/min)/m2, n = 16 vs. 32.6 ± 6.9
mmHg/(L/min)/m2, n = 26). Baseline characteristics for
the microvascular study group (11 vs. 11) did not differ
from the whole group. No difference was seen between
dialysis and non-dialysis patients (data not shown).

Fish score groups and n-3 PUFA in adipose tissue
All subjects (n = 44) were divided into three groups accord-
ing to their fish intake. As shown in Fig. 1, n-3 PUFA con-
tent in adipose tissue increased with increasing fish intake
and groups were significantly different from each other
(p < 0.01).

Table 1 Baseline characteristics given as mean ± standard
deviation

Variable CKD Healthy

N 17 27

Age (years) 45(20–74) 52(25–70)

Sex (male/female) 9/8 9/18

Systolic blood pressure (mmHg) 128 ± 12 121 ± 17a

Diastolic blood pressure (mmHg) 77 ± 9 74 ± 9a

BMI (kg/m2) 25.8 ± 4.3 24.9 ± 3.2a

eGFR (ml/min/1.73 m2) 6 ± 2* 84 ± 14

Hemoglobin (mmol/l) 7.0 ± 0.7* 8.4 ± 0.9

ADMA (μmol/l) 0.75 ± 0.09 0.70 ± 0.09

Calcium ion (mmol/l) 1.18 ± 0.11 1.20 ± 0.06

Phosphate (mmol/l) 1.76 ± 0.37* 1.11 ± 0.13

Parathyroid hormone (pmol/l) 22.4 ± 14.6 n.a.

BMI Body Mass Index, eGFR Estimated glomerular filtration rate—eGFR in CKD
is from non-dialysis patients, ADMA Asymmetric dimethyl arginine
*p < 0.05
an = 26

Fig. 1 The participants’ fish score divided into three groups as low
(2–5), moderate (6–8) and high (9–12). Each group’s content of n-3
PUFA in adipose tissue. The 3 groups significantly differ from each
other (Box plot; (p < 0.01); Kruskal-Wallis test)
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Adipose n-3 PUFA and hemodynamic function
The content of long chain n-3 PUFA and SVRi was posi-
tively correlated in both CKD (r = 0.44; p = 0.07, n = 16)
and control subjects (r = 0.62; p < 0.05, n = 26). No differ-
ences in hemodynamic function between CKD and con-
trols were found (Fig. 2). Furthermore, n-3 PUFA were
negatively associated with cardiac output index in both
CKD and controls (r = −0.69; p < 0.01, n = 16 and r = −0.50;
p < 0.05, n = 26; respectively) (Fig. 3).

Adipose n-3 PUFA and microvascular function
The “total” Ach-induced vasodilatation in the microvas-
culature was not associated with the content of n-3
PUFA in adipose tissue (Fig. 4). Furthermore, specific
pathways such as non-COX-dependent, nitric oxide-
dependent and non-COX/nitric oxide-dependent were
not correlated to n-3 PUFA in adipose tissue (data not
shown).

Discussion
n-3 PUFA content in adipose tissue and self-reported
fish intake were both similar in CKD patients and con-
trols. In both CKD and healthy subjects, n-3 PUFA levels
and SVRi were positively associated, whereas n-3 PUFA
and cardiac output index were negatively associated. The
content of long chain n-3 PUFA in adipose tissue was
not associated with endothelial function in small resist-
ance vessels.

Fish intake and n-3 PUFA
n-3 PUFA content in adipose tissue (a long-term marker
of n-3 intake [31]) and fish intake were similar in CKD
patients and healthy controls. The majority of subjects

were related to one of the CKD patients as a sibling,
husband, wife, mother, father or friend, and hence a few
of them shared household and therefore, the control
group may tend to have the same fish intake. It should,
however, be appreciated that the fish score gives a rather
crude measure of consumption and particularly of intake
of EPA and DHA, which is a limitation to the study.
Previous studies have described that US hemodialysis
(HD) patients have much lower fish intake than recom-
mended [32] as well as lower levels of n-3 PUFA compared
with controls [33]. In contrast, HD patients in South Korea
[34] and peritoneal dialysis patients in Greece [35] had

Fig. 2 The association between n-3 PUFA in adipose tissue and systemic
vascular resistance index. Chronic kidney disease patients (r = 0.44;
p = 0.07) (red symbols/red dash line, fitted line and 95% confidence
interval); healthy subjects (r = 0.62; p < 0.05) (green symbols and solid
line). Regression formulas were y = 8.0*x + 43.0 and y = 6.3*x + 40.0 for
CKD patients and healthy subjects, respectively

Fig. 3 The association between n-3 PUFA in adipose tissue and cardiac
output index. Chronic kidney disease patients (r=−0.69; p< 0.01) (red
symbols/red dash line, fitted line and 95% confidence interval); healthy
subjects (r = −0.50; p < 0.05) (green symbols and green solid line).
Regression formulas were y = −0.79*x + 2.06 and y = −0.68*x + 1.87
for ESRD patients and control subjects, respectively

Fig. 4 The association between n-3 PUFA in adipose tissue and
acetylcholine-induced vasodilator response in resistance arteries.
Chronic kidney disease patients red symbols/red dash line, fitted line
and 95% coefficient interval); healthy subjects (green symbols and
green solid line). Regression formulas were y = −0.07*x + 6.86 and
y = −0.11*x + 6.81 for ESRD patients and control subjects,
respectively
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similar levels of n-3 PUFA compared with the background
population. This elucidates the importance of regional dif-
ferences in fish intake when comparing dialysis patients
with the general population.
The duration of HD has also proved important for the

general nutritional intake, since both total energy, protein
and lipid consumption are negatively correlated with the
duration of HD [36]. In the current study, both patients
with CKD treated with dialysis and pre-dialysis patients
were included. Participants were relatively young (median
45 years) with a median dialysis vintage of 294 days. The
majority was undergoing renal transplant and hence in
good condition with retained nutritional intake. This
could help explain the similar fish intake between patients
and controls seen in this study. Despite these consider-
ations, the similarity in fish intake and n-3 PUFA levels
between CKD patients and controls suggests that uptake,
processing and storage of n-3 PUFA in CKD patients are
comparable to healthy controls, as described earlier [37].

Hemodynamic function
A positive correlation between n-3 PUFA in adipose tissue
and the SVRi was found in both CKD patients and control
subjects. An earlier study in healthy adults reported that
resting SVR 5 hours after consuming a meal rich in DHA
or EPA was the same as in the controls given a meal with-
out DHA or EPA [38]. A subsequent exercise test resulted
in a lower SVR in the DHA-consuming group compared
with both the control and the EPA-consuming group. A
negative correlation was found between the content of n-3
PUFA in adipose tissue and cardiac output index in both
controls and CKD patients. The aforementioned study
[38] of n-3 PUFA acute effects did not find differences in
cardiac output at rest or exercise after DHA/EPA/placebo
ingestion. Resting cardiac output is reduced in patients
with CVD [39]. However, since a correlation was found in
both CKD and healthy controls, the current results could
also suggest that long-term fish intake enhances tissue
oxygen uptake resulting in a lowering of the cardiac
output, as suggested recently [40]. Moreover, in animal
models it is well known that n-3 PUFA lower the basic
metabolic rate [41], which could also result in a lower-
ing of cardiac output. The diminished cardiac output
could subsequently result in a baroreceptor-mediated
augmentation in SVR. A major part of the vascular re-
sistance resides in the microvasculature. However, since
we found no correlation between n-3 PUFA and the
microvascular endothelial-mediated vasodilator func-
tion, this apparently is not due to changes in intrinsic
properties of the resistance arteries. Rather the change
in resistance may stem from continual in-vivo activa-
tion from nerves, paracrine or endocrine processes.
The current study showed associations between n-3

PUFA and cardiac index/SVRi. However, associations were

not found with PWV or augmentation index. This contra-
dicts an earlier study showing DHA to be inversely associ-
ated with PWV in non-diabetic CKD patients [42]. PWV
is used as a marker of early-stage atherosclerosis [43], and
the lack of coherence between results could possibly be
explained by the young age of the CKD patients, the low
dialysis vintage or our relatively small sample size.
It has been difficult to prove an effect of n-3 PUFA inges-

tion on mortality or CVD in CKD patients in clinical trials.
However, an observational study [44] has suggested DHA in
red blood cells to be an independent predictor of mortality
in end stage renal disease patients on hemodialysis after
10 years of follow-up. Also, a clinical controlled trial
found 2 years of n-3 PUFA treatment to be beneficial in
secondary prevention of myocardial infarction in chronic
HD patients, while no effect was seen on the primary end-
point, a composite of total cardiovascular events and
death [45]. Longer prospective studies on large cohorts
are needed to determine the effect of n-3 PUFA on
hemodynamic function and mortality in CKD patients.

Microvascular function
Although several studies have addressed the effect of n-3
PUFA on endothelial function in large arteries [17, 18],
this study is the first to correlate the content of n-3
PUFA in adipose tissue with microvascular function.
The endothelial Ach-induced vasodilatation was not cor-
related to n-3 PUFA in adipose tissue. Furthermore, the
individual Ach-induced vasodilator pathways were not
associated with long chain n-3 PUFA levels (data not
shown). These results are in line with animal studies per-
formed on rat femoral resistance arteries [46] and suggest
that the intrinsic properties of resistance arteries are not
affected by n-3 PUFA.
The study design was cross-sectional and therefore

cannot establish causal relationship between variables.
Since all healthy kidney donors were related to an CKD
kidney recipient, the two groups may tend to have the
same fish intake. This could influence measurements of
hemodynamic and microvascular properties and poten-
tially mask differences which could have been found in
non-related groups. Due to the rather low sample size, a
risk of type II error exists. In this type of experiment
confounding variables are also a hazard. Due to the size
of the study, is has not been possible to adjust for con-
founders such as smoking, exercise or family history.

Conclusions
In conclusion, this study found similar fish intake and
adipose content of long chain n-3 PUFA in CKD patients
and control subjects. This is in contrast with earlier find-
ings, but might be explained by young age of subject and
the short duration of dialysis. Long chain n-3 PUFA were
negatively correlated to cardiac output index, which may
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imply that n-3 PUFA enhance tissue oxygen uptake and
lower metabolic rate. This could further explain the
observed positive correlation between n-3 PUFA and
systemic vascular resistance index although not through
intrinsic properties of resistance arteries, as they did not
correlate to long chain n-3 PUFA in adipose tissue.
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